Abstract

The performances of a compact infrared optical system using advanced pinhole optics for wide field applications are given. This concept is adapted from the classical Tisse design in order to fit with infrared issues. Despite a low light gathering efficiency and a low resolution in comparison with classical lenses, pinhole imagery provides a long depth of field and a wide angular field of view. Moreover, by using a simple lens that compresses the field of view, the angular acceptance of this pinhole camera can be drastically widened to a value around 180°. This infrared compact system is named pinhole fisheye since it is based on the field lens of a classical fisheye system.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Duparré, P. Dannberg, P. Shreiber, A. Bräuer, and A. Tünnermann, “Artificial apposition compound eye fabricated by micro-optics technology,” Appl. Opt. 43, 4303-4310 (2004).
    [CrossRef] [PubMed]
  2. J. Duparré, P. Dannberg, P. Schreiber, A. Bräuer, and A. Tünnermann, “Thin compound-eye camera,” Appl. Opt. 44, 2949-2956 (2005).
    [CrossRef] [PubMed]
  3. J. Duparré, P. Schreiber, A. Matthes, E. Pshenay-Severin, A. Bräuer, and A. Tünnermann, “Microoptical telescope compound eye,” Opt. Express 13, 889-903 (2005).
    [CrossRef] [PubMed]
  4. V. Gubsky, M. Gertsenshteyn, and T. Jannson, “Lobster-eye infrared focusing optics,” Proc. SPIE 6295, 62950F (2006).
    [CrossRef]
  5. G. Druart, N. Guérineau, R. Haïdar, E. Lambert, M. Tauvy, S. Thétas, S. Rommeluère, J. Primot, and J. Deschamps, “MULTICAM: a miniature cryogenic camera for infrared detection,” in Micro-Optics, Proc. SPIE 6992, 699215 (2008).
  6. J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, and Y. Ichioka, “Thin observation module by bound optics (TOMBO) concept and experimental verification,” Appl. Opt. 40, 1806-1813 (2001).
    [CrossRef]
  7. K. Kubala, E. Dowski, and W. T. Cathey, “Reducing complexity in computational imaging systems,” Opt. Express 11, 2102-2108 (2003).
    [CrossRef] [PubMed]
  8. E. J. Tremblay, R. A. Stack, R. L. Morrison, and J. E. Ford, “Ultrathin cameras using annular folded optics,” Appl. Opt. 46, 463-471 (2007).
    [CrossRef] [PubMed]
  9. Ch. Friese, A. Werber, F. Krogmann, R. Shaik, W. Monch, and H. Zappe, “New technologies for tunable micro-optics,” Proc. SPIE 6993, 699306 (2008).
    [CrossRef]
  10. G. Druart, J. Taboury, N. Guérineau, R. Haïdar, H. Sauer, A. Kattnig, and J. Primot, “Demonstration of image-zooming capability for diffractive axicons,” Opt. Lett. 33, 366-368 (2008).
    [CrossRef] [PubMed]
  11. Z. Jaroszewicz, A. Burvall, and A. T. Friberg, “AXICON--the most important optical element,” Opt. Photon. News 16(4), 34-39 (2005).
    [CrossRef]
  12. K. Sayanagui, “Pinhole imagery,” J. Opt. Soc. Am. 57, 1091-1099 (1967).
  13. R. E. Swing and D. P. Rooney, “General transfer function for the pinhole camera,” J. Opt. Soc. Am. 58, 629-635 (1968).
    [CrossRef]
  14. H. B. Edwards and W. P. Chu, “Graphic design of pinhole cameras,” Appl. Opt. 18, 262-263 (1979).
    [CrossRef] [PubMed]
  15. K. D. Mielenz, “On the diffraction limit for lensless imaging,” J. Res. Natl. Inst. Stand. Technol. 104, 479-485(1999).
  16. M. Young, “Pinhole optics,” Appl. Opt. 10, 2763-2767 (1971).
    [PubMed]
  17. P. A. Newmann and V. E. Rible, “Pinhole array camera for integrated circuits,” Appl. Opt. 5, 1225-1228 (1966).
    [CrossRef]
  18. C.-L. Tisse, “Low-cost miniature wide-angle imaging for self-motion estimation,” Opt. Express 13, 6061-6072 (2005).
    [CrossRef] [PubMed]
  19. C.-L. Tisse and H. Durrant-Whyte, “Hemispherical eye sensor in micro aerial vehicles using advanced pinhole imaging system,” in Proceeding of IEEE Conference on Intelligent Robots and Systems (IEEE, 2005), pp. 634-640.
  20. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968), p. 30.
  21. G. Druart, N. Guérineau, R. Haïdar, J. Primot, Pierre Chavel, and J. Taboury, “Nonparaxial analysis of continuous self-imaging gratings in oblique illumination,” J. Opt. Soc. Am. A 24, 3379-3387 (2007).
    [CrossRef]
  22. M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1989), Chap. 5, p. 203.
  23. E. W. H. Selwyn, “The pin-hole camera,” Photograph. J. B 90, 47-52 (1949).
  24. S.-B. Rim, P. B. Catrysse, R. Dinyari, K. Huang, and P. Peumans, “The optical advantages of curved focal plane arrays,” Opt. Express 16, 4965-4971 (2008).
    [CrossRef] [PubMed]
  25. R. W. Wood, Physical Optics (Dover, 1967), pp. 66-69.
  26. J. M. Franke, “Field-widened pinhole camera,” Appl. Opt. 18, 2913-2914 (1979).
    [CrossRef] [PubMed]
  27. T. Hsu, “Reflective wide-angle pinhole camera,” Appl. Opt. 21, 2303-2304 (1982).
    [CrossRef] [PubMed]
  28. J. J. Kumler and M. L. Bauer, “Fish-eye lens designs and their relative performance,” Proc. SPIE 4093, 360 (2000).
    [CrossRef]
  29. H. M. Spencer, J. M. Rodgers, and J. M. Hoffman, “Optical design of a panoramic, wide spectral band, infrared fisheye lens,” Proc. SPIE 6342, 63421P (2007).
    [CrossRef]
  30. S. Rommeluère, R. Haïdar, N. Guérineau, J. Deschamps, E. de Borniol, A. Million, J.-P. Chamonal, and G. Destefanis, “Single-scan extraction of two-dimensional parameters of infrared focal plane arrays utilizing a Fourier-transform spectrometer,” Appl. Opt. 46, 1379-1384 (2007).
    [CrossRef] [PubMed]

2008 (3)

2007 (4)

2006 (1)

V. Gubsky, M. Gertsenshteyn, and T. Jannson, “Lobster-eye infrared focusing optics,” Proc. SPIE 6295, 62950F (2006).
[CrossRef]

2005 (4)

2004 (1)

2003 (1)

2001 (1)

2000 (1)

J. J. Kumler and M. L. Bauer, “Fish-eye lens designs and their relative performance,” Proc. SPIE 4093, 360 (2000).
[CrossRef]

1999 (1)

K. D. Mielenz, “On the diffraction limit for lensless imaging,” J. Res. Natl. Inst. Stand. Technol. 104, 479-485(1999).

1982 (1)

1979 (2)

1971 (1)

1968 (1)

1967 (1)

1966 (1)

1949 (1)

E. W. H. Selwyn, “The pin-hole camera,” Photograph. J. B 90, 47-52 (1949).

Bauer, M. L.

J. J. Kumler and M. L. Bauer, “Fish-eye lens designs and their relative performance,” Proc. SPIE 4093, 360 (2000).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1989), Chap. 5, p. 203.

Bräuer, A.

Burvall, A.

Z. Jaroszewicz, A. Burvall, and A. T. Friberg, “AXICON--the most important optical element,” Opt. Photon. News 16(4), 34-39 (2005).
[CrossRef]

Cathey, W. T.

Catrysse, P. B.

Chamonal, J.-P.

Chavel, Pierre

Chu, W. P.

Dannberg, P.

de Borniol, E.

Deschamps, J.

S. Rommeluère, R. Haïdar, N. Guérineau, J. Deschamps, E. de Borniol, A. Million, J.-P. Chamonal, and G. Destefanis, “Single-scan extraction of two-dimensional parameters of infrared focal plane arrays utilizing a Fourier-transform spectrometer,” Appl. Opt. 46, 1379-1384 (2007).
[CrossRef] [PubMed]

G. Druart, N. Guérineau, R. Haïdar, E. Lambert, M. Tauvy, S. Thétas, S. Rommeluère, J. Primot, and J. Deschamps, “MULTICAM: a miniature cryogenic camera for infrared detection,” in Micro-Optics, Proc. SPIE 6992, 699215 (2008).

Destefanis, G.

Dinyari, R.

Dowski, E.

Druart, G.

Duparré, J.

Durrant-Whyte, H.

C.-L. Tisse and H. Durrant-Whyte, “Hemispherical eye sensor in micro aerial vehicles using advanced pinhole imaging system,” in Proceeding of IEEE Conference on Intelligent Robots and Systems (IEEE, 2005), pp. 634-640.

Edwards, H. B.

Ford, J. E.

Franke, J. M.

Friberg, A. T.

Z. Jaroszewicz, A. Burvall, and A. T. Friberg, “AXICON--the most important optical element,” Opt. Photon. News 16(4), 34-39 (2005).
[CrossRef]

Friese, Ch.

Ch. Friese, A. Werber, F. Krogmann, R. Shaik, W. Monch, and H. Zappe, “New technologies for tunable micro-optics,” Proc. SPIE 6993, 699306 (2008).
[CrossRef]

Gertsenshteyn, M.

V. Gubsky, M. Gertsenshteyn, and T. Jannson, “Lobster-eye infrared focusing optics,” Proc. SPIE 6295, 62950F (2006).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968), p. 30.

Gubsky, V.

V. Gubsky, M. Gertsenshteyn, and T. Jannson, “Lobster-eye infrared focusing optics,” Proc. SPIE 6295, 62950F (2006).
[CrossRef]

Guérineau, N.

Haïdar, R.

Hoffman, J. M.

H. M. Spencer, J. M. Rodgers, and J. M. Hoffman, “Optical design of a panoramic, wide spectral band, infrared fisheye lens,” Proc. SPIE 6342, 63421P (2007).
[CrossRef]

Hsu, T.

Huang, K.

Ichioka, Y.

Ishida, K.

Jannson, T.

V. Gubsky, M. Gertsenshteyn, and T. Jannson, “Lobster-eye infrared focusing optics,” Proc. SPIE 6295, 62950F (2006).
[CrossRef]

Jaroszewicz, Z.

Z. Jaroszewicz, A. Burvall, and A. T. Friberg, “AXICON--the most important optical element,” Opt. Photon. News 16(4), 34-39 (2005).
[CrossRef]

Kattnig, A.

Kondou, N.

Krogmann, F.

Ch. Friese, A. Werber, F. Krogmann, R. Shaik, W. Monch, and H. Zappe, “New technologies for tunable micro-optics,” Proc. SPIE 6993, 699306 (2008).
[CrossRef]

Kubala, K.

Kumagai, T.

Kumler, J. J.

J. J. Kumler and M. L. Bauer, “Fish-eye lens designs and their relative performance,” Proc. SPIE 4093, 360 (2000).
[CrossRef]

Lambert, E.

G. Druart, N. Guérineau, R. Haïdar, E. Lambert, M. Tauvy, S. Thétas, S. Rommeluère, J. Primot, and J. Deschamps, “MULTICAM: a miniature cryogenic camera for infrared detection,” in Micro-Optics, Proc. SPIE 6992, 699215 (2008).

Matthes, A.

Mielenz, K. D.

K. D. Mielenz, “On the diffraction limit for lensless imaging,” J. Res. Natl. Inst. Stand. Technol. 104, 479-485(1999).

Million, A.

Miyatake, S.

Miyazaki, D.

Monch, W.

Ch. Friese, A. Werber, F. Krogmann, R. Shaik, W. Monch, and H. Zappe, “New technologies for tunable micro-optics,” Proc. SPIE 6993, 699306 (2008).
[CrossRef]

Morimoto, T.

Morrison, R. L.

Newmann, P. A.

Peumans, P.

Primot, J.

Pshenay-Severin, E.

Rible, V. E.

Rim, S.-B.

Rodgers, J. M.

H. M. Spencer, J. M. Rodgers, and J. M. Hoffman, “Optical design of a panoramic, wide spectral band, infrared fisheye lens,” Proc. SPIE 6342, 63421P (2007).
[CrossRef]

Rommeluère, S.

S. Rommeluère, R. Haïdar, N. Guérineau, J. Deschamps, E. de Borniol, A. Million, J.-P. Chamonal, and G. Destefanis, “Single-scan extraction of two-dimensional parameters of infrared focal plane arrays utilizing a Fourier-transform spectrometer,” Appl. Opt. 46, 1379-1384 (2007).
[CrossRef] [PubMed]

G. Druart, N. Guérineau, R. Haïdar, E. Lambert, M. Tauvy, S. Thétas, S. Rommeluère, J. Primot, and J. Deschamps, “MULTICAM: a miniature cryogenic camera for infrared detection,” in Micro-Optics, Proc. SPIE 6992, 699215 (2008).

Rooney, D. P.

Sauer, H.

Sayanagui, K.

Schreiber, P.

Selwyn, E. W. H.

E. W. H. Selwyn, “The pin-hole camera,” Photograph. J. B 90, 47-52 (1949).

Shaik, R.

Ch. Friese, A. Werber, F. Krogmann, R. Shaik, W. Monch, and H. Zappe, “New technologies for tunable micro-optics,” Proc. SPIE 6993, 699306 (2008).
[CrossRef]

Shreiber, P.

Spencer, H. M.

H. M. Spencer, J. M. Rodgers, and J. M. Hoffman, “Optical design of a panoramic, wide spectral band, infrared fisheye lens,” Proc. SPIE 6342, 63421P (2007).
[CrossRef]

Stack, R. A.

Swing, R. E.

Taboury, J.

Tanida, J.

Tauvy, M.

G. Druart, N. Guérineau, R. Haïdar, E. Lambert, M. Tauvy, S. Thétas, S. Rommeluère, J. Primot, and J. Deschamps, “MULTICAM: a miniature cryogenic camera for infrared detection,” in Micro-Optics, Proc. SPIE 6992, 699215 (2008).

Thétas, S.

G. Druart, N. Guérineau, R. Haïdar, E. Lambert, M. Tauvy, S. Thétas, S. Rommeluère, J. Primot, and J. Deschamps, “MULTICAM: a miniature cryogenic camera for infrared detection,” in Micro-Optics, Proc. SPIE 6992, 699215 (2008).

Tisse, C.-L.

C.-L. Tisse, “Low-cost miniature wide-angle imaging for self-motion estimation,” Opt. Express 13, 6061-6072 (2005).
[CrossRef] [PubMed]

C.-L. Tisse and H. Durrant-Whyte, “Hemispherical eye sensor in micro aerial vehicles using advanced pinhole imaging system,” in Proceeding of IEEE Conference on Intelligent Robots and Systems (IEEE, 2005), pp. 634-640.

Tremblay, E. J.

Tünnermann, A.

Werber, A.

Ch. Friese, A. Werber, F. Krogmann, R. Shaik, W. Monch, and H. Zappe, “New technologies for tunable micro-optics,” Proc. SPIE 6993, 699306 (2008).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1989), Chap. 5, p. 203.

Wood, R. W.

R. W. Wood, Physical Optics (Dover, 1967), pp. 66-69.

Yamada, K.

Young, M.

Zappe, H.

Ch. Friese, A. Werber, F. Krogmann, R. Shaik, W. Monch, and H. Zappe, “New technologies for tunable micro-optics,” Proc. SPIE 6993, 699306 (2008).
[CrossRef]

Appl. Opt. (10)

J. Duparré, P. Dannberg, P. Shreiber, A. Bräuer, and A. Tünnermann, “Artificial apposition compound eye fabricated by micro-optics technology,” Appl. Opt. 43, 4303-4310 (2004).
[CrossRef] [PubMed]

J. Duparré, P. Dannberg, P. Schreiber, A. Bräuer, and A. Tünnermann, “Thin compound-eye camera,” Appl. Opt. 44, 2949-2956 (2005).
[CrossRef] [PubMed]

J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, and Y. Ichioka, “Thin observation module by bound optics (TOMBO) concept and experimental verification,” Appl. Opt. 40, 1806-1813 (2001).
[CrossRef]

E. J. Tremblay, R. A. Stack, R. L. Morrison, and J. E. Ford, “Ultrathin cameras using annular folded optics,” Appl. Opt. 46, 463-471 (2007).
[CrossRef] [PubMed]

M. Young, “Pinhole optics,” Appl. Opt. 10, 2763-2767 (1971).
[PubMed]

P. A. Newmann and V. E. Rible, “Pinhole array camera for integrated circuits,” Appl. Opt. 5, 1225-1228 (1966).
[CrossRef]

H. B. Edwards and W. P. Chu, “Graphic design of pinhole cameras,” Appl. Opt. 18, 262-263 (1979).
[CrossRef] [PubMed]

J. M. Franke, “Field-widened pinhole camera,” Appl. Opt. 18, 2913-2914 (1979).
[CrossRef] [PubMed]

T. Hsu, “Reflective wide-angle pinhole camera,” Appl. Opt. 21, 2303-2304 (1982).
[CrossRef] [PubMed]

S. Rommeluère, R. Haïdar, N. Guérineau, J. Deschamps, E. de Borniol, A. Million, J.-P. Chamonal, and G. Destefanis, “Single-scan extraction of two-dimensional parameters of infrared focal plane arrays utilizing a Fourier-transform spectrometer,” Appl. Opt. 46, 1379-1384 (2007).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (1)

J. Res. Natl. Inst. Stand. Technol. (1)

K. D. Mielenz, “On the diffraction limit for lensless imaging,” J. Res. Natl. Inst. Stand. Technol. 104, 479-485(1999).

Opt. Express (4)

Opt. Lett. (1)

Opt. Photon. News (1)

Z. Jaroszewicz, A. Burvall, and A. T. Friberg, “AXICON--the most important optical element,” Opt. Photon. News 16(4), 34-39 (2005).
[CrossRef]

Photograph. J. B (1)

E. W. H. Selwyn, “The pin-hole camera,” Photograph. J. B 90, 47-52 (1949).

Proc. SPIE (4)

J. J. Kumler and M. L. Bauer, “Fish-eye lens designs and their relative performance,” Proc. SPIE 4093, 360 (2000).
[CrossRef]

H. M. Spencer, J. M. Rodgers, and J. M. Hoffman, “Optical design of a panoramic, wide spectral band, infrared fisheye lens,” Proc. SPIE 6342, 63421P (2007).
[CrossRef]

V. Gubsky, M. Gertsenshteyn, and T. Jannson, “Lobster-eye infrared focusing optics,” Proc. SPIE 6295, 62950F (2006).
[CrossRef]

Ch. Friese, A. Werber, F. Krogmann, R. Shaik, W. Monch, and H. Zappe, “New technologies for tunable micro-optics,” Proc. SPIE 6993, 699306 (2008).
[CrossRef]

Other (5)

G. Druart, N. Guérineau, R. Haïdar, E. Lambert, M. Tauvy, S. Thétas, S. Rommeluère, J. Primot, and J. Deschamps, “MULTICAM: a miniature cryogenic camera for infrared detection,” in Micro-Optics, Proc. SPIE 6992, 699215 (2008).

C.-L. Tisse and H. Durrant-Whyte, “Hemispherical eye sensor in micro aerial vehicles using advanced pinhole imaging system,” in Proceeding of IEEE Conference on Intelligent Robots and Systems (IEEE, 2005), pp. 634-640.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968), p. 30.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1989), Chap. 5, p. 203.

R. W. Wood, Physical Optics (Dover, 1967), pp. 66-69.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Illustration of the parameters used for the analysis of the pinhole.

Fig. 2
Fig. 2

(a) Illustration of the transverse intensity according to f of a plane wave of wavelength λ = 4 μm going through a pinhole of diameter 260 μm . (b) Variations of the frequencies at 0%, 5%, 10%, and 15% of the normalized MTF versus distance of propagation f for a pinhole of diameter 260 μm at λ = 4 μm .

Fig. 3
Fig. 3

Comparison of the MTFs of a pinhole of diameter 260 μm at λ = 4 μm at configuration β = 5.1 , 3.8, and 2 with the ideal MTFs.

Fig. 4
Fig. 4

Evolution of the étendue versus field angle θ in the case of a pinhole with a plane detector and with a curved detector.

Fig. 5
Fig. 5

Different designs to widen the field of view of a pinhole: (a) Franke’s camera, (b) Tisse’s camera, and (c) recommended configuration, called the pinhole fisheye.

Fig. 6
Fig. 6

Annotation of the pinhole fisheye.

Fig. 7
Fig. 7

(a) Illustration of the mechanical assembly of the pinhole fisheye, (b) illustration of the different components of the pinhole fisheye.

Fig. 8
Fig. 8

Two images of the 180 ° scene viewed by the pinhole fisheye.

Fig. 9
Fig. 9

Comparison between results obtained by simulation and experiment: (a), (b)  the experimental and simulated radial profiles, respectively, of the PSFs at λ = 3 μm and at λ = 5 μm . (c) Normalized transverse PSFs according to λ for different values, obtained either experimentally (solid curves) or by simulation (dash dot curves). The pinhole fisheye has the characteristics described in Subsection 3B.

Fig. 10
Fig. 10

Comparison between the experimental radial polychromatic PSFs of two pinhole fisheyes having a pinhole diameter of 200 μm or 260 μm and viewing a point source at 1200 ° C . The field lens of these pinhole fisheyes is the one described in Subsection 3B. The focal length of these cameras is equal to 4.8 mm .

Equations (32)

Equations on this page are rendered with MathJax. Learn more.

U ( ρ , f ) = U 0 0 2 π 0 s 2 disc ( 2 ρ s ) exp ( i π ρ 2 λ ( 1 d + 1 f ) ) exp ( 2 i π ρ . ρ λ f ) ρ d ρ d φ ,
U 0 = i λ f exp ( i k f ) exp ( i π ρ 2 λ f ) ,
ϕ aberr ( ρ , φ ) = i π ρ 2 λ ( 1 d + 1 f ) .
β = s 2 λ ( 1 d + 1 f ) .
max ( ϕ aberr ) = π 4 β .
ν c 1 = s λ f .
ν c 1 = β s .
Δ RMS = < ϕ aberr 2 > < ϕ aberr > 2 ,
ϕ aberr = 0 2 π 0 s / 2 ϕ aberr ( ρ , φ ) ρ d ρ d φ 0 2 π 0 s / 2 ρ d ρ d φ .
Δ RMS = π β 3 24 .
IFOV = arctan ( 1 f ν c 1 ) .
IFOV = λ s .
Δ IFOV IFOV Avg = Δ λ λ Avg ,
1 d + 1 f = β λ s 2 .
N = f s ,
G = π A d 4 N 2 ,
N = s λ β .
ν t = cos 3 ( θ ) s λ f ,
ν s = cos ( θ ) s λ f ,
IFOV t = cos 2 ( θ ) λ s ,
IFOV s = λ s .
G ( θ ) = G cos 4 θ .
f = det 2 tan ( FOV / 2 ) .
β opt = 3.4.
s opt 2 = d min d min + f β opt λ min f .
sin ( θ a FOV 2 ) = n sin ( θ a θ 2 ) ,
T R 1 = [ cot ( θ 2 ) + tan ( θ a 2 ) ] sin ( θ a ) .
d = | f 2 | + T e / 2 ,
1 f 2 = ( n 1 ) ( 1 R 1 1 R 2 ) ( 1 + n 1 n T R 2 R 1 R 2 ) ,
C = FOV θ .
IFOV system = C λ s .
IFOV ideal = C arctan ( 2 * pix f ) .

Metrics