Abstract

Electro-optical modulation by electrophoresis of dye ions is a promising technique for applications such as electronic paper displays and nonmechanical beam steering devices. To achieve a sufficient response rate in these devices, the transition time between two different optical states can be decreased by increasing the magnitude of the voltage applied across the electrodes, but this also leads to irreversible and undesirable electrochemical reactions. An electron tunneling model has been developed to describe the electrochemical reaction and to better understand the conditions determining its onset. The model gives rise to three predictions that were subsequently confirmed experimentally: the magnitude of the applied surface charge density should determine the rate of electrochemical activity, the bulk concentration of ions in the solution should shift the threshold voltage at which electrochemical reactions occur, and the reaction rate should be substantially enhanced around nanometer-sized bumps on the electrode surface. Applying this new understanding, the transition time of a device incorporating porous zinc antimonate (ZnSb2O6) electrodes and a solution of Methylene Blue dye in methanol was reduced by a factor of approximately 20.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription