Abstract

Optical aberration due to the nonflatness of spatial light modulators used in holographic optical tweezers significantly deteriorates the quality of the trap and may easily prevent stable trapping of particles. We use a Shack–Hartmann sensor to measure the distorted wavefront at the modulator plane; the conjugate of this wavefront is then added to the holograms written into the display to counteract its own curvature and thus compensate the optical aberration of the system. For a Holoeye LC-R 2500 reflective device, flatness is improved from 0.8λ to λ/16 (λ=532nm), leading to a diffraction-limited spot at the focal plane of the microscope objective, which makes stable trapping possible. This process could be fully automated in a closed-loop configuration and would eventually allow other sources of aberration in the optical setup to be corrected for.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288-290 (1986),
    [CrossRef] [PubMed]
  2. M. J. Lang and S. M. Block, “Resource letter: LBOT-1: Laser-based optical tweezers,” Am. J. Phys. 71, 201-215 (2003).
    [CrossRef]
  3. M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, “Optical particle trapping with computer-generated holograms written on a liquid-crystal display,” Opt. Lett. 24, 608-610 (1999).
    [CrossRef]
  4. J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185, 77-82 (2000).
    [CrossRef]
  5. E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810-1816 (2001).
    [CrossRef]
  6. J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169-175 (2002).
    [CrossRef]
  7. D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810-816 (2003).
    [CrossRef] [PubMed]
  8. O. Muller, M. Schliwa, and H. Felgner, “Calibration of light forces in optical tweezers,” Appl. Opt. 34, 977-982 (1995).
    [CrossRef] [PubMed]
  9. A. Rohrbach and E. H. K. Stelzer, “Trapping forces, force constants, and potential depths for dielectric spheres in the presence of spherical aberrations,” Appl. Opt. 41, 2494-2507(2002).
    [CrossRef] [PubMed]
  10. T. Ota, T. Sugiura, S. Kawata, M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, “Enhancement of laser trapping force by spherical aberration correction using a deformable mirror,” Jpn. J. Appl. Phys. 42, L701-L703 (2003).
    [CrossRef]
  11. E. Theofanidou, L. Wilson, W. J. Hossack, and J. Arlt, “Spherical aberration correction for optical tweezers,” Opt. Commun. 236, 145-150 (2004).
    [CrossRef]
  12. K. Ladavac and D. Grier, “Microoptomechanical pumps assembled and driven by holographic optical vortex arrays,” Opt. Express 12, 1144-1149 (2004).
    [CrossRef] [PubMed]
  13. Y. Roichman, A. Waldron, E. Gardel, and D. G. Grier, “Optical traps with geometric aberrations,” Appl. Opt. 45, 3425-3429(2006).
    [CrossRef] [PubMed]
  14. A. Jesacher, A. Schwaighofer, S. Fürhapter, C. Maurer, S. Bernet, and M. Ritsch-Marte, “Wavefront correction of spatial light modulators using an optical vortex image,” Opt. Express 15, 5801-5808 (2007).
    [CrossRef] [PubMed]
  15. G. D. Love, “Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator,” Appl. Opt. 36, 1517-1520 (1997).
    [CrossRef] [PubMed]
  16. J. Liesener, M. Reicherter, and H. J. Tiziani, “Determination and compensation of aberrations using SLMs,” Opt. Commun. 233, 161-166 (2004).
    [CrossRef]
  17. Q. Mu, Z. Cao, L. Hu, D. Li, and L. Xuan, “An adaptive optics imaging system based on a high-resolution liquid crystal on silicon device,” Opt. Express 14, 8013-8018 (2006).
    [CrossRef] [PubMed]
  18. J. D. Schmidt, M. E. Goda, and B. D. Duncan, “Aberration production using a high-resolution liquid-crystal spatial light modulator,” Appl. Opt. 46, 2423-2433 (2007).
    [CrossRef] [PubMed]
  19. S. T. Wu and D. K. Yang, Reflective Liquid Crystal Displays (Wiley, 2001).
  20. K. Seunarine, D. W. Calton, I. Underwood, J. T. M. Stevenson, A. M. Gundlach, and M. Begbie, “Techniques to improve the flatness of reflective micro-optical arrays,” Sens. Actuators A 78, 18-27 (1999).
    [CrossRef]
  21. J. Harriman, A. Linnenberger, and S. Serati, “Improving spatial light modulator performance through phase compensation,” Proc. SPIE 5553, 58-67 (2004).
    [CrossRef]
  22. J. Otón, P. Ambs, M. S. Millán, and E. Pérez-Cabré, “Multipoint phase calibration for improved compensation of inherent wavefront distortion in parallel aligned liquid crystal on silicon displays,” Appl. Opt. 46, 5667-5679 (2007).
    [CrossRef] [PubMed]
  23. N. Hart, M. C. Roggemann, A. Sergeyev, and T. J. Schulz, “Characterizing static aberrations in liquid crystal spatial light modulators using phase retrieval,” Opt. Eng. 46, 086601 (2007).
    [CrossRef]
  24. http://www.bnonlinear.com/.
  25. X. Wang, B. Wang, J. Pouch, F. Miranda, J. E. Anderson, and P. J. Bos, “Performance evaluation of a liquid crystal-on-silicon spatial light modulator,” Opt. Eng. 43, 2769-2774(2004).
    [CrossRef]
  26. X. Wang, B. Wang, P. J. Bos, J. E. Anderson, J. J. Pouch, and F. A. Miranda, “Finite-difference time-domain simulation of a liquid-crystal optical phased array,” J. Opt. Soc. Am. A 22, 346-354 (2005).
    [CrossRef]
  27. http://www.hanaoh.com/.
  28. http://www.holoeye.com/.
  29. M. Reicherter, W. Gorski, T. Haist, and W. Osten, “Dynamic correction of aberrations in microscopic imaging systems using an artificial point source,” Proc. SPIE 5462, 68-78(2004).
    [CrossRef]
  30. K. D. Wulff, D. G. Cole, R. L. Clark, R. Di Leonardo, J. Leach, J. Cooper, G. Gibson, and M. J. Padgett, “Aberration correction in holographic optical tweezers,” Opt. Express 14, 4169-4174(2006).
    [CrossRef] [PubMed]
  31. E. Martín-Badosa, M. Montes-Usategui, A. Carnicer, J. Andilla, E. Pleguezuelos, and I. Juvells, “Design strategies for optimizing holographic optical tweezers setups,” J. Opt. A 9, S267-S277 (2007).
    [CrossRef]
  32. E. Martín-Badosa, A. Carnicer, I. Juvells, and S. Vallmitjana, “Complex modulation characterization of liquid crystal devices by interferometric data correlation,” Meas. Sci. Technol. 8, 764-772 (1997).
    [CrossRef]
  33. J. Andilla, S. Vallmitjana, and E. Martín-Badosa, “Prediction of phase-mostly modulation for holographic optical tweezers,” Opt. Commun. 281, 3786-3791 (2008).
    [CrossRef]
  34. http://www.imagine-optic.com/.
  35. K. von Bieren, “Lens design for optical Fourier transform systems,” Appl. Opt. 10, 2739-2742 (1971).
    [CrossRef] [PubMed]
  36. Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124, 529-541 (1996).
    [CrossRef]
  37. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207-211 (1976).
    [CrossRef]

2008 (1)

J. Andilla, S. Vallmitjana, and E. Martín-Badosa, “Prediction of phase-mostly modulation for holographic optical tweezers,” Opt. Commun. 281, 3786-3791 (2008).
[CrossRef]

2007 (5)

2006 (3)

2005 (1)

2004 (6)

M. Reicherter, W. Gorski, T. Haist, and W. Osten, “Dynamic correction of aberrations in microscopic imaging systems using an artificial point source,” Proc. SPIE 5462, 68-78(2004).
[CrossRef]

X. Wang, B. Wang, J. Pouch, F. Miranda, J. E. Anderson, and P. J. Bos, “Performance evaluation of a liquid crystal-on-silicon spatial light modulator,” Opt. Eng. 43, 2769-2774(2004).
[CrossRef]

J. Harriman, A. Linnenberger, and S. Serati, “Improving spatial light modulator performance through phase compensation,” Proc. SPIE 5553, 58-67 (2004).
[CrossRef]

J. Liesener, M. Reicherter, and H. J. Tiziani, “Determination and compensation of aberrations using SLMs,” Opt. Commun. 233, 161-166 (2004).
[CrossRef]

E. Theofanidou, L. Wilson, W. J. Hossack, and J. Arlt, “Spherical aberration correction for optical tweezers,” Opt. Commun. 236, 145-150 (2004).
[CrossRef]

K. Ladavac and D. Grier, “Microoptomechanical pumps assembled and driven by holographic optical vortex arrays,” Opt. Express 12, 1144-1149 (2004).
[CrossRef] [PubMed]

2003 (3)

T. Ota, T. Sugiura, S. Kawata, M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, “Enhancement of laser trapping force by spherical aberration correction using a deformable mirror,” Jpn. J. Appl. Phys. 42, L701-L703 (2003).
[CrossRef]

M. J. Lang and S. M. Block, “Resource letter: LBOT-1: Laser-based optical tweezers,” Am. J. Phys. 71, 201-215 (2003).
[CrossRef]

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810-816 (2003).
[CrossRef] [PubMed]

2002 (2)

2001 (1)

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810-1816 (2001).
[CrossRef]

2000 (1)

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185, 77-82 (2000).
[CrossRef]

1999 (2)

M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, “Optical particle trapping with computer-generated holograms written on a liquid-crystal display,” Opt. Lett. 24, 608-610 (1999).
[CrossRef]

K. Seunarine, D. W. Calton, I. Underwood, J. T. M. Stevenson, A. M. Gundlach, and M. Begbie, “Techniques to improve the flatness of reflective micro-optical arrays,” Sens. Actuators A 78, 18-27 (1999).
[CrossRef]

1997 (2)

E. Martín-Badosa, A. Carnicer, I. Juvells, and S. Vallmitjana, “Complex modulation characterization of liquid crystal devices by interferometric data correlation,” Meas. Sci. Technol. 8, 764-772 (1997).
[CrossRef]

G. D. Love, “Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator,” Appl. Opt. 36, 1517-1520 (1997).
[CrossRef] [PubMed]

1996 (1)

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124, 529-541 (1996).
[CrossRef]

1995 (1)

1986 (1)

1976 (1)

1971 (1)

Ambs, P.

Anderson, J. E.

X. Wang, B. Wang, P. J. Bos, J. E. Anderson, J. J. Pouch, and F. A. Miranda, “Finite-difference time-domain simulation of a liquid-crystal optical phased array,” J. Opt. Soc. Am. A 22, 346-354 (2005).
[CrossRef]

X. Wang, B. Wang, J. Pouch, F. Miranda, J. E. Anderson, and P. J. Bos, “Performance evaluation of a liquid crystal-on-silicon spatial light modulator,” Opt. Eng. 43, 2769-2774(2004).
[CrossRef]

Andilla, J.

J. Andilla, S. Vallmitjana, and E. Martín-Badosa, “Prediction of phase-mostly modulation for holographic optical tweezers,” Opt. Commun. 281, 3786-3791 (2008).
[CrossRef]

E. Martín-Badosa, M. Montes-Usategui, A. Carnicer, J. Andilla, E. Pleguezuelos, and I. Juvells, “Design strategies for optimizing holographic optical tweezers setups,” J. Opt. A 9, S267-S277 (2007).
[CrossRef]

Arlt, J.

E. Theofanidou, L. Wilson, W. J. Hossack, and J. Arlt, “Spherical aberration correction for optical tweezers,” Opt. Commun. 236, 145-150 (2004).
[CrossRef]

Asakura, T.

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124, 529-541 (1996).
[CrossRef]

Ashkin, A.

Begbie, M.

K. Seunarine, D. W. Calton, I. Underwood, J. T. M. Stevenson, A. M. Gundlach, and M. Begbie, “Techniques to improve the flatness of reflective micro-optical arrays,” Sens. Actuators A 78, 18-27 (1999).
[CrossRef]

Bernet, S.

Bjorkholm, J. E.

Block, S. M.

M. J. Lang and S. M. Block, “Resource letter: LBOT-1: Laser-based optical tweezers,” Am. J. Phys. 71, 201-215 (2003).
[CrossRef]

Booth, M. J.

T. Ota, T. Sugiura, S. Kawata, M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, “Enhancement of laser trapping force by spherical aberration correction using a deformable mirror,” Jpn. J. Appl. Phys. 42, L701-L703 (2003).
[CrossRef]

Bos, P. J.

X. Wang, B. Wang, P. J. Bos, J. E. Anderson, J. J. Pouch, and F. A. Miranda, “Finite-difference time-domain simulation of a liquid-crystal optical phased array,” J. Opt. Soc. Am. A 22, 346-354 (2005).
[CrossRef]

X. Wang, B. Wang, J. Pouch, F. Miranda, J. E. Anderson, and P. J. Bos, “Performance evaluation of a liquid crystal-on-silicon spatial light modulator,” Opt. Eng. 43, 2769-2774(2004).
[CrossRef]

Calton, D. W.

K. Seunarine, D. W. Calton, I. Underwood, J. T. M. Stevenson, A. M. Gundlach, and M. Begbie, “Techniques to improve the flatness of reflective micro-optical arrays,” Sens. Actuators A 78, 18-27 (1999).
[CrossRef]

Cao, Z.

Carnicer, A.

E. Martín-Badosa, M. Montes-Usategui, A. Carnicer, J. Andilla, E. Pleguezuelos, and I. Juvells, “Design strategies for optimizing holographic optical tweezers setups,” J. Opt. A 9, S267-S277 (2007).
[CrossRef]

E. Martín-Badosa, A. Carnicer, I. Juvells, and S. Vallmitjana, “Complex modulation characterization of liquid crystal devices by interferometric data correlation,” Meas. Sci. Technol. 8, 764-772 (1997).
[CrossRef]

Chu, S.

Clark, R. L.

Cole, D. G.

Cooper, J.

Curtis, J. E.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169-175 (2002).
[CrossRef]

Dearing, M. T.

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810-1816 (2001).
[CrossRef]

Dufresne, E. R.

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810-1816 (2001).
[CrossRef]

Duncan, B. D.

Dziedzic, J. M.

Felgner, H.

Fürhapter, S.

Gardel, E.

Gibson, G.

Goda, M. E.

Gorski, W.

M. Reicherter, W. Gorski, T. Haist, and W. Osten, “Dynamic correction of aberrations in microscopic imaging systems using an artificial point source,” Proc. SPIE 5462, 68-78(2004).
[CrossRef]

Grier, D.

Grier, D. G.

Y. Roichman, A. Waldron, E. Gardel, and D. G. Grier, “Optical traps with geometric aberrations,” Appl. Opt. 45, 3425-3429(2006).
[CrossRef] [PubMed]

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810-816 (2003).
[CrossRef] [PubMed]

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169-175 (2002).
[CrossRef]

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810-1816 (2001).
[CrossRef]

Gundlach, A. M.

K. Seunarine, D. W. Calton, I. Underwood, J. T. M. Stevenson, A. M. Gundlach, and M. Begbie, “Techniques to improve the flatness of reflective micro-optical arrays,” Sens. Actuators A 78, 18-27 (1999).
[CrossRef]

Haist, T.

M. Reicherter, W. Gorski, T. Haist, and W. Osten, “Dynamic correction of aberrations in microscopic imaging systems using an artificial point source,” Proc. SPIE 5462, 68-78(2004).
[CrossRef]

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185, 77-82 (2000).
[CrossRef]

M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, “Optical particle trapping with computer-generated holograms written on a liquid-crystal display,” Opt. Lett. 24, 608-610 (1999).
[CrossRef]

Harada, Y.

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124, 529-541 (1996).
[CrossRef]

Harriman, J.

J. Harriman, A. Linnenberger, and S. Serati, “Improving spatial light modulator performance through phase compensation,” Proc. SPIE 5553, 58-67 (2004).
[CrossRef]

Hart, N.

N. Hart, M. C. Roggemann, A. Sergeyev, and T. J. Schulz, “Characterizing static aberrations in liquid crystal spatial light modulators using phase retrieval,” Opt. Eng. 46, 086601 (2007).
[CrossRef]

Hossack, W. J.

E. Theofanidou, L. Wilson, W. J. Hossack, and J. Arlt, “Spherical aberration correction for optical tweezers,” Opt. Commun. 236, 145-150 (2004).
[CrossRef]

Hu, L.

Jesacher, A.

Juskaitis, R.

T. Ota, T. Sugiura, S. Kawata, M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, “Enhancement of laser trapping force by spherical aberration correction using a deformable mirror,” Jpn. J. Appl. Phys. 42, L701-L703 (2003).
[CrossRef]

Juvells, I.

E. Martín-Badosa, M. Montes-Usategui, A. Carnicer, J. Andilla, E. Pleguezuelos, and I. Juvells, “Design strategies for optimizing holographic optical tweezers setups,” J. Opt. A 9, S267-S277 (2007).
[CrossRef]

E. Martín-Badosa, A. Carnicer, I. Juvells, and S. Vallmitjana, “Complex modulation characterization of liquid crystal devices by interferometric data correlation,” Meas. Sci. Technol. 8, 764-772 (1997).
[CrossRef]

Kawata, S.

T. Ota, T. Sugiura, S. Kawata, M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, “Enhancement of laser trapping force by spherical aberration correction using a deformable mirror,” Jpn. J. Appl. Phys. 42, L701-L703 (2003).
[CrossRef]

Koss, B. A.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169-175 (2002).
[CrossRef]

Ladavac, K.

Lang, M. J.

M. J. Lang and S. M. Block, “Resource letter: LBOT-1: Laser-based optical tweezers,” Am. J. Phys. 71, 201-215 (2003).
[CrossRef]

Leach, J.

Leonardo, R. Di

Li, D.

Liesener, J.

J. Liesener, M. Reicherter, and H. J. Tiziani, “Determination and compensation of aberrations using SLMs,” Opt. Commun. 233, 161-166 (2004).
[CrossRef]

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185, 77-82 (2000).
[CrossRef]

Linnenberger, A.

J. Harriman, A. Linnenberger, and S. Serati, “Improving spatial light modulator performance through phase compensation,” Proc. SPIE 5553, 58-67 (2004).
[CrossRef]

Love, G. D.

Martín-Badosa, E.

J. Andilla, S. Vallmitjana, and E. Martín-Badosa, “Prediction of phase-mostly modulation for holographic optical tweezers,” Opt. Commun. 281, 3786-3791 (2008).
[CrossRef]

E. Martín-Badosa, M. Montes-Usategui, A. Carnicer, J. Andilla, E. Pleguezuelos, and I. Juvells, “Design strategies for optimizing holographic optical tweezers setups,” J. Opt. A 9, S267-S277 (2007).
[CrossRef]

E. Martín-Badosa, A. Carnicer, I. Juvells, and S. Vallmitjana, “Complex modulation characterization of liquid crystal devices by interferometric data correlation,” Meas. Sci. Technol. 8, 764-772 (1997).
[CrossRef]

Maurer, C.

Millán, M. S.

Miranda, F.

X. Wang, B. Wang, J. Pouch, F. Miranda, J. E. Anderson, and P. J. Bos, “Performance evaluation of a liquid crystal-on-silicon spatial light modulator,” Opt. Eng. 43, 2769-2774(2004).
[CrossRef]

Miranda, F. A.

Montes-Usategui, M.

E. Martín-Badosa, M. Montes-Usategui, A. Carnicer, J. Andilla, E. Pleguezuelos, and I. Juvells, “Design strategies for optimizing holographic optical tweezers setups,” J. Opt. A 9, S267-S277 (2007).
[CrossRef]

Mu, Q.

Muller, O.

Neil, M. A. A.

T. Ota, T. Sugiura, S. Kawata, M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, “Enhancement of laser trapping force by spherical aberration correction using a deformable mirror,” Jpn. J. Appl. Phys. 42, L701-L703 (2003).
[CrossRef]

Noll, R. J.

Osten, W.

M. Reicherter, W. Gorski, T. Haist, and W. Osten, “Dynamic correction of aberrations in microscopic imaging systems using an artificial point source,” Proc. SPIE 5462, 68-78(2004).
[CrossRef]

Ota, T.

T. Ota, T. Sugiura, S. Kawata, M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, “Enhancement of laser trapping force by spherical aberration correction using a deformable mirror,” Jpn. J. Appl. Phys. 42, L701-L703 (2003).
[CrossRef]

Otón, J.

Padgett, M. J.

Pérez-Cabré, E.

Pleguezuelos, E.

E. Martín-Badosa, M. Montes-Usategui, A. Carnicer, J. Andilla, E. Pleguezuelos, and I. Juvells, “Design strategies for optimizing holographic optical tweezers setups,” J. Opt. A 9, S267-S277 (2007).
[CrossRef]

Pouch, J.

X. Wang, B. Wang, J. Pouch, F. Miranda, J. E. Anderson, and P. J. Bos, “Performance evaluation of a liquid crystal-on-silicon spatial light modulator,” Opt. Eng. 43, 2769-2774(2004).
[CrossRef]

Pouch, J. J.

Reicherter, M.

M. Reicherter, W. Gorski, T. Haist, and W. Osten, “Dynamic correction of aberrations in microscopic imaging systems using an artificial point source,” Proc. SPIE 5462, 68-78(2004).
[CrossRef]

J. Liesener, M. Reicherter, and H. J. Tiziani, “Determination and compensation of aberrations using SLMs,” Opt. Commun. 233, 161-166 (2004).
[CrossRef]

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185, 77-82 (2000).
[CrossRef]

M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, “Optical particle trapping with computer-generated holograms written on a liquid-crystal display,” Opt. Lett. 24, 608-610 (1999).
[CrossRef]

Ritsch-Marte, M.

Roggemann, M. C.

N. Hart, M. C. Roggemann, A. Sergeyev, and T. J. Schulz, “Characterizing static aberrations in liquid crystal spatial light modulators using phase retrieval,” Opt. Eng. 46, 086601 (2007).
[CrossRef]

Rohrbach, A.

Roichman, Y.

Schliwa, M.

Schmidt, J. D.

Schulz, T. J.

N. Hart, M. C. Roggemann, A. Sergeyev, and T. J. Schulz, “Characterizing static aberrations in liquid crystal spatial light modulators using phase retrieval,” Opt. Eng. 46, 086601 (2007).
[CrossRef]

Schwaighofer, A.

Serati, S.

J. Harriman, A. Linnenberger, and S. Serati, “Improving spatial light modulator performance through phase compensation,” Proc. SPIE 5553, 58-67 (2004).
[CrossRef]

Sergeyev, A.

N. Hart, M. C. Roggemann, A. Sergeyev, and T. J. Schulz, “Characterizing static aberrations in liquid crystal spatial light modulators using phase retrieval,” Opt. Eng. 46, 086601 (2007).
[CrossRef]

Seunarine, K.

K. Seunarine, D. W. Calton, I. Underwood, J. T. M. Stevenson, A. M. Gundlach, and M. Begbie, “Techniques to improve the flatness of reflective micro-optical arrays,” Sens. Actuators A 78, 18-27 (1999).
[CrossRef]

Sheets, S. A.

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810-1816 (2001).
[CrossRef]

Spalding, G. C.

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810-1816 (2001).
[CrossRef]

Stelzer, E. H. K.

Stevenson, J. T. M.

K. Seunarine, D. W. Calton, I. Underwood, J. T. M. Stevenson, A. M. Gundlach, and M. Begbie, “Techniques to improve the flatness of reflective micro-optical arrays,” Sens. Actuators A 78, 18-27 (1999).
[CrossRef]

Sugiura, T.

T. Ota, T. Sugiura, S. Kawata, M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, “Enhancement of laser trapping force by spherical aberration correction using a deformable mirror,” Jpn. J. Appl. Phys. 42, L701-L703 (2003).
[CrossRef]

Theofanidou, E.

E. Theofanidou, L. Wilson, W. J. Hossack, and J. Arlt, “Spherical aberration correction for optical tweezers,” Opt. Commun. 236, 145-150 (2004).
[CrossRef]

Tiziani, H. J.

J. Liesener, M. Reicherter, and H. J. Tiziani, “Determination and compensation of aberrations using SLMs,” Opt. Commun. 233, 161-166 (2004).
[CrossRef]

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185, 77-82 (2000).
[CrossRef]

M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, “Optical particle trapping with computer-generated holograms written on a liquid-crystal display,” Opt. Lett. 24, 608-610 (1999).
[CrossRef]

Underwood, I.

K. Seunarine, D. W. Calton, I. Underwood, J. T. M. Stevenson, A. M. Gundlach, and M. Begbie, “Techniques to improve the flatness of reflective micro-optical arrays,” Sens. Actuators A 78, 18-27 (1999).
[CrossRef]

Vallmitjana, S.

J. Andilla, S. Vallmitjana, and E. Martín-Badosa, “Prediction of phase-mostly modulation for holographic optical tweezers,” Opt. Commun. 281, 3786-3791 (2008).
[CrossRef]

E. Martín-Badosa, A. Carnicer, I. Juvells, and S. Vallmitjana, “Complex modulation characterization of liquid crystal devices by interferometric data correlation,” Meas. Sci. Technol. 8, 764-772 (1997).
[CrossRef]

von Bieren, K.

Wagemann, E. U.

Waldron, A.

Wang, B.

X. Wang, B. Wang, P. J. Bos, J. E. Anderson, J. J. Pouch, and F. A. Miranda, “Finite-difference time-domain simulation of a liquid-crystal optical phased array,” J. Opt. Soc. Am. A 22, 346-354 (2005).
[CrossRef]

X. Wang, B. Wang, J. Pouch, F. Miranda, J. E. Anderson, and P. J. Bos, “Performance evaluation of a liquid crystal-on-silicon spatial light modulator,” Opt. Eng. 43, 2769-2774(2004).
[CrossRef]

Wang, X.

X. Wang, B. Wang, P. J. Bos, J. E. Anderson, J. J. Pouch, and F. A. Miranda, “Finite-difference time-domain simulation of a liquid-crystal optical phased array,” J. Opt. Soc. Am. A 22, 346-354 (2005).
[CrossRef]

X. Wang, B. Wang, J. Pouch, F. Miranda, J. E. Anderson, and P. J. Bos, “Performance evaluation of a liquid crystal-on-silicon spatial light modulator,” Opt. Eng. 43, 2769-2774(2004).
[CrossRef]

Wilson, L.

E. Theofanidou, L. Wilson, W. J. Hossack, and J. Arlt, “Spherical aberration correction for optical tweezers,” Opt. Commun. 236, 145-150 (2004).
[CrossRef]

Wilson, T.

T. Ota, T. Sugiura, S. Kawata, M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, “Enhancement of laser trapping force by spherical aberration correction using a deformable mirror,” Jpn. J. Appl. Phys. 42, L701-L703 (2003).
[CrossRef]

Wu, S. T.

S. T. Wu and D. K. Yang, Reflective Liquid Crystal Displays (Wiley, 2001).

Wulff, K. D.

Xuan, L.

Yang, D. K.

S. T. Wu and D. K. Yang, Reflective Liquid Crystal Displays (Wiley, 2001).

Am. J. Phys. (1)

M. J. Lang and S. M. Block, “Resource letter: LBOT-1: Laser-based optical tweezers,” Am. J. Phys. 71, 201-215 (2003).
[CrossRef]

Appl. Opt. (7)

J. Opt. A (1)

E. Martín-Badosa, M. Montes-Usategui, A. Carnicer, J. Andilla, E. Pleguezuelos, and I. Juvells, “Design strategies for optimizing holographic optical tweezers setups,” J. Opt. A 9, S267-S277 (2007).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Jpn. J. Appl. Phys. (1)

T. Ota, T. Sugiura, S. Kawata, M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, “Enhancement of laser trapping force by spherical aberration correction using a deformable mirror,” Jpn. J. Appl. Phys. 42, L701-L703 (2003).
[CrossRef]

Meas. Sci. Technol. (1)

E. Martín-Badosa, A. Carnicer, I. Juvells, and S. Vallmitjana, “Complex modulation characterization of liquid crystal devices by interferometric data correlation,” Meas. Sci. Technol. 8, 764-772 (1997).
[CrossRef]

Nature (1)

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810-816 (2003).
[CrossRef] [PubMed]

Opt. Commun. (6)

J. Andilla, S. Vallmitjana, and E. Martín-Badosa, “Prediction of phase-mostly modulation for holographic optical tweezers,” Opt. Commun. 281, 3786-3791 (2008).
[CrossRef]

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124, 529-541 (1996).
[CrossRef]

E. Theofanidou, L. Wilson, W. J. Hossack, and J. Arlt, “Spherical aberration correction for optical tweezers,” Opt. Commun. 236, 145-150 (2004).
[CrossRef]

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185, 77-82 (2000).
[CrossRef]

J. Liesener, M. Reicherter, and H. J. Tiziani, “Determination and compensation of aberrations using SLMs,” Opt. Commun. 233, 161-166 (2004).
[CrossRef]

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169-175 (2002).
[CrossRef]

Opt. Eng. (2)

N. Hart, M. C. Roggemann, A. Sergeyev, and T. J. Schulz, “Characterizing static aberrations in liquid crystal spatial light modulators using phase retrieval,” Opt. Eng. 46, 086601 (2007).
[CrossRef]

X. Wang, B. Wang, J. Pouch, F. Miranda, J. E. Anderson, and P. J. Bos, “Performance evaluation of a liquid crystal-on-silicon spatial light modulator,” Opt. Eng. 43, 2769-2774(2004).
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Proc. SPIE (2)

M. Reicherter, W. Gorski, T. Haist, and W. Osten, “Dynamic correction of aberrations in microscopic imaging systems using an artificial point source,” Proc. SPIE 5462, 68-78(2004).
[CrossRef]

J. Harriman, A. Linnenberger, and S. Serati, “Improving spatial light modulator performance through phase compensation,” Proc. SPIE 5553, 58-67 (2004).
[CrossRef]

Rev. Sci. Instrum. (1)

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810-1816 (2001).
[CrossRef]

Sens. Actuators A (1)

K. Seunarine, D. W. Calton, I. Underwood, J. T. M. Stevenson, A. M. Gundlach, and M. Begbie, “Techniques to improve the flatness of reflective micro-optical arrays,” Sens. Actuators A 78, 18-27 (1999).
[CrossRef]

Other (5)

http://www.bnonlinear.com/.

http://www.hanaoh.com/.

http://www.holoeye.com/.

http://www.imagine-optic.com/.

S. T. Wu and D. K. Yang, Reflective Liquid Crystal Displays (Wiley, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup for holographic optical trapping and correction of SLM optical aberrations: LE, expander lens; LC, collimating lens; P 1 and P 2 , polarizers.

Fig. 2
Fig. 2

Wavefront at the SLM plane and the corresponding simulated spot focused by the objective lens (scale bar 2 μm ): (a) and (b) before correction; (c) and (d) after correction.

Fig. 3
Fig. 3

Hologram displayed on the SLM for self-aberration correction.

Fig. 4
Fig. 4

Images of the experimental trap for different planes along the optical axis, before correction (left column) and after aberration correction (right column). The distance between the top and the bottom plane is around 1 μm .

Fig. 5
Fig. 5

Gradient force before aberration correction and after the first two iterations: the trap stiffness is the slope of the linear region and increases with iteration.

Fig. 6
Fig. 6

(a) Corrected holographic trap moved the 5 μm polystyrene bead to the left. (b) The laser light was filtered to avoid saturating the images; the empty circle indicates the trap center.

Fig. 7
Fig. 7

(a) Residual RMS error after low-order astigmatism correction, as a function of the normalized SLM aperture; diffraction-limited results are obtained for RMS values below the dashed line. (b) Hologram to compensate astigmatism for an aperture indicated by the dashed line.

Tables (2)

Tables Icon

Table 1 Lateral Trap Stiffness After Each Iteration (Arbitrary Normalized Units), from 0 (Before Correction) to 9 (Ideal Case Corresponds to a “Perfect” Spot with No Aberration)

Tables Icon

Table 2 Zernike Coefficients of Uncorrected and Corrected Wavefronts

Metrics