Abstract

Real-time detection of NAD(P)H is particularly important for understanding physiological activities of neutrophils. We scrutinize the performance of weak light detection systems with electron multiplying CCDs (EMCCDs) with regard to the feasibility of valid investigations by autofluorescence NAD(P)H in single human neutrophils. The low-noise amplification facility of EMCCDs is indeed just adequate to permit detection at an irradiation level where neither quenching nor phototoxic effects occur. For demonstration, a neutrophil respiratory burst was triggered and observed in real time. Our low-intensity detection system fulfills all requirements for real-time investigations at high spatiotemporal resolution in the field of neutrophil physiology and pathology.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Ying, “NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences,” Antioxid. Redox. Signal. 10, 179-206 (2008).
    [CrossRef]
  2. W. Kuhn, T. Müller, R. Winkel, S. Danielczik, A. Gerstner, R. Häcker, C. Mattern, and H. Przuntek, “Parenteral application of NADH in Parkinson's disease: clinical improvement partially due to stimulation of endogenous levodopa biosynthesis,” J. Neural Transm. 103, 1187-1193 (1996).
    [CrossRef] [PubMed]
  3. A. Mayevsky and G. G. Rogatsky, “Mitochondrial function in vivo evaluated by NADH fluorescence: from animal models to human studies,” Am. J. Physiol. Cell. Physiol. 292, C615-C640 (2007).
    [CrossRef]
  4. J. R. Zhang, K. Vrecko, K. Nadlinger, D. Storga, G. D. Birkmayer, and G. Reibnegger, “The reduced coenzyme nicotinamide adenine dinucleotide (NADH) repairs DNA damage of PC12 cells induced by doxorubicin,” J. Tumor Marker Oncol. 13, 5-17 (1998).
  5. B. W. Pogue, J. D. Pitts, M. A. Mycek, R. D. Sloboda, C. M. Wilmot, J. F. Brandsema, and J. A. O'Hara, “In vivo NADH fluorescence monitoring as an assay for cellular damage in photodynamic therapy,” Photochem. Photobiol. 74, 817-824 (2001).
    [CrossRef]
  6. M. Hashimoto, Y. Takeda, T. Sato, H. Kawahara, O. Nagano, and M. Hirakawa, “Dynamic changes of NADH fluorescence images and NADH content during spreading depression in the cerebral cortex of gerbils,” Brain Res. 872, 294-300 (2000).
    [CrossRef] [PubMed]
  7. M. Dellinger, M. Geze, R. Santus, E. Kohen, C. Kohen, J. G. Hirschberg, and M. Monti, “Imaging of cells by autofluorescence: a new tool in the probing of biopharmaceutical effects at the intracellular level,” Biotechnol. Appl. Biochem. 28, 25 (1998).
    [PubMed]
  8. T. E. Decoursey, V. V. Cherny, W. Zhou, and L. L. Thomas, “Simultaneous activation of NADPH oxidase-related proton and electron currents in human neutrophils,” Proc. Natl. Acad. Sci. U.S.A. 97, 6885-6889 (2000).
    [CrossRef] [PubMed]
  9. T. E. Wientjes and A. W. Segal, “NADPH oxidase and the respiratory burst,” Semin. Cell. Biol. 6, 357-365(1995).
    [CrossRef] [PubMed]
  10. T. Mair, C. Warnke, and S. C. Müller, “Spatio-temporal dynamics in glycolysis,” Faraday Discuss. 120, 249-259(2002).
    [CrossRef] [PubMed]
  11. D. W. Piston and S. M. Knobel, “Real-time analysis of glucose metabolism by microscopy,” Trends Endocrinol. Metab. 10, 413-417 (1999).
    [CrossRef] [PubMed]
  12. C. G. Coates, D. J. Denvir, E. Conroy, N. G. McHale, K. D. Thornbury, and M. A. Hollywood, “Back-illuminated electron multiplying technology: The world's most sensitive CCD for ultra low-light microscopy,” http://www.emccd.com/emccd_in_use/publications_and_scientific_papers.
  13. C. G. Coates, D. J. Denvir, N. G. McHale, K. D. Thornbury, and M. A. Hollywood, “Ultra-sensitivity, speed and resolution: Optimizing low-light microscopy with the back-illuminated electron multiplying CCD,” http://www.emccd.com/emccd_in_use/publications_and_scientific_papers.
  14. C. Nathan, “Neutrophils and immunity: challenges and opportunities,” Nat. Rev. Immunol. 6, 173-182 (2006).
    [CrossRef] [PubMed]

2008 (1)

W. Ying, “NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences,” Antioxid. Redox. Signal. 10, 179-206 (2008).
[CrossRef]

2007 (1)

A. Mayevsky and G. G. Rogatsky, “Mitochondrial function in vivo evaluated by NADH fluorescence: from animal models to human studies,” Am. J. Physiol. Cell. Physiol. 292, C615-C640 (2007).
[CrossRef]

2006 (1)

C. Nathan, “Neutrophils and immunity: challenges and opportunities,” Nat. Rev. Immunol. 6, 173-182 (2006).
[CrossRef] [PubMed]

2002 (1)

T. Mair, C. Warnke, and S. C. Müller, “Spatio-temporal dynamics in glycolysis,” Faraday Discuss. 120, 249-259(2002).
[CrossRef] [PubMed]

2001 (1)

B. W. Pogue, J. D. Pitts, M. A. Mycek, R. D. Sloboda, C. M. Wilmot, J. F. Brandsema, and J. A. O'Hara, “In vivo NADH fluorescence monitoring as an assay for cellular damage in photodynamic therapy,” Photochem. Photobiol. 74, 817-824 (2001).
[CrossRef]

2000 (2)

M. Hashimoto, Y. Takeda, T. Sato, H. Kawahara, O. Nagano, and M. Hirakawa, “Dynamic changes of NADH fluorescence images and NADH content during spreading depression in the cerebral cortex of gerbils,” Brain Res. 872, 294-300 (2000).
[CrossRef] [PubMed]

T. E. Decoursey, V. V. Cherny, W. Zhou, and L. L. Thomas, “Simultaneous activation of NADPH oxidase-related proton and electron currents in human neutrophils,” Proc. Natl. Acad. Sci. U.S.A. 97, 6885-6889 (2000).
[CrossRef] [PubMed]

1999 (1)

D. W. Piston and S. M. Knobel, “Real-time analysis of glucose metabolism by microscopy,” Trends Endocrinol. Metab. 10, 413-417 (1999).
[CrossRef] [PubMed]

1998 (2)

M. Dellinger, M. Geze, R. Santus, E. Kohen, C. Kohen, J. G. Hirschberg, and M. Monti, “Imaging of cells by autofluorescence: a new tool in the probing of biopharmaceutical effects at the intracellular level,” Biotechnol. Appl. Biochem. 28, 25 (1998).
[PubMed]

J. R. Zhang, K. Vrecko, K. Nadlinger, D. Storga, G. D. Birkmayer, and G. Reibnegger, “The reduced coenzyme nicotinamide adenine dinucleotide (NADH) repairs DNA damage of PC12 cells induced by doxorubicin,” J. Tumor Marker Oncol. 13, 5-17 (1998).

1996 (1)

W. Kuhn, T. Müller, R. Winkel, S. Danielczik, A. Gerstner, R. Häcker, C. Mattern, and H. Przuntek, “Parenteral application of NADH in Parkinson's disease: clinical improvement partially due to stimulation of endogenous levodopa biosynthesis,” J. Neural Transm. 103, 1187-1193 (1996).
[CrossRef] [PubMed]

1995 (1)

T. E. Wientjes and A. W. Segal, “NADPH oxidase and the respiratory burst,” Semin. Cell. Biol. 6, 357-365(1995).
[CrossRef] [PubMed]

Birkmayer, G. D.

J. R. Zhang, K. Vrecko, K. Nadlinger, D. Storga, G. D. Birkmayer, and G. Reibnegger, “The reduced coenzyme nicotinamide adenine dinucleotide (NADH) repairs DNA damage of PC12 cells induced by doxorubicin,” J. Tumor Marker Oncol. 13, 5-17 (1998).

Brandsema, J. F.

B. W. Pogue, J. D. Pitts, M. A. Mycek, R. D. Sloboda, C. M. Wilmot, J. F. Brandsema, and J. A. O'Hara, “In vivo NADH fluorescence monitoring as an assay for cellular damage in photodynamic therapy,” Photochem. Photobiol. 74, 817-824 (2001).
[CrossRef]

Cherny, V. V.

T. E. Decoursey, V. V. Cherny, W. Zhou, and L. L. Thomas, “Simultaneous activation of NADPH oxidase-related proton and electron currents in human neutrophils,” Proc. Natl. Acad. Sci. U.S.A. 97, 6885-6889 (2000).
[CrossRef] [PubMed]

Coates, C. G.

C. G. Coates, D. J. Denvir, E. Conroy, N. G. McHale, K. D. Thornbury, and M. A. Hollywood, “Back-illuminated electron multiplying technology: The world's most sensitive CCD for ultra low-light microscopy,” http://www.emccd.com/emccd_in_use/publications_and_scientific_papers.

C. G. Coates, D. J. Denvir, N. G. McHale, K. D. Thornbury, and M. A. Hollywood, “Ultra-sensitivity, speed and resolution: Optimizing low-light microscopy with the back-illuminated electron multiplying CCD,” http://www.emccd.com/emccd_in_use/publications_and_scientific_papers.

Conroy, E.

C. G. Coates, D. J. Denvir, E. Conroy, N. G. McHale, K. D. Thornbury, and M. A. Hollywood, “Back-illuminated electron multiplying technology: The world's most sensitive CCD for ultra low-light microscopy,” http://www.emccd.com/emccd_in_use/publications_and_scientific_papers.

Danielczik, S.

W. Kuhn, T. Müller, R. Winkel, S. Danielczik, A. Gerstner, R. Häcker, C. Mattern, and H. Przuntek, “Parenteral application of NADH in Parkinson's disease: clinical improvement partially due to stimulation of endogenous levodopa biosynthesis,” J. Neural Transm. 103, 1187-1193 (1996).
[CrossRef] [PubMed]

Decoursey, T. E.

T. E. Decoursey, V. V. Cherny, W. Zhou, and L. L. Thomas, “Simultaneous activation of NADPH oxidase-related proton and electron currents in human neutrophils,” Proc. Natl. Acad. Sci. U.S.A. 97, 6885-6889 (2000).
[CrossRef] [PubMed]

Dellinger, M.

M. Dellinger, M. Geze, R. Santus, E. Kohen, C. Kohen, J. G. Hirschberg, and M. Monti, “Imaging of cells by autofluorescence: a new tool in the probing of biopharmaceutical effects at the intracellular level,” Biotechnol. Appl. Biochem. 28, 25 (1998).
[PubMed]

Denvir, D. J.

C. G. Coates, D. J. Denvir, E. Conroy, N. G. McHale, K. D. Thornbury, and M. A. Hollywood, “Back-illuminated electron multiplying technology: The world's most sensitive CCD for ultra low-light microscopy,” http://www.emccd.com/emccd_in_use/publications_and_scientific_papers.

C. G. Coates, D. J. Denvir, N. G. McHale, K. D. Thornbury, and M. A. Hollywood, “Ultra-sensitivity, speed and resolution: Optimizing low-light microscopy with the back-illuminated electron multiplying CCD,” http://www.emccd.com/emccd_in_use/publications_and_scientific_papers.

Gerstner, A.

W. Kuhn, T. Müller, R. Winkel, S. Danielczik, A. Gerstner, R. Häcker, C. Mattern, and H. Przuntek, “Parenteral application of NADH in Parkinson's disease: clinical improvement partially due to stimulation of endogenous levodopa biosynthesis,” J. Neural Transm. 103, 1187-1193 (1996).
[CrossRef] [PubMed]

Geze, M.

M. Dellinger, M. Geze, R. Santus, E. Kohen, C. Kohen, J. G. Hirschberg, and M. Monti, “Imaging of cells by autofluorescence: a new tool in the probing of biopharmaceutical effects at the intracellular level,” Biotechnol. Appl. Biochem. 28, 25 (1998).
[PubMed]

Häcker, R.

W. Kuhn, T. Müller, R. Winkel, S. Danielczik, A. Gerstner, R. Häcker, C. Mattern, and H. Przuntek, “Parenteral application of NADH in Parkinson's disease: clinical improvement partially due to stimulation of endogenous levodopa biosynthesis,” J. Neural Transm. 103, 1187-1193 (1996).
[CrossRef] [PubMed]

Hashimoto, M.

M. Hashimoto, Y. Takeda, T. Sato, H. Kawahara, O. Nagano, and M. Hirakawa, “Dynamic changes of NADH fluorescence images and NADH content during spreading depression in the cerebral cortex of gerbils,” Brain Res. 872, 294-300 (2000).
[CrossRef] [PubMed]

Hirakawa, M.

M. Hashimoto, Y. Takeda, T. Sato, H. Kawahara, O. Nagano, and M. Hirakawa, “Dynamic changes of NADH fluorescence images and NADH content during spreading depression in the cerebral cortex of gerbils,” Brain Res. 872, 294-300 (2000).
[CrossRef] [PubMed]

Hirschberg, J. G.

M. Dellinger, M. Geze, R. Santus, E. Kohen, C. Kohen, J. G. Hirschberg, and M. Monti, “Imaging of cells by autofluorescence: a new tool in the probing of biopharmaceutical effects at the intracellular level,” Biotechnol. Appl. Biochem. 28, 25 (1998).
[PubMed]

Hollywood, M. A.

C. G. Coates, D. J. Denvir, N. G. McHale, K. D. Thornbury, and M. A. Hollywood, “Ultra-sensitivity, speed and resolution: Optimizing low-light microscopy with the back-illuminated electron multiplying CCD,” http://www.emccd.com/emccd_in_use/publications_and_scientific_papers.

C. G. Coates, D. J. Denvir, E. Conroy, N. G. McHale, K. D. Thornbury, and M. A. Hollywood, “Back-illuminated electron multiplying technology: The world's most sensitive CCD for ultra low-light microscopy,” http://www.emccd.com/emccd_in_use/publications_and_scientific_papers.

Kawahara, H.

M. Hashimoto, Y. Takeda, T. Sato, H. Kawahara, O. Nagano, and M. Hirakawa, “Dynamic changes of NADH fluorescence images and NADH content during spreading depression in the cerebral cortex of gerbils,” Brain Res. 872, 294-300 (2000).
[CrossRef] [PubMed]

Knobel, S. M.

D. W. Piston and S. M. Knobel, “Real-time analysis of glucose metabolism by microscopy,” Trends Endocrinol. Metab. 10, 413-417 (1999).
[CrossRef] [PubMed]

Kohen, C.

M. Dellinger, M. Geze, R. Santus, E. Kohen, C. Kohen, J. G. Hirschberg, and M. Monti, “Imaging of cells by autofluorescence: a new tool in the probing of biopharmaceutical effects at the intracellular level,” Biotechnol. Appl. Biochem. 28, 25 (1998).
[PubMed]

Kohen, E.

M. Dellinger, M. Geze, R. Santus, E. Kohen, C. Kohen, J. G. Hirschberg, and M. Monti, “Imaging of cells by autofluorescence: a new tool in the probing of biopharmaceutical effects at the intracellular level,” Biotechnol. Appl. Biochem. 28, 25 (1998).
[PubMed]

Kuhn, W.

W. Kuhn, T. Müller, R. Winkel, S. Danielczik, A. Gerstner, R. Häcker, C. Mattern, and H. Przuntek, “Parenteral application of NADH in Parkinson's disease: clinical improvement partially due to stimulation of endogenous levodopa biosynthesis,” J. Neural Transm. 103, 1187-1193 (1996).
[CrossRef] [PubMed]

Mair, T.

T. Mair, C. Warnke, and S. C. Müller, “Spatio-temporal dynamics in glycolysis,” Faraday Discuss. 120, 249-259(2002).
[CrossRef] [PubMed]

Mattern, C.

W. Kuhn, T. Müller, R. Winkel, S. Danielczik, A. Gerstner, R. Häcker, C. Mattern, and H. Przuntek, “Parenteral application of NADH in Parkinson's disease: clinical improvement partially due to stimulation of endogenous levodopa biosynthesis,” J. Neural Transm. 103, 1187-1193 (1996).
[CrossRef] [PubMed]

Mayevsky, A.

A. Mayevsky and G. G. Rogatsky, “Mitochondrial function in vivo evaluated by NADH fluorescence: from animal models to human studies,” Am. J. Physiol. Cell. Physiol. 292, C615-C640 (2007).
[CrossRef]

McHale, N. G.

C. G. Coates, D. J. Denvir, E. Conroy, N. G. McHale, K. D. Thornbury, and M. A. Hollywood, “Back-illuminated electron multiplying technology: The world's most sensitive CCD for ultra low-light microscopy,” http://www.emccd.com/emccd_in_use/publications_and_scientific_papers.

C. G. Coates, D. J. Denvir, N. G. McHale, K. D. Thornbury, and M. A. Hollywood, “Ultra-sensitivity, speed and resolution: Optimizing low-light microscopy with the back-illuminated electron multiplying CCD,” http://www.emccd.com/emccd_in_use/publications_and_scientific_papers.

Monti, M.

M. Dellinger, M. Geze, R. Santus, E. Kohen, C. Kohen, J. G. Hirschberg, and M. Monti, “Imaging of cells by autofluorescence: a new tool in the probing of biopharmaceutical effects at the intracellular level,” Biotechnol. Appl. Biochem. 28, 25 (1998).
[PubMed]

Müller, S. C.

T. Mair, C. Warnke, and S. C. Müller, “Spatio-temporal dynamics in glycolysis,” Faraday Discuss. 120, 249-259(2002).
[CrossRef] [PubMed]

Müller, T.

W. Kuhn, T. Müller, R. Winkel, S. Danielczik, A. Gerstner, R. Häcker, C. Mattern, and H. Przuntek, “Parenteral application of NADH in Parkinson's disease: clinical improvement partially due to stimulation of endogenous levodopa biosynthesis,” J. Neural Transm. 103, 1187-1193 (1996).
[CrossRef] [PubMed]

Mycek, M. A.

B. W. Pogue, J. D. Pitts, M. A. Mycek, R. D. Sloboda, C. M. Wilmot, J. F. Brandsema, and J. A. O'Hara, “In vivo NADH fluorescence monitoring as an assay for cellular damage in photodynamic therapy,” Photochem. Photobiol. 74, 817-824 (2001).
[CrossRef]

Nadlinger, K.

J. R. Zhang, K. Vrecko, K. Nadlinger, D. Storga, G. D. Birkmayer, and G. Reibnegger, “The reduced coenzyme nicotinamide adenine dinucleotide (NADH) repairs DNA damage of PC12 cells induced by doxorubicin,” J. Tumor Marker Oncol. 13, 5-17 (1998).

Nagano, O.

M. Hashimoto, Y. Takeda, T. Sato, H. Kawahara, O. Nagano, and M. Hirakawa, “Dynamic changes of NADH fluorescence images and NADH content during spreading depression in the cerebral cortex of gerbils,” Brain Res. 872, 294-300 (2000).
[CrossRef] [PubMed]

Nathan, C.

C. Nathan, “Neutrophils and immunity: challenges and opportunities,” Nat. Rev. Immunol. 6, 173-182 (2006).
[CrossRef] [PubMed]

O'Hara, J. A.

B. W. Pogue, J. D. Pitts, M. A. Mycek, R. D. Sloboda, C. M. Wilmot, J. F. Brandsema, and J. A. O'Hara, “In vivo NADH fluorescence monitoring as an assay for cellular damage in photodynamic therapy,” Photochem. Photobiol. 74, 817-824 (2001).
[CrossRef]

Piston, D. W.

D. W. Piston and S. M. Knobel, “Real-time analysis of glucose metabolism by microscopy,” Trends Endocrinol. Metab. 10, 413-417 (1999).
[CrossRef] [PubMed]

Pitts, J. D.

B. W. Pogue, J. D. Pitts, M. A. Mycek, R. D. Sloboda, C. M. Wilmot, J. F. Brandsema, and J. A. O'Hara, “In vivo NADH fluorescence monitoring as an assay for cellular damage in photodynamic therapy,” Photochem. Photobiol. 74, 817-824 (2001).
[CrossRef]

Pogue, B. W.

B. W. Pogue, J. D. Pitts, M. A. Mycek, R. D. Sloboda, C. M. Wilmot, J. F. Brandsema, and J. A. O'Hara, “In vivo NADH fluorescence monitoring as an assay for cellular damage in photodynamic therapy,” Photochem. Photobiol. 74, 817-824 (2001).
[CrossRef]

Przuntek, H.

W. Kuhn, T. Müller, R. Winkel, S. Danielczik, A. Gerstner, R. Häcker, C. Mattern, and H. Przuntek, “Parenteral application of NADH in Parkinson's disease: clinical improvement partially due to stimulation of endogenous levodopa biosynthesis,” J. Neural Transm. 103, 1187-1193 (1996).
[CrossRef] [PubMed]

Reibnegger, G.

J. R. Zhang, K. Vrecko, K. Nadlinger, D. Storga, G. D. Birkmayer, and G. Reibnegger, “The reduced coenzyme nicotinamide adenine dinucleotide (NADH) repairs DNA damage of PC12 cells induced by doxorubicin,” J. Tumor Marker Oncol. 13, 5-17 (1998).

Rogatsky, G. G.

A. Mayevsky and G. G. Rogatsky, “Mitochondrial function in vivo evaluated by NADH fluorescence: from animal models to human studies,” Am. J. Physiol. Cell. Physiol. 292, C615-C640 (2007).
[CrossRef]

Santus, R.

M. Dellinger, M. Geze, R. Santus, E. Kohen, C. Kohen, J. G. Hirschberg, and M. Monti, “Imaging of cells by autofluorescence: a new tool in the probing of biopharmaceutical effects at the intracellular level,” Biotechnol. Appl. Biochem. 28, 25 (1998).
[PubMed]

Sato, T.

M. Hashimoto, Y. Takeda, T. Sato, H. Kawahara, O. Nagano, and M. Hirakawa, “Dynamic changes of NADH fluorescence images and NADH content during spreading depression in the cerebral cortex of gerbils,” Brain Res. 872, 294-300 (2000).
[CrossRef] [PubMed]

Segal, A. W.

T. E. Wientjes and A. W. Segal, “NADPH oxidase and the respiratory burst,” Semin. Cell. Biol. 6, 357-365(1995).
[CrossRef] [PubMed]

Sloboda, R. D.

B. W. Pogue, J. D. Pitts, M. A. Mycek, R. D. Sloboda, C. M. Wilmot, J. F. Brandsema, and J. A. O'Hara, “In vivo NADH fluorescence monitoring as an assay for cellular damage in photodynamic therapy,” Photochem. Photobiol. 74, 817-824 (2001).
[CrossRef]

Storga, D.

J. R. Zhang, K. Vrecko, K. Nadlinger, D. Storga, G. D. Birkmayer, and G. Reibnegger, “The reduced coenzyme nicotinamide adenine dinucleotide (NADH) repairs DNA damage of PC12 cells induced by doxorubicin,” J. Tumor Marker Oncol. 13, 5-17 (1998).

Takeda, Y.

M. Hashimoto, Y. Takeda, T. Sato, H. Kawahara, O. Nagano, and M. Hirakawa, “Dynamic changes of NADH fluorescence images and NADH content during spreading depression in the cerebral cortex of gerbils,” Brain Res. 872, 294-300 (2000).
[CrossRef] [PubMed]

Thomas, L. L.

T. E. Decoursey, V. V. Cherny, W. Zhou, and L. L. Thomas, “Simultaneous activation of NADPH oxidase-related proton and electron currents in human neutrophils,” Proc. Natl. Acad. Sci. U.S.A. 97, 6885-6889 (2000).
[CrossRef] [PubMed]

Thornbury, K. D.

C. G. Coates, D. J. Denvir, E. Conroy, N. G. McHale, K. D. Thornbury, and M. A. Hollywood, “Back-illuminated electron multiplying technology: The world's most sensitive CCD for ultra low-light microscopy,” http://www.emccd.com/emccd_in_use/publications_and_scientific_papers.

C. G. Coates, D. J. Denvir, N. G. McHale, K. D. Thornbury, and M. A. Hollywood, “Ultra-sensitivity, speed and resolution: Optimizing low-light microscopy with the back-illuminated electron multiplying CCD,” http://www.emccd.com/emccd_in_use/publications_and_scientific_papers.

Vrecko, K.

J. R. Zhang, K. Vrecko, K. Nadlinger, D. Storga, G. D. Birkmayer, and G. Reibnegger, “The reduced coenzyme nicotinamide adenine dinucleotide (NADH) repairs DNA damage of PC12 cells induced by doxorubicin,” J. Tumor Marker Oncol. 13, 5-17 (1998).

Warnke, C.

T. Mair, C. Warnke, and S. C. Müller, “Spatio-temporal dynamics in glycolysis,” Faraday Discuss. 120, 249-259(2002).
[CrossRef] [PubMed]

Wientjes, T. E.

T. E. Wientjes and A. W. Segal, “NADPH oxidase and the respiratory burst,” Semin. Cell. Biol. 6, 357-365(1995).
[CrossRef] [PubMed]

Wilmot, C. M.

B. W. Pogue, J. D. Pitts, M. A. Mycek, R. D. Sloboda, C. M. Wilmot, J. F. Brandsema, and J. A. O'Hara, “In vivo NADH fluorescence monitoring as an assay for cellular damage in photodynamic therapy,” Photochem. Photobiol. 74, 817-824 (2001).
[CrossRef]

Winkel, R.

W. Kuhn, T. Müller, R. Winkel, S. Danielczik, A. Gerstner, R. Häcker, C. Mattern, and H. Przuntek, “Parenteral application of NADH in Parkinson's disease: clinical improvement partially due to stimulation of endogenous levodopa biosynthesis,” J. Neural Transm. 103, 1187-1193 (1996).
[CrossRef] [PubMed]

Ying, W.

W. Ying, “NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences,” Antioxid. Redox. Signal. 10, 179-206 (2008).
[CrossRef]

Zhang, J. R.

J. R. Zhang, K. Vrecko, K. Nadlinger, D. Storga, G. D. Birkmayer, and G. Reibnegger, “The reduced coenzyme nicotinamide adenine dinucleotide (NADH) repairs DNA damage of PC12 cells induced by doxorubicin,” J. Tumor Marker Oncol. 13, 5-17 (1998).

Zhou, W.

T. E. Decoursey, V. V. Cherny, W. Zhou, and L. L. Thomas, “Simultaneous activation of NADPH oxidase-related proton and electron currents in human neutrophils,” Proc. Natl. Acad. Sci. U.S.A. 97, 6885-6889 (2000).
[CrossRef] [PubMed]

Am. J. Physiol. Cell. Physiol. (1)

A. Mayevsky and G. G. Rogatsky, “Mitochondrial function in vivo evaluated by NADH fluorescence: from animal models to human studies,” Am. J. Physiol. Cell. Physiol. 292, C615-C640 (2007).
[CrossRef]

Antioxid. Redox. Signal. (1)

W. Ying, “NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences,” Antioxid. Redox. Signal. 10, 179-206 (2008).
[CrossRef]

Biotechnol. Appl. Biochem. (1)

M. Dellinger, M. Geze, R. Santus, E. Kohen, C. Kohen, J. G. Hirschberg, and M. Monti, “Imaging of cells by autofluorescence: a new tool in the probing of biopharmaceutical effects at the intracellular level,” Biotechnol. Appl. Biochem. 28, 25 (1998).
[PubMed]

Brain Res. (1)

M. Hashimoto, Y. Takeda, T. Sato, H. Kawahara, O. Nagano, and M. Hirakawa, “Dynamic changes of NADH fluorescence images and NADH content during spreading depression in the cerebral cortex of gerbils,” Brain Res. 872, 294-300 (2000).
[CrossRef] [PubMed]

Faraday Discuss. (1)

T. Mair, C. Warnke, and S. C. Müller, “Spatio-temporal dynamics in glycolysis,” Faraday Discuss. 120, 249-259(2002).
[CrossRef] [PubMed]

J. Neural Transm. (1)

W. Kuhn, T. Müller, R. Winkel, S. Danielczik, A. Gerstner, R. Häcker, C. Mattern, and H. Przuntek, “Parenteral application of NADH in Parkinson's disease: clinical improvement partially due to stimulation of endogenous levodopa biosynthesis,” J. Neural Transm. 103, 1187-1193 (1996).
[CrossRef] [PubMed]

J. Tumor Marker Oncol. (1)

J. R. Zhang, K. Vrecko, K. Nadlinger, D. Storga, G. D. Birkmayer, and G. Reibnegger, “The reduced coenzyme nicotinamide adenine dinucleotide (NADH) repairs DNA damage of PC12 cells induced by doxorubicin,” J. Tumor Marker Oncol. 13, 5-17 (1998).

Nat. Rev. Immunol. (1)

C. Nathan, “Neutrophils and immunity: challenges and opportunities,” Nat. Rev. Immunol. 6, 173-182 (2006).
[CrossRef] [PubMed]

Photochem. Photobiol. (1)

B. W. Pogue, J. D. Pitts, M. A. Mycek, R. D. Sloboda, C. M. Wilmot, J. F. Brandsema, and J. A. O'Hara, “In vivo NADH fluorescence monitoring as an assay for cellular damage in photodynamic therapy,” Photochem. Photobiol. 74, 817-824 (2001).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

T. E. Decoursey, V. V. Cherny, W. Zhou, and L. L. Thomas, “Simultaneous activation of NADPH oxidase-related proton and electron currents in human neutrophils,” Proc. Natl. Acad. Sci. U.S.A. 97, 6885-6889 (2000).
[CrossRef] [PubMed]

Semin. Cell. Biol. (1)

T. E. Wientjes and A. W. Segal, “NADPH oxidase and the respiratory burst,” Semin. Cell. Biol. 6, 357-365(1995).
[CrossRef] [PubMed]

Trends Endocrinol. Metab. (1)

D. W. Piston and S. M. Knobel, “Real-time analysis of glucose metabolism by microscopy,” Trends Endocrinol. Metab. 10, 413-417 (1999).
[CrossRef] [PubMed]

Other (2)

C. G. Coates, D. J. Denvir, E. Conroy, N. G. McHale, K. D. Thornbury, and M. A. Hollywood, “Back-illuminated electron multiplying technology: The world's most sensitive CCD for ultra low-light microscopy,” http://www.emccd.com/emccd_in_use/publications_and_scientific_papers.

C. G. Coates, D. J. Denvir, N. G. McHale, K. D. Thornbury, and M. A. Hollywood, “Ultra-sensitivity, speed and resolution: Optimizing low-light microscopy with the back-illuminated electron multiplying CCD,” http://www.emccd.com/emccd_in_use/publications_and_scientific_papers.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Evolution of fluorescence of a 5 μM NAD(P)H PBS solution as a function of excitation intensity at 365 nm . (b) Quenching ratio as a function of excitation intensity.

Fig. 2
Fig. 2

Typical evolution of NAD(P)H fluorescence of neutrophils ( n = 20 cells) excited by different intensities at 365 nm . Note that the curve for 5 mW / cm 2 was amplified with respect to the other measurements by a factor of 180 using the gain function of EMCCD.

Fig. 3
Fig. 3

Typical NAD(P)H fluorescence images of human neutrophils at an excitation intensity of 500 mW / cm 2 . Each image was collected for 100 ms at (a)  0 s , (b)  100 s , (c)  200 s , and (d)  300 s .

Fig. 4
Fig. 4

Typical change of NAD(P)H fluorescence after triggering a neutrophil respiratory burst by injection of 5 μM PMA ( n = 20 cells, irradiation 5 mW / cm 2 ).

Metrics