Abstract

We propose a thin and compact integral imaging system using electroluminescent (EL) films as backlight. EL film has the advantage that it can operate continuously even when it is cut or punctured. Using this characteristic, we generate an array of pinholes on EL film to form a point light-source array for reconstructing three-dimensional (3D) images based on integral imaging. The EL pinhole film is attached on another EL film and they are electrically controlled to generate a point light-source array or a surface light source; hence, the system converts between 3D and two-dimensional (2D) modes. Taking advantage of the flexibility of EL films, we also propose a flexible 3D/2D convertible integral imaging system with a wide viewing angle using a curved EL film. We explain the principle of the proposed methods and present experimental results.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Okoshi, “Three-dimensional displays,” Proc. IEEE 68, 548-564 (1980).
    [CrossRef]
  2. G. Lippmann, “La photographie integrale,” C. R. Acad. Sci. 146, 446-451 (1908).
  3. B. Lee, J.-H. Park, and S.-W. Min, “Three-dimensional display and information processing based on integral imaging,” in Digital Holography and Three-Dimensional Display, T. -C. Poon, ed. (Springer, 2006), pp. 333-378, Chap. 12.
    [CrossRef]
  4. F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Gradient-index lens-array method based on real-time integral photography for three-dimensional images,” Appl. Opt. 36, 1598-1603(1997).
    [CrossRef] [PubMed]
  5. N. Davies, M. McCormick, and L. Yang, “Three-dimensional imaging systems: a new development,” Appl. Opt. 27, 4520-4528 (1988).
    [CrossRef] [PubMed]
  6. M. C. Forman, N. Davies, and M. McCormick, “Continuous parallax in discrete pixilated integral three-dimensional displays,” J. Opt. Soc. Am. A 20, 411-420 (2003).
    [CrossRef]
  7. M. Martínez-Corral, B. Javidi, R. Martínez-Cuenca, and G. Saavedra, “Integral imaging with improved depth of field by use of amplitude-modulated microlens arrays,” Appl. Opt. 43, 5806-5813 (2004).
    [CrossRef] [PubMed]
  8. H. Liao, M. Iwahara, N. Hata, and T. Dohi, “High-quality integral videography using a multiprojector,” Opt. Express 12, 1067-1076 (2004).
    [CrossRef] [PubMed]
  9. S.-W. Min, M. Hahn, J. Kim, and B. Lee, “Three-dimensional electro-floating display system using an integral imaging method,” Opt. Express 13, 4358-4369 (2005).
    [CrossRef] [PubMed]
  10. S. Jung, J. Hong, J.-H. Park, Y. Kim, and B. Lee, “Depth-enhanced integral-imaging 3D display using different optical path lengths by polarization devices or mirror barrier array,” J. Soc. Inf. Disp. 12, 461-467 (2004).
    [CrossRef]
  11. B. Lee, S.-W. Min, and B. Javidi, “Theoretical analysis for three-dimensional integral imaging systems with double devices,” Appl. Opt. 41, 4856-4865 (2002).
    [CrossRef] [PubMed]
  12. J. S. Ren, A. Aggoun, and M. McCormick, “Maximum viewing width integral image,” J. Electron. Imaging 14, 023019 (2005).
    [CrossRef]
  13. D.-C. Hwang, D.-H. Shin, S.-C. Kim, and E.-S. Kim, “Depth extraction of three-dimensional objects in space by the computational integral imaging reconstruction technique,” Appl. Opt. 47, D128-D135 (2008).
    [CrossRef] [PubMed]
  14. N. Sgouros, I. Kontaxakis, and M. Sangriotis, “Effect of different traversal schemes in integral image coding,” Appl. Opt. 47, D28-D37 (2008).
    [CrossRef] [PubMed]
  15. J.-H. Park, H.-R. Kim, Y. Kim, J. Kim, J. Hong, S.-D. Lee, and B. Lee, “Depth-enhanced three-dimensional-two-dimensional convertible display based on modified integral imaging,” Opt. Lett. 29, 2734-2736 (2004).
    [CrossRef] [PubMed]
  16. H. Choi, J. Kim, S.-W. Cho, Y. Kim, J. B. Park, and B. Lee, “Three-dimensional-two-dimensional mixed display system using integral imaging with an active pinhole array on a liquid crystal panel,” Appl. Opt. 47, 2207-2214 (2008).
    [CrossRef] [PubMed]
  17. H. Choi, S.-W. Cho, J. Kim, and B. Lee, “A thin 3D-2D convertible integral imaging system using a pinhole array on a polarizer,” Opt. Express 14, 5183-5190 (2006).
    [CrossRef] [PubMed]
  18. S.-W. Cho, J.-H. Park, Y. Kim, H. Choi, J. Kim, and B. Lee, “Convertible two-dimensional-three-dimensional display using an LED array based on modified integral imaging,” Opt. Lett. 31, 2852-2854 (2006).
    [CrossRef] [PubMed]
  19. Y. Kim, H. Choi, S.-W. Cho, Y. Kim, J. Kim, G. Park, and B. Lee, “Three-dimensional integral display using plastic optical fibers,” Appl. Opt. 46, 7149-7154 (2007).
    [CrossRef] [PubMed]
  20. Y. Kim, J. Kim, Y. Kim, H. Choi, J.-H. Jung, and B. Lee, “Thin-type integral imaging method with an organic light emitting diode panel,” Appl. Opt. 47, 4927-4934 (2008).
    [CrossRef] [PubMed]
  21. J.-H. Jung, Y. Kim, J. Kim, and B. Lee, “A thin 3D-2D convertible integral imaging system using a pinhole array on an electroluminescent (EL) sheet,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (Optical Society of America, 2008), paper DTuA2.
  22. Y. A. Ono, Electroluminescent Displays (World Scientific, 1995), pp. 7-17.
  23. Y. Kim, J.-H. Park, H. Choi, S. Jung, S.-W Min, and B. Lee, “Viewing-angle-enhanced integral imaging system using a curved lens array,” Opt. Express 12, 421-429 (2004).
    [CrossRef] [PubMed]
  24. Y. Kim, J.-H. Park, S.-W. Min, S. Jung, H. Choi, and B. Lee, “Wide-viewing-angle integral three-dimensional imaging system by curving a screen and a lens array,” Appl. Opt. 44, 546-552 (2005).
    [CrossRef] [PubMed]
  25. S.-W. Min, B. Javidi, and B. Lee, “Enhanced three-dimensional integral imaging system by use of double display devices,” Appl. Opt. 42, 4186-4195 (2003).
    [CrossRef] [PubMed]
  26. F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Real-time pickup method for a three-dimensional image based on integral photography,” Appl. Opt. 36, 1598-1603 (1997).
    [CrossRef] [PubMed]
  27. M. Martínez-Corral and B. Javidi, “Formation of real, orthoscopic integral images by smart pixel mapping,” Opt. Express 13, 9175-9180 (2005).
    [CrossRef] [PubMed]
  28. S.-W. Min, S. Jung, J.-H. Park, and B. Lee, “Three-dimensional display system based on computer-generated integral photography,” Proc. SPIE 4297, 187-195 (2001).
    [CrossRef]
  29. M. Martínez-Corral, B. Javidi, R. Martínez-Cuenca, and G. Saavedra, “Multifacet structure of observed reconstructed integral images,” J. Opt. Soc. Am. A 22, 597-603(2005).
    [CrossRef]
  30. Y. Kim, J. Kim, J.-M. Kang, J.-H. Jung, H. Choi, and B. Lee, “Point light source integral imaging with improved resolution and viewing angle by the use of electrically movable pinhole array,” Opt. Express 15, 18253-18267(2007).
    [CrossRef] [PubMed]

2008 (5)

2007 (2)

2006 (3)

2005 (5)

2004 (5)

2003 (2)

2002 (1)

2001 (1)

S.-W. Min, S. Jung, J.-H. Park, and B. Lee, “Three-dimensional display system based on computer-generated integral photography,” Proc. SPIE 4297, 187-195 (2001).
[CrossRef]

1997 (2)

1995 (1)

Y. A. Ono, Electroluminescent Displays (World Scientific, 1995), pp. 7-17.

1988 (1)

1980 (1)

T. Okoshi, “Three-dimensional displays,” Proc. IEEE 68, 548-564 (1980).
[CrossRef]

1908 (1)

G. Lippmann, “La photographie integrale,” C. R. Acad. Sci. 146, 446-451 (1908).

Aggoun, A.

J. S. Ren, A. Aggoun, and M. McCormick, “Maximum viewing width integral image,” J. Electron. Imaging 14, 023019 (2005).
[CrossRef]

Arai, J.

Cho, S.-W.

Choi, H.

Y. Kim, J. Kim, Y. Kim, H. Choi, J.-H. Jung, and B. Lee, “Thin-type integral imaging method with an organic light emitting diode panel,” Appl. Opt. 47, 4927-4934 (2008).
[CrossRef] [PubMed]

H. Choi, J. Kim, S.-W. Cho, Y. Kim, J. B. Park, and B. Lee, “Three-dimensional-two-dimensional mixed display system using integral imaging with an active pinhole array on a liquid crystal panel,” Appl. Opt. 47, 2207-2214 (2008).
[CrossRef] [PubMed]

Y. Kim, J. Kim, J.-M. Kang, J.-H. Jung, H. Choi, and B. Lee, “Point light source integral imaging with improved resolution and viewing angle by the use of electrically movable pinhole array,” Opt. Express 15, 18253-18267(2007).
[CrossRef] [PubMed]

Y. Kim, H. Choi, S.-W. Cho, Y. Kim, J. Kim, G. Park, and B. Lee, “Three-dimensional integral display using plastic optical fibers,” Appl. Opt. 46, 7149-7154 (2007).
[CrossRef] [PubMed]

S.-W. Cho, J.-H. Park, Y. Kim, H. Choi, J. Kim, and B. Lee, “Convertible two-dimensional-three-dimensional display using an LED array based on modified integral imaging,” Opt. Lett. 31, 2852-2854 (2006).
[CrossRef] [PubMed]

H. Choi, S.-W. Cho, J. Kim, and B. Lee, “A thin 3D-2D convertible integral imaging system using a pinhole array on a polarizer,” Opt. Express 14, 5183-5190 (2006).
[CrossRef] [PubMed]

Y. Kim, J.-H. Park, S.-W. Min, S. Jung, H. Choi, and B. Lee, “Wide-viewing-angle integral three-dimensional imaging system by curving a screen and a lens array,” Appl. Opt. 44, 546-552 (2005).
[CrossRef] [PubMed]

Y. Kim, J.-H. Park, H. Choi, S. Jung, S.-W Min, and B. Lee, “Viewing-angle-enhanced integral imaging system using a curved lens array,” Opt. Express 12, 421-429 (2004).
[CrossRef] [PubMed]

Davies, N.

Dohi, T.

Forman, M. C.

Hahn, M.

Hata, N.

Hong, J.

S. Jung, J. Hong, J.-H. Park, Y. Kim, and B. Lee, “Depth-enhanced integral-imaging 3D display using different optical path lengths by polarization devices or mirror barrier array,” J. Soc. Inf. Disp. 12, 461-467 (2004).
[CrossRef]

J.-H. Park, H.-R. Kim, Y. Kim, J. Kim, J. Hong, S.-D. Lee, and B. Lee, “Depth-enhanced three-dimensional-two-dimensional convertible display based on modified integral imaging,” Opt. Lett. 29, 2734-2736 (2004).
[CrossRef] [PubMed]

Hoshino, H.

Hwang, D.-C.

Iwahara, M.

Javidi, B.

Jung, J.-H.

Jung, S.

Y. Kim, J.-H. Park, S.-W. Min, S. Jung, H. Choi, and B. Lee, “Wide-viewing-angle integral three-dimensional imaging system by curving a screen and a lens array,” Appl. Opt. 44, 546-552 (2005).
[CrossRef] [PubMed]

Y. Kim, J.-H. Park, H. Choi, S. Jung, S.-W Min, and B. Lee, “Viewing-angle-enhanced integral imaging system using a curved lens array,” Opt. Express 12, 421-429 (2004).
[CrossRef] [PubMed]

S. Jung, J. Hong, J.-H. Park, Y. Kim, and B. Lee, “Depth-enhanced integral-imaging 3D display using different optical path lengths by polarization devices or mirror barrier array,” J. Soc. Inf. Disp. 12, 461-467 (2004).
[CrossRef]

S.-W. Min, S. Jung, J.-H. Park, and B. Lee, “Three-dimensional display system based on computer-generated integral photography,” Proc. SPIE 4297, 187-195 (2001).
[CrossRef]

Kang, J.-M.

Kim, E.-S.

Kim, H.-R.

Kim, J.

H. Choi, J. Kim, S.-W. Cho, Y. Kim, J. B. Park, and B. Lee, “Three-dimensional-two-dimensional mixed display system using integral imaging with an active pinhole array on a liquid crystal panel,” Appl. Opt. 47, 2207-2214 (2008).
[CrossRef] [PubMed]

Y. Kim, J. Kim, Y. Kim, H. Choi, J.-H. Jung, and B. Lee, “Thin-type integral imaging method with an organic light emitting diode panel,” Appl. Opt. 47, 4927-4934 (2008).
[CrossRef] [PubMed]

J.-H. Jung, Y. Kim, J. Kim, and B. Lee, “A thin 3D-2D convertible integral imaging system using a pinhole array on an electroluminescent (EL) sheet,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (Optical Society of America, 2008), paper DTuA2.

Y. Kim, H. Choi, S.-W. Cho, Y. Kim, J. Kim, G. Park, and B. Lee, “Three-dimensional integral display using plastic optical fibers,” Appl. Opt. 46, 7149-7154 (2007).
[CrossRef] [PubMed]

Y. Kim, J. Kim, J.-M. Kang, J.-H. Jung, H. Choi, and B. Lee, “Point light source integral imaging with improved resolution and viewing angle by the use of electrically movable pinhole array,” Opt. Express 15, 18253-18267(2007).
[CrossRef] [PubMed]

S.-W. Cho, J.-H. Park, Y. Kim, H. Choi, J. Kim, and B. Lee, “Convertible two-dimensional-three-dimensional display using an LED array based on modified integral imaging,” Opt. Lett. 31, 2852-2854 (2006).
[CrossRef] [PubMed]

H. Choi, S.-W. Cho, J. Kim, and B. Lee, “A thin 3D-2D convertible integral imaging system using a pinhole array on a polarizer,” Opt. Express 14, 5183-5190 (2006).
[CrossRef] [PubMed]

S.-W. Min, M. Hahn, J. Kim, and B. Lee, “Three-dimensional electro-floating display system using an integral imaging method,” Opt. Express 13, 4358-4369 (2005).
[CrossRef] [PubMed]

J.-H. Park, H.-R. Kim, Y. Kim, J. Kim, J. Hong, S.-D. Lee, and B. Lee, “Depth-enhanced three-dimensional-two-dimensional convertible display based on modified integral imaging,” Opt. Lett. 29, 2734-2736 (2004).
[CrossRef] [PubMed]

Kim, S.-C.

Kim, Y.

H. Choi, J. Kim, S.-W. Cho, Y. Kim, J. B. Park, and B. Lee, “Three-dimensional-two-dimensional mixed display system using integral imaging with an active pinhole array on a liquid crystal panel,” Appl. Opt. 47, 2207-2214 (2008).
[CrossRef] [PubMed]

Y. Kim, J. Kim, Y. Kim, H. Choi, J.-H. Jung, and B. Lee, “Thin-type integral imaging method with an organic light emitting diode panel,” Appl. Opt. 47, 4927-4934 (2008).
[CrossRef] [PubMed]

Y. Kim, J. Kim, Y. Kim, H. Choi, J.-H. Jung, and B. Lee, “Thin-type integral imaging method with an organic light emitting diode panel,” Appl. Opt. 47, 4927-4934 (2008).
[CrossRef] [PubMed]

J.-H. Jung, Y. Kim, J. Kim, and B. Lee, “A thin 3D-2D convertible integral imaging system using a pinhole array on an electroluminescent (EL) sheet,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (Optical Society of America, 2008), paper DTuA2.

Y. Kim, H. Choi, S.-W. Cho, Y. Kim, J. Kim, G. Park, and B. Lee, “Three-dimensional integral display using plastic optical fibers,” Appl. Opt. 46, 7149-7154 (2007).
[CrossRef] [PubMed]

Y. Kim, H. Choi, S.-W. Cho, Y. Kim, J. Kim, G. Park, and B. Lee, “Three-dimensional integral display using plastic optical fibers,” Appl. Opt. 46, 7149-7154 (2007).
[CrossRef] [PubMed]

Y. Kim, J. Kim, J.-M. Kang, J.-H. Jung, H. Choi, and B. Lee, “Point light source integral imaging with improved resolution and viewing angle by the use of electrically movable pinhole array,” Opt. Express 15, 18253-18267(2007).
[CrossRef] [PubMed]

S.-W. Cho, J.-H. Park, Y. Kim, H. Choi, J. Kim, and B. Lee, “Convertible two-dimensional-three-dimensional display using an LED array based on modified integral imaging,” Opt. Lett. 31, 2852-2854 (2006).
[CrossRef] [PubMed]

Y. Kim, J.-H. Park, S.-W. Min, S. Jung, H. Choi, and B. Lee, “Wide-viewing-angle integral three-dimensional imaging system by curving a screen and a lens array,” Appl. Opt. 44, 546-552 (2005).
[CrossRef] [PubMed]

J.-H. Park, H.-R. Kim, Y. Kim, J. Kim, J. Hong, S.-D. Lee, and B. Lee, “Depth-enhanced three-dimensional-two-dimensional convertible display based on modified integral imaging,” Opt. Lett. 29, 2734-2736 (2004).
[CrossRef] [PubMed]

Y. Kim, J.-H. Park, H. Choi, S. Jung, S.-W Min, and B. Lee, “Viewing-angle-enhanced integral imaging system using a curved lens array,” Opt. Express 12, 421-429 (2004).
[CrossRef] [PubMed]

S. Jung, J. Hong, J.-H. Park, Y. Kim, and B. Lee, “Depth-enhanced integral-imaging 3D display using different optical path lengths by polarization devices or mirror barrier array,” J. Soc. Inf. Disp. 12, 461-467 (2004).
[CrossRef]

Kontaxakis, I.

Lee, B.

J.-H. Jung, Y. Kim, J. Kim, and B. Lee, “A thin 3D-2D convertible integral imaging system using a pinhole array on an electroluminescent (EL) sheet,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (Optical Society of America, 2008), paper DTuA2.

H. Choi, J. Kim, S.-W. Cho, Y. Kim, J. B. Park, and B. Lee, “Three-dimensional-two-dimensional mixed display system using integral imaging with an active pinhole array on a liquid crystal panel,” Appl. Opt. 47, 2207-2214 (2008).
[CrossRef] [PubMed]

Y. Kim, J. Kim, Y. Kim, H. Choi, J.-H. Jung, and B. Lee, “Thin-type integral imaging method with an organic light emitting diode panel,” Appl. Opt. 47, 4927-4934 (2008).
[CrossRef] [PubMed]

Y. Kim, H. Choi, S.-W. Cho, Y. Kim, J. Kim, G. Park, and B. Lee, “Three-dimensional integral display using plastic optical fibers,” Appl. Opt. 46, 7149-7154 (2007).
[CrossRef] [PubMed]

Y. Kim, J. Kim, J.-M. Kang, J.-H. Jung, H. Choi, and B. Lee, “Point light source integral imaging with improved resolution and viewing angle by the use of electrically movable pinhole array,” Opt. Express 15, 18253-18267(2007).
[CrossRef] [PubMed]

H. Choi, S.-W. Cho, J. Kim, and B. Lee, “A thin 3D-2D convertible integral imaging system using a pinhole array on a polarizer,” Opt. Express 14, 5183-5190 (2006).
[CrossRef] [PubMed]

S.-W. Cho, J.-H. Park, Y. Kim, H. Choi, J. Kim, and B. Lee, “Convertible two-dimensional-three-dimensional display using an LED array based on modified integral imaging,” Opt. Lett. 31, 2852-2854 (2006).
[CrossRef] [PubMed]

B. Lee, J.-H. Park, and S.-W. Min, “Three-dimensional display and information processing based on integral imaging,” in Digital Holography and Three-Dimensional Display, T. -C. Poon, ed. (Springer, 2006), pp. 333-378, Chap. 12.
[CrossRef]

Y. Kim, J.-H. Park, S.-W. Min, S. Jung, H. Choi, and B. Lee, “Wide-viewing-angle integral three-dimensional imaging system by curving a screen and a lens array,” Appl. Opt. 44, 546-552 (2005).
[CrossRef] [PubMed]

S.-W. Min, M. Hahn, J. Kim, and B. Lee, “Three-dimensional electro-floating display system using an integral imaging method,” Opt. Express 13, 4358-4369 (2005).
[CrossRef] [PubMed]

J.-H. Park, H.-R. Kim, Y. Kim, J. Kim, J. Hong, S.-D. Lee, and B. Lee, “Depth-enhanced three-dimensional-two-dimensional convertible display based on modified integral imaging,” Opt. Lett. 29, 2734-2736 (2004).
[CrossRef] [PubMed]

Y. Kim, J.-H. Park, H. Choi, S. Jung, S.-W Min, and B. Lee, “Viewing-angle-enhanced integral imaging system using a curved lens array,” Opt. Express 12, 421-429 (2004).
[CrossRef] [PubMed]

S. Jung, J. Hong, J.-H. Park, Y. Kim, and B. Lee, “Depth-enhanced integral-imaging 3D display using different optical path lengths by polarization devices or mirror barrier array,” J. Soc. Inf. Disp. 12, 461-467 (2004).
[CrossRef]

S.-W. Min, B. Javidi, and B. Lee, “Enhanced three-dimensional integral imaging system by use of double display devices,” Appl. Opt. 42, 4186-4195 (2003).
[CrossRef] [PubMed]

B. Lee, S.-W. Min, and B. Javidi, “Theoretical analysis for three-dimensional integral imaging systems with double devices,” Appl. Opt. 41, 4856-4865 (2002).
[CrossRef] [PubMed]

S.-W. Min, S. Jung, J.-H. Park, and B. Lee, “Three-dimensional display system based on computer-generated integral photography,” Proc. SPIE 4297, 187-195 (2001).
[CrossRef]

Lee, S.-D.

Liao, H.

Lippmann, G.

G. Lippmann, “La photographie integrale,” C. R. Acad. Sci. 146, 446-451 (1908).

Martínez-Corral, M.

Martínez-Cuenca, R.

McCormick, M.

Min, S.-W

Min, S.-W.

Okano, F.

Okoshi, T.

T. Okoshi, “Three-dimensional displays,” Proc. IEEE 68, 548-564 (1980).
[CrossRef]

Ono, Y. A.

Y. A. Ono, Electroluminescent Displays (World Scientific, 1995), pp. 7-17.

Park, G.

Park, J. B.

Park, J.-H.

B. Lee, J.-H. Park, and S.-W. Min, “Three-dimensional display and information processing based on integral imaging,” in Digital Holography and Three-Dimensional Display, T. -C. Poon, ed. (Springer, 2006), pp. 333-378, Chap. 12.
[CrossRef]

S.-W. Cho, J.-H. Park, Y. Kim, H. Choi, J. Kim, and B. Lee, “Convertible two-dimensional-three-dimensional display using an LED array based on modified integral imaging,” Opt. Lett. 31, 2852-2854 (2006).
[CrossRef] [PubMed]

Y. Kim, J.-H. Park, S.-W. Min, S. Jung, H. Choi, and B. Lee, “Wide-viewing-angle integral three-dimensional imaging system by curving a screen and a lens array,” Appl. Opt. 44, 546-552 (2005).
[CrossRef] [PubMed]

J.-H. Park, H.-R. Kim, Y. Kim, J. Kim, J. Hong, S.-D. Lee, and B. Lee, “Depth-enhanced three-dimensional-two-dimensional convertible display based on modified integral imaging,” Opt. Lett. 29, 2734-2736 (2004).
[CrossRef] [PubMed]

Y. Kim, J.-H. Park, H. Choi, S. Jung, S.-W Min, and B. Lee, “Viewing-angle-enhanced integral imaging system using a curved lens array,” Opt. Express 12, 421-429 (2004).
[CrossRef] [PubMed]

S. Jung, J. Hong, J.-H. Park, Y. Kim, and B. Lee, “Depth-enhanced integral-imaging 3D display using different optical path lengths by polarization devices or mirror barrier array,” J. Soc. Inf. Disp. 12, 461-467 (2004).
[CrossRef]

S.-W. Min, S. Jung, J.-H. Park, and B. Lee, “Three-dimensional display system based on computer-generated integral photography,” Proc. SPIE 4297, 187-195 (2001).
[CrossRef]

Ren, J. S.

J. S. Ren, A. Aggoun, and M. McCormick, “Maximum viewing width integral image,” J. Electron. Imaging 14, 023019 (2005).
[CrossRef]

Saavedra, G.

Sangriotis, M.

Sgouros, N.

Shin, D.-H.

Yang, L.

Yuyama, I.

Appl. Opt. (12)

N. Davies, M. McCormick, and L. Yang, “Three-dimensional imaging systems: a new development,” Appl. Opt. 27, 4520-4528 (1988).
[CrossRef] [PubMed]

F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Gradient-index lens-array method based on real-time integral photography for three-dimensional images,” Appl. Opt. 36, 1598-1603(1997).
[CrossRef] [PubMed]

F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Real-time pickup method for a three-dimensional image based on integral photography,” Appl. Opt. 36, 1598-1603 (1997).
[CrossRef] [PubMed]

B. Lee, S.-W. Min, and B. Javidi, “Theoretical analysis for three-dimensional integral imaging systems with double devices,” Appl. Opt. 41, 4856-4865 (2002).
[CrossRef] [PubMed]

S.-W. Min, B. Javidi, and B. Lee, “Enhanced three-dimensional integral imaging system by use of double display devices,” Appl. Opt. 42, 4186-4195 (2003).
[CrossRef] [PubMed]

Y. Kim, J.-H. Park, S.-W. Min, S. Jung, H. Choi, and B. Lee, “Wide-viewing-angle integral three-dimensional imaging system by curving a screen and a lens array,” Appl. Opt. 44, 546-552 (2005).
[CrossRef] [PubMed]

M. Martínez-Corral, B. Javidi, R. Martínez-Cuenca, and G. Saavedra, “Integral imaging with improved depth of field by use of amplitude-modulated microlens arrays,” Appl. Opt. 43, 5806-5813 (2004).
[CrossRef] [PubMed]

Y. Kim, H. Choi, S.-W. Cho, Y. Kim, J. Kim, G. Park, and B. Lee, “Three-dimensional integral display using plastic optical fibers,” Appl. Opt. 46, 7149-7154 (2007).
[CrossRef] [PubMed]

N. Sgouros, I. Kontaxakis, and M. Sangriotis, “Effect of different traversal schemes in integral image coding,” Appl. Opt. 47, D28-D37 (2008).
[CrossRef] [PubMed]

D.-C. Hwang, D.-H. Shin, S.-C. Kim, and E.-S. Kim, “Depth extraction of three-dimensional objects in space by the computational integral imaging reconstruction technique,” Appl. Opt. 47, D128-D135 (2008).
[CrossRef] [PubMed]

H. Choi, J. Kim, S.-W. Cho, Y. Kim, J. B. Park, and B. Lee, “Three-dimensional-two-dimensional mixed display system using integral imaging with an active pinhole array on a liquid crystal panel,” Appl. Opt. 47, 2207-2214 (2008).
[CrossRef] [PubMed]

Y. Kim, J. Kim, Y. Kim, H. Choi, J.-H. Jung, and B. Lee, “Thin-type integral imaging method with an organic light emitting diode panel,” Appl. Opt. 47, 4927-4934 (2008).
[CrossRef] [PubMed]

C. R. Acad. Sci. (1)

G. Lippmann, “La photographie integrale,” C. R. Acad. Sci. 146, 446-451 (1908).

J. Electron. Imaging (1)

J. S. Ren, A. Aggoun, and M. McCormick, “Maximum viewing width integral image,” J. Electron. Imaging 14, 023019 (2005).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Soc. Inf. Disp. (1)

S. Jung, J. Hong, J.-H. Park, Y. Kim, and B. Lee, “Depth-enhanced integral-imaging 3D display using different optical path lengths by polarization devices or mirror barrier array,” J. Soc. Inf. Disp. 12, 461-467 (2004).
[CrossRef]

Opt. Express (6)

Opt. Lett. (2)

Proc. IEEE (1)

T. Okoshi, “Three-dimensional displays,” Proc. IEEE 68, 548-564 (1980).
[CrossRef]

Proc. SPIE (1)

S.-W. Min, S. Jung, J.-H. Park, and B. Lee, “Three-dimensional display system based on computer-generated integral photography,” Proc. SPIE 4297, 187-195 (2001).
[CrossRef]

Other (3)

B. Lee, J.-H. Park, and S.-W. Min, “Three-dimensional display and information processing based on integral imaging,” in Digital Holography and Three-Dimensional Display, T. -C. Poon, ed. (Springer, 2006), pp. 333-378, Chap. 12.
[CrossRef]

J.-H. Jung, Y. Kim, J. Kim, and B. Lee, “A thin 3D-2D convertible integral imaging system using a pinhole array on an electroluminescent (EL) sheet,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (Optical Society of America, 2008), paper DTuA2.

Y. A. Ono, Electroluminescent Displays (World Scientific, 1995), pp. 7-17.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Concept of the 3D/2D convertible integral imaging system: (a) 3D mode and (b) 2D mode.

Fig. 2
Fig. 2

Structure of ac powder EL film.

Fig. 3
Fig. 3

Multidomain EL film LCL: (a) one-domain, (b) two-domain, and (c) four-domain structures.

Fig. 4
Fig. 4

Principle of the 3D/2D convertible integral imaging system using EL film LCL: (a) 3D mode and (b) 2D mode.

Fig. 5
Fig. 5

Concept of the 3D/2D selectively convertible integral imaging system using a multidomain EL film LCL.

Fig. 6
Fig. 6

Configuration of the flexible 3D/2D convertible integral imaging system with wide viewing angle using a curved EL film LCL: (a) real mode and (b) virtual mode.

Fig. 7
Fig. 7

Viewing angles depending on object locations in the proposed system.

Fig. 8
Fig. 8

Viewing angle versus image distance for different gaps in the proposed system.

Fig. 9
Fig. 9

Vewing zone limitation in the proposed system.

Fig. 10
Fig. 10

Light-source conversion of a two-domain EL film LCL: (a) surface light-source mode and (b) point light-source array mode, (c) selective light-source generation mode.

Fig. 11
Fig. 11

Experimental setup of the 3D/2D convertible integral imaging system using an EL film LCL.

Fig. 12
Fig. 12

Experimental results: 3D images observed from different viewing directions.

Fig. 13
Fig. 13

Experimental results in 2D mode: (a) before brightness adjustment and (b) after brightness adjustment.

Fig. 14
Fig. 14

Experimental results in 3D/2D selectively convertible mode.

Fig. 15
Fig. 15

Experimental setup of the flexible 3D/2D convertible integral imaging system with a wide viewing angle using a curved EL film LCL: (a) real 3D mode and (b) virtual 3D mode.

Fig. 16
Fig. 16

Experimental results of the flexible 3D/2D convertible integral imaging system with a wide viewing angle using a curved EL film LCL: (a) real 3D mode, (b) virtual 3D mode, and (c) 2D mode.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Ω max = 2 × 2 n max θ = 4 n max arctan ( φ 2 r ) .
( r g ) sin ( 2 n + 1 ) θ ( r g ) cos ( 2 n + 1 ) θ ( r d ) r sin ( 2 n θ ) r cos ( 2 n θ ) ( r d ) ,
Ω n = 2 arctan { r sin ( 2 n θ ) r cos ( 2 n θ ) ( r d ) } .
( r + g ) sin ( 2 n + 1 ) θ ( r + g ) cos ( 2 n + 1 ) θ ( r + g d ) r sin ( 2 n θ ) r cos ( 2 n θ ) ( r + g d ) ,
Ω n = 2 arctan { r sin ( 2 n θ ) r cos ( 2 n θ ) ( r + g d ) } .

Metrics