Abstract

Electro-optical modulation by electrophoresis of dye ions is a promising technique for applications such as electronic paper displays and nonmechanical beam steering devices. To achieve a sufficient response rate in these devices, the transition time between two different optical states can be decreased by increasing the magnitude of the voltage applied across the electrodes, but this also leads to irreversible and undesirable electrochemical reactions. An electron tunneling model has been developed to describe the electrochemical reaction and to better understand the conditions determining its onset. The model gives rise to three predictions that were subsequently confirmed experimentally: the magnitude of the applied surface charge density should determine the rate of electrochemical activity, the bulk concentration of ions in the solution should shift the threshold voltage at which electrochemical reactions occur, and the reaction rate should be substantially enhanced around nanometer-sized bumps on the electrode surface. Applying this new understanding, the transition time of a device incorporating porous zinc antimonate (ZnSb2O6) electrodes and a solution of Methylene Blue dye in methanol was reduced by a factor of approximately 20.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Comiskey, J. D. Albert, H. Yoshizawa, and J. Jacobson, “An electrophoretic ink for all-printed reflective electronic displays,” Nature 394, 253-255 (1998).
    [CrossRef]
  2. R. Hattori, S. Yamada, Y. Masuda, and N. Nihei, “A novel type of bistable reflective display using quick-response liquid powder,” J. Soc. Inf. Disp. 12, 75-80 (2004).
    [CrossRef]
  3. D.-K. Yang, “Flexible bistable cholesteric reflective displays,” J. Disp. Technol. 2, 32-37 (2006).
    [CrossRef]
  4. L. Eldada, “Advances in telecom and datacom optical components,” Opt. Eng. 40, 1165-1178 (2001).
    [CrossRef]
  5. J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749-752 (1994).
    [CrossRef] [PubMed]
  6. X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 1706-1716 (1997).
    [CrossRef]
  7. P. F. McMananon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268-298 (1996).
    [CrossRef]
  8. P. Hrudey, M. Martinuk, M. Mossman, A. van Popta, M. Brett, T. Dunbar, J. Huizinga, and L. Whitehead, “Application of transparent nanostructured electrodes for modulation of TIR,” Proc. SPIE 664766470A (2007).
    [CrossRef]
  9. P. C. P. Hrudey, M. A. Martinuk, M. A. Mossman, A. C. van Popta, M. J. Brett, J. S. Huizinga, and L. A. Whitehead, “Variable diffraction gratings using nanoporous electrodes and electrophoresis of dye ions,” Proc. SPIE 6645, 66450K (2007).
    [CrossRef]
  10. A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd ed. (Wiley, 2001).
  11. K. B. Oldham and J. C. Myland, Fundamentals of Electrochemical Science (Academic, 1994).
  12. R. W. Gurney, “Theory of electrical double layers in adsorbed films,” Phys. Rev. 47, 479-482 (1935).
    [CrossRef]
  13. R. A. Marcus, “Electron transfer reactions in chemistry. Theory and experiment,” Rev. Mod. Phys. 65, 599-610 (1993).
    [CrossRef]
  14. B. H. Bransden and C. J. Joachain, Quantum Mechanics, 2nd ed. (Pearson Education, 2000).
  15. R. J. White and H. S. White, “Electrochemistry in nanometer-wide electrochemical cells,” Langmuir 24, 2850-2855 (2008).
    [CrossRef] [PubMed]
  16. Y. Wang, W. P. Chen, K. C. Cheng, H. L. W. Chan, and C. L. Choy, “Effect of AC-powered water electrolysis on the structural and optical properties of indium tin oxide thin films,” J. Am. Ceram. Soc. 88, 1007-1009 (2005).
    [CrossRef]

2008

R. J. White and H. S. White, “Electrochemistry in nanometer-wide electrochemical cells,” Langmuir 24, 2850-2855 (2008).
[CrossRef] [PubMed]

2007

P. Hrudey, M. Martinuk, M. Mossman, A. van Popta, M. Brett, T. Dunbar, J. Huizinga, and L. Whitehead, “Application of transparent nanostructured electrodes for modulation of TIR,” Proc. SPIE 664766470A (2007).
[CrossRef]

P. C. P. Hrudey, M. A. Martinuk, M. A. Mossman, A. C. van Popta, M. J. Brett, J. S. Huizinga, and L. A. Whitehead, “Variable diffraction gratings using nanoporous electrodes and electrophoresis of dye ions,” Proc. SPIE 6645, 66450K (2007).
[CrossRef]

2006

D.-K. Yang, “Flexible bistable cholesteric reflective displays,” J. Disp. Technol. 2, 32-37 (2006).
[CrossRef]

2005

Y. Wang, W. P. Chen, K. C. Cheng, H. L. W. Chan, and C. L. Choy, “Effect of AC-powered water electrolysis on the structural and optical properties of indium tin oxide thin films,” J. Am. Ceram. Soc. 88, 1007-1009 (2005).
[CrossRef]

2004

R. Hattori, S. Yamada, Y. Masuda, and N. Nihei, “A novel type of bistable reflective display using quick-response liquid powder,” J. Soc. Inf. Disp. 12, 75-80 (2004).
[CrossRef]

2001

L. Eldada, “Advances in telecom and datacom optical components,” Opt. Eng. 40, 1165-1178 (2001).
[CrossRef]

1998

B. Comiskey, J. D. Albert, H. Yoshizawa, and J. Jacobson, “An electrophoretic ink for all-printed reflective electronic displays,” Nature 394, 253-255 (1998).
[CrossRef]

1997

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 1706-1716 (1997).
[CrossRef]

1996

P. F. McMananon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268-298 (1996).
[CrossRef]

1994

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749-752 (1994).
[CrossRef] [PubMed]

1993

R. A. Marcus, “Electron transfer reactions in chemistry. Theory and experiment,” Rev. Mod. Phys. 65, 599-610 (1993).
[CrossRef]

1935

R. W. Gurney, “Theory of electrical double layers in adsorbed films,” Phys. Rev. 47, 479-482 (1935).
[CrossRef]

Albert, J. D.

B. Comiskey, J. D. Albert, H. Yoshizawa, and J. Jacobson, “An electrophoretic ink for all-printed reflective electronic displays,” Nature 394, 253-255 (1998).
[CrossRef]

Bard, A. J.

A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd ed. (Wiley, 2001).

Bashaw, M. C.

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749-752 (1994).
[CrossRef] [PubMed]

Bransden, B. H.

B. H. Bransden and C. J. Joachain, Quantum Mechanics, 2nd ed. (Pearson Education, 2000).

Brett, M.

P. Hrudey, M. Martinuk, M. Mossman, A. van Popta, M. Brett, T. Dunbar, J. Huizinga, and L. Whitehead, “Application of transparent nanostructured electrodes for modulation of TIR,” Proc. SPIE 664766470A (2007).
[CrossRef]

Brett, M. J.

P. C. P. Hrudey, M. A. Martinuk, M. A. Mossman, A. C. van Popta, M. J. Brett, J. S. Huizinga, and L. A. Whitehead, “Variable diffraction gratings using nanoporous electrodes and electrophoresis of dye ions,” Proc. SPIE 6645, 66450K (2007).
[CrossRef]

Chan, H. L. W.

Y. Wang, W. P. Chen, K. C. Cheng, H. L. W. Chan, and C. L. Choy, “Effect of AC-powered water electrolysis on the structural and optical properties of indium tin oxide thin films,” J. Am. Ceram. Soc. 88, 1007-1009 (2005).
[CrossRef]

Chen, W. P.

Y. Wang, W. P. Chen, K. C. Cheng, H. L. W. Chan, and C. L. Choy, “Effect of AC-powered water electrolysis on the structural and optical properties of indium tin oxide thin films,” J. Am. Ceram. Soc. 88, 1007-1009 (2005).
[CrossRef]

Cheng, K. C.

Y. Wang, W. P. Chen, K. C. Cheng, H. L. W. Chan, and C. L. Choy, “Effect of AC-powered water electrolysis on the structural and optical properties of indium tin oxide thin films,” J. Am. Ceram. Soc. 88, 1007-1009 (2005).
[CrossRef]

Choy, C. L.

Y. Wang, W. P. Chen, K. C. Cheng, H. L. W. Chan, and C. L. Choy, “Effect of AC-powered water electrolysis on the structural and optical properties of indium tin oxide thin films,” J. Am. Ceram. Soc. 88, 1007-1009 (2005).
[CrossRef]

Comiskey, B.

B. Comiskey, J. D. Albert, H. Yoshizawa, and J. Jacobson, “An electrophoretic ink for all-printed reflective electronic displays,” Nature 394, 253-255 (1998).
[CrossRef]

Corkum, D. L.

P. F. McMananon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268-298 (1996).
[CrossRef]

Dorschner, T. A.

P. F. McMananon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268-298 (1996).
[CrossRef]

Du, D.

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 1706-1716 (1997).
[CrossRef]

Dunbar, T.

P. Hrudey, M. Martinuk, M. Mossman, A. van Popta, M. Brett, T. Dunbar, J. Huizinga, and L. Whitehead, “Application of transparent nanostructured electrodes for modulation of TIR,” Proc. SPIE 664766470A (2007).
[CrossRef]

Eldada, L.

L. Eldada, “Advances in telecom and datacom optical components,” Opt. Eng. 40, 1165-1178 (2001).
[CrossRef]

Faulkner, L. R.

A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd ed. (Wiley, 2001).

Friedman, L. J.

P. F. McMananon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268-298 (1996).
[CrossRef]

Gurney, R. W.

R. W. Gurney, “Theory of electrical double layers in adsorbed films,” Phys. Rev. 47, 479-482 (1935).
[CrossRef]

Hattori, R.

R. Hattori, S. Yamada, Y. Masuda, and N. Nihei, “A novel type of bistable reflective display using quick-response liquid powder,” J. Soc. Inf. Disp. 12, 75-80 (2004).
[CrossRef]

Heanue, J. F.

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749-752 (1994).
[CrossRef] [PubMed]

Hesselink, L.

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749-752 (1994).
[CrossRef] [PubMed]

Hobbs, D. S.

P. F. McMananon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268-298 (1996).
[CrossRef]

Holz, M.

P. F. McMananon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268-298 (1996).
[CrossRef]

Hrudey, P.

P. Hrudey, M. Martinuk, M. Mossman, A. van Popta, M. Brett, T. Dunbar, J. Huizinga, and L. Whitehead, “Application of transparent nanostructured electrodes for modulation of TIR,” Proc. SPIE 664766470A (2007).
[CrossRef]

Hrudey, P. C. P.

P. C. P. Hrudey, M. A. Martinuk, M. A. Mossman, A. C. van Popta, M. J. Brett, J. S. Huizinga, and L. A. Whitehead, “Variable diffraction gratings using nanoporous electrodes and electrophoresis of dye ions,” Proc. SPIE 6645, 66450K (2007).
[CrossRef]

Huizinga, J.

P. Hrudey, M. Martinuk, M. Mossman, A. van Popta, M. Brett, T. Dunbar, J. Huizinga, and L. Whitehead, “Application of transparent nanostructured electrodes for modulation of TIR,” Proc. SPIE 664766470A (2007).
[CrossRef]

Huizinga, J. S.

P. C. P. Hrudey, M. A. Martinuk, M. A. Mossman, A. C. van Popta, M. J. Brett, J. S. Huizinga, and L. A. Whitehead, “Variable diffraction gratings using nanoporous electrodes and electrophoresis of dye ions,” Proc. SPIE 6645, 66450K (2007).
[CrossRef]

Jacobson, J.

B. Comiskey, J. D. Albert, H. Yoshizawa, and J. Jacobson, “An electrophoretic ink for all-printed reflective electronic displays,” Nature 394, 253-255 (1998).
[CrossRef]

Joachain, C. J.

B. H. Bransden and C. J. Joachain, Quantum Mechanics, 2nd ed. (Pearson Education, 2000).

Liberman, S.

P. F. McMananon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268-298 (1996).
[CrossRef]

Liu, X.

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 1706-1716 (1997).
[CrossRef]

Marcus, R. A.

R. A. Marcus, “Electron transfer reactions in chemistry. Theory and experiment,” Rev. Mod. Phys. 65, 599-610 (1993).
[CrossRef]

Martinuk, M.

P. Hrudey, M. Martinuk, M. Mossman, A. van Popta, M. Brett, T. Dunbar, J. Huizinga, and L. Whitehead, “Application of transparent nanostructured electrodes for modulation of TIR,” Proc. SPIE 664766470A (2007).
[CrossRef]

Martinuk, M. A.

P. C. P. Hrudey, M. A. Martinuk, M. A. Mossman, A. C. van Popta, M. J. Brett, J. S. Huizinga, and L. A. Whitehead, “Variable diffraction gratings using nanoporous electrodes and electrophoresis of dye ions,” Proc. SPIE 6645, 66450K (2007).
[CrossRef]

Masuda, Y.

R. Hattori, S. Yamada, Y. Masuda, and N. Nihei, “A novel type of bistable reflective display using quick-response liquid powder,” J. Soc. Inf. Disp. 12, 75-80 (2004).
[CrossRef]

McMananon, P. F.

P. F. McMananon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268-298 (1996).
[CrossRef]

Mossman, M.

P. Hrudey, M. Martinuk, M. Mossman, A. van Popta, M. Brett, T. Dunbar, J. Huizinga, and L. Whitehead, “Application of transparent nanostructured electrodes for modulation of TIR,” Proc. SPIE 664766470A (2007).
[CrossRef]

Mossman, M. A.

P. C. P. Hrudey, M. A. Martinuk, M. A. Mossman, A. C. van Popta, M. J. Brett, J. S. Huizinga, and L. A. Whitehead, “Variable diffraction gratings using nanoporous electrodes and electrophoresis of dye ions,” Proc. SPIE 6645, 66450K (2007).
[CrossRef]

Mourou, G.

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 1706-1716 (1997).
[CrossRef]

Myland, J. C.

K. B. Oldham and J. C. Myland, Fundamentals of Electrochemical Science (Academic, 1994).

Nguyen, H. Q.

P. F. McMananon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268-298 (1996).
[CrossRef]

Nihei, N.

R. Hattori, S. Yamada, Y. Masuda, and N. Nihei, “A novel type of bistable reflective display using quick-response liquid powder,” J. Soc. Inf. Disp. 12, 75-80 (2004).
[CrossRef]

Oldham, K. B.

K. B. Oldham and J. C. Myland, Fundamentals of Electrochemical Science (Academic, 1994).

Resler, D. P.

P. F. McMananon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268-298 (1996).
[CrossRef]

Sharp, R. C.

P. F. McMananon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268-298 (1996).
[CrossRef]

van Popta, A.

P. Hrudey, M. Martinuk, M. Mossman, A. van Popta, M. Brett, T. Dunbar, J. Huizinga, and L. Whitehead, “Application of transparent nanostructured electrodes for modulation of TIR,” Proc. SPIE 664766470A (2007).
[CrossRef]

van Popta, A. C.

P. C. P. Hrudey, M. A. Martinuk, M. A. Mossman, A. C. van Popta, M. J. Brett, J. S. Huizinga, and L. A. Whitehead, “Variable diffraction gratings using nanoporous electrodes and electrophoresis of dye ions,” Proc. SPIE 6645, 66450K (2007).
[CrossRef]

Wang, Y.

Y. Wang, W. P. Chen, K. C. Cheng, H. L. W. Chan, and C. L. Choy, “Effect of AC-powered water electrolysis on the structural and optical properties of indium tin oxide thin films,” J. Am. Ceram. Soc. 88, 1007-1009 (2005).
[CrossRef]

Watson, E. A.

P. F. McMananon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268-298 (1996).
[CrossRef]

White, H. S.

R. J. White and H. S. White, “Electrochemistry in nanometer-wide electrochemical cells,” Langmuir 24, 2850-2855 (2008).
[CrossRef] [PubMed]

White, R. J.

R. J. White and H. S. White, “Electrochemistry in nanometer-wide electrochemical cells,” Langmuir 24, 2850-2855 (2008).
[CrossRef] [PubMed]

Whitehead, L.

P. Hrudey, M. Martinuk, M. Mossman, A. van Popta, M. Brett, T. Dunbar, J. Huizinga, and L. Whitehead, “Application of transparent nanostructured electrodes for modulation of TIR,” Proc. SPIE 664766470A (2007).
[CrossRef]

Whitehead, L. A.

P. C. P. Hrudey, M. A. Martinuk, M. A. Mossman, A. C. van Popta, M. J. Brett, J. S. Huizinga, and L. A. Whitehead, “Variable diffraction gratings using nanoporous electrodes and electrophoresis of dye ions,” Proc. SPIE 6645, 66450K (2007).
[CrossRef]

Yamada, S.

R. Hattori, S. Yamada, Y. Masuda, and N. Nihei, “A novel type of bistable reflective display using quick-response liquid powder,” J. Soc. Inf. Disp. 12, 75-80 (2004).
[CrossRef]

Yang, D.-K.

D.-K. Yang, “Flexible bistable cholesteric reflective displays,” J. Disp. Technol. 2, 32-37 (2006).
[CrossRef]

Yoshizawa, H.

B. Comiskey, J. D. Albert, H. Yoshizawa, and J. Jacobson, “An electrophoretic ink for all-printed reflective electronic displays,” Nature 394, 253-255 (1998).
[CrossRef]

IEEE J. Quantum Electron.

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 1706-1716 (1997).
[CrossRef]

J. Am. Ceram. Soc.

Y. Wang, W. P. Chen, K. C. Cheng, H. L. W. Chan, and C. L. Choy, “Effect of AC-powered water electrolysis on the structural and optical properties of indium tin oxide thin films,” J. Am. Ceram. Soc. 88, 1007-1009 (2005).
[CrossRef]

J. Disp. Technol.

D.-K. Yang, “Flexible bistable cholesteric reflective displays,” J. Disp. Technol. 2, 32-37 (2006).
[CrossRef]

J. Soc. Inf. Disp.

R. Hattori, S. Yamada, Y. Masuda, and N. Nihei, “A novel type of bistable reflective display using quick-response liquid powder,” J. Soc. Inf. Disp. 12, 75-80 (2004).
[CrossRef]

Langmuir

R. J. White and H. S. White, “Electrochemistry in nanometer-wide electrochemical cells,” Langmuir 24, 2850-2855 (2008).
[CrossRef] [PubMed]

Nature

B. Comiskey, J. D. Albert, H. Yoshizawa, and J. Jacobson, “An electrophoretic ink for all-printed reflective electronic displays,” Nature 394, 253-255 (1998).
[CrossRef]

Opt. Eng.

L. Eldada, “Advances in telecom and datacom optical components,” Opt. Eng. 40, 1165-1178 (2001).
[CrossRef]

Phys. Rev.

R. W. Gurney, “Theory of electrical double layers in adsorbed films,” Phys. Rev. 47, 479-482 (1935).
[CrossRef]

Proc. IEEE

P. F. McMananon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268-298 (1996).
[CrossRef]

Proc. SPIE

P. Hrudey, M. Martinuk, M. Mossman, A. van Popta, M. Brett, T. Dunbar, J. Huizinga, and L. Whitehead, “Application of transparent nanostructured electrodes for modulation of TIR,” Proc. SPIE 664766470A (2007).
[CrossRef]

P. C. P. Hrudey, M. A. Martinuk, M. A. Mossman, A. C. van Popta, M. J. Brett, J. S. Huizinga, and L. A. Whitehead, “Variable diffraction gratings using nanoporous electrodes and electrophoresis of dye ions,” Proc. SPIE 6645, 66450K (2007).
[CrossRef]

Rev. Mod. Phys.

R. A. Marcus, “Electron transfer reactions in chemistry. Theory and experiment,” Rev. Mod. Phys. 65, 599-610 (1993).
[CrossRef]

Science

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749-752 (1994).
[CrossRef] [PubMed]

Other

A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd ed. (Wiley, 2001).

K. B. Oldham and J. C. Myland, Fundamentals of Electrochemical Science (Academic, 1994).

B. H. Bransden and C. J. Joachain, Quantum Mechanics, 2nd ed. (Pearson Education, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Schematic of the evolution of the relative potential energy difference ( Δ V ) between the negative electrode (anode) and cations during the reduction of the ion with (a) no accumulated charge, (b) insufficient charge such that the only ions with states of low enough potential energy is too far to give significant tunneling probability, and (c) sufficient charge to allow tunneling and reduction to occur. (d) to (f) describe similar steps for the oxidation of an anion.

Fig. 2
Fig. 2

Gaussian surface used to determine the magnitude of the electric field at different distances from the electrode. d A is taken to be much smaller than the overall exposed electrode surface area.

Fig. 3
Fig. 3

Schematic of the circuit for real-time electrode resistance measurement.

Fig. 4
Fig. 4

Typical evolution of the electrode resistance change rate for increasing RMS cell current.

Fig. 5
Fig. 5

Threshold RMS cell current at different applied current frequencies.

Fig. 6
Fig. 6

Threshold maximum double-layer capacitive charge at different applied current frequencies.

Fig. 7
Fig. 7

Electrochemical response for different bulk NaCl solution concentrations plotted against (a) the cell voltage and (b) the cell voltage corrected by the expected 59 mV / decade of concentration offset.

Fig. 8
Fig. 8

Atomic force microscope scans of an anode surface for (a) an unexposed sample and samples that have been etched for (b)  30 min , (c) 2 h , and (d)  17 h .

Fig. 9
Fig. 9

Decrease in average mean curvature for points of convex curvature in atomic force microscope scans of an anode surface after different etch times.

Fig. 10
Fig. 10

Schematic of the high-speed circuit.

Fig. 11
Fig. 11

Image of the cleaved face of a typical nanoporous Zn Sb 2 O 6 film as imaged by a scanning electron microscope.

Fig. 12
Fig. 12

Optical setup used to evaluate the high-speed circuit.

Fig. 13
Fig. 13

Reflectance modulation for the high-speed and the regular circuits.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δ ϕ ( x ) = 0 x E ( x ) · d x .
E ( x 0 ) = σ e ε eff .
ϕ tot = ϕ e + ϕ c + ϕ d .
n i = n i 0 exp ( z i e ϕ k T ) ,
ϕ d = k T z i e ln ( n i n i 0 ) .

Metrics