Abstract

Multimode diode laser (MDL)-based correlation spectroscopy (COSPEC) was used to measure oxygen in ambient air, thereby employing a diode laser (DL) having an emission spectrum that overlaps the oxygen absorption lines of the A band. A sensitivity of 700ppmm was achieved with good accuracy (2%) and linearity (R2=0.999). For comparison, measurements of ambient oxygen were also performed by tunable DL absorption spectroscopy (TDLAS) technique employing a vertical cavity surface emitting laser. We demonstrate that, despite slightly degraded sensitivity, the MDL-based COSPEC-based oxygen sensor has the advantages of high stability, low cost, ease-of-use, and relaxed requirements in component selection and instrument buildup compared with the TDLAS-based instrument.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Kocache, “The measurement of oxygen in gas mixtures,” J. Phys. E 19, 401-412 (1986).
    [CrossRef]
  2. R. Ramamoorthy, P. K. Dutta, and S. A. Akbar, “Oxygen sensors: materials, methods, designs and applications,” J. Mater. Sci. 38, 4271-4282 (2003).
    [CrossRef]
  3. R. P. Kovacich, N. A. Martin, M. G. Clift, C. Stocks, I. Gaskin, and J. Hobby, “Highly accurate measurement of oxygen using a paramagnetic gas sensor,” Meas. Sci. Technol. 17, 1579-1585 (2006).
    [CrossRef]
  4. B. B. Stephens, P. S. Bakwin, P. P. Tans, R. M. Teclaw, and D. D. Baumann, “Application of a differential fuel-cell analyzer for measuring atmospheric oxygen variations,” J. Atmos. Ocean. Technol. 24, 82-94 (2007).
    [CrossRef]
  5. W. Y. Xu, K. A. Kneas, J. N. Demas, and B. A. DeGraff, “Oxygen sensors based on luminescence quenching of metal complexes: osmium complexes suitable for laser diode excitation,” Anal. Chem. 68, 2605-2609 (1996).
    [CrossRef] [PubMed]
  6. P. Werle, “A review of recent advances in semiconductor laser based gas monitors,” Spectrochim. Acta, Part A 54, 197-236 (1998).
    [CrossRef]
  7. M. Kroll, J. A. McClintock, and O. Ollinger, “Measurement of gaseous oxygen using diode laser spectroscopy,” Appl. Phys. Lett. 51, 1465-1467 (1987).
    [CrossRef]
  8. H. Riris, C. B. Carlisle, L. W. Carr, D. E. Cooper, R. U. Martinelli, and R. J. Menna, “Design of an open-path near-infrared diode-laser sensor: application to oxygen, water, and carbon-dioxide vapor detection,” Appl. Opt. 33, 7059-7066 (1994).
    [CrossRef] [PubMed]
  9. Y. Arita, R. Stevens, and P. Ewart, “Multi-mode absorption spectroscopy of oxygen for measurement of concentration, temperature and pressure,” Appl. Phys. B 90, 205-211 (2008).
    [CrossRef]
  10. D. M. Bruce and D. T. Cassidy, “Detection of oxygen using short external cavity GaAs semiconductor diode lasers,” Appl. Opt. 29, 1327-1332 (1990).
    [CrossRef] [PubMed]
  11. Q. V. Nguyen, R. W. Dibble, and T. Day, “High-resolution oxygen absorption-spectrum obtained with an external-cavity continuously tunable diode-laser,” Opt. Lett. 19, 2134-2136 (1994).
    [CrossRef] [PubMed]
  12. C. Corsi, M. Gabrysch, and M. Inguscio, “Detection of molecular oxygen at high temperature using a DFB-diode-laser at 761 nm,” Opt. Commun. 128, 35-40 (1996).
    [CrossRef]
  13. V. Weldon, J. O. Gorman, J. J. Perez-Camacho, D. McDonald, J. Hegarty, J. C. Connolly, N. A. Morris, R. U. Martinelli, and J. H. Abeles, “Laser diode based oxygen sensing: a comparison of VCSEL and DFB laser diodes emitting in the 762 nm region,” Infrared Phys. Technol. 38, 325-329 (1997).
    [CrossRef]
  14. H. P. Zappe, M. Hess, M. Moser, R. Hovel, K. Gulden, H. P. Gauggel, and F. M. di Sopra, “Narrow-linewidth vertical-cavity surface-emitting lasers for oxygen detection,” Appl. Opt. 39, 2475-2479 (2000).
    [CrossRef]
  15. P. Vogel and V. Ebert, “Near shot noise detection of oxygen in the A-band with vertical-cavity surface-emitting lasers,” Appl. Phys. B 72, 127-135 (2001).
  16. J. Wang, S. T. Sanders, J. B. Jeffries, and R. K. Hanson, “Oxygen measurements at high pressures with vertical cavity surface-emitting lasers,” Appl. Phys. B 72, 865-872 (2001).
    [CrossRef]
  17. G. Somesfalean, M. Sjoholm, L. Persson, H. Gao, T. Svensson, and S. Svanberg, “Temporal correlation scheme for spectroscopic gas analysis using multimode diode lasers,” Appl. Phys. Lett. 86, 184102 (2005).
    [CrossRef]
  18. X. T. Lou, G. Somesfalean, F. Xu, Y. G. Zhang, and Z. G. Zhang, “Gas sensing by tunable multimode diode laser using correlation spectroscopy,” Appl. Phys. B 93, 671-676 (2008).
    [CrossRef]
  19. X. T. Lou, G. Somesfalean, and Z. G. Zhang, “Gas detection by correlation spectroscopy employing a multimode diode laser,” Appl. Opt. 47, 2392-2398 (2008).
    [CrossRef] [PubMed]
  20. J. A. Silver, “Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimental methods,” Appl. Opt. 31, 707-717 (1992).
    [CrossRef] [PubMed]
  21. J. P. Dakin, M. J. Gunning, P. Chambers, and Z. J. Xin, “Detection of gases by correlation spectroscopy,” Sens. Actuators B 90, 124-131 (2003).
    [CrossRef]
  22. J. Sandsten, P. Wiebring, H. Edner, and S. Svanberg, “Real-time gas-correlation imaging employing thermal background radiation,” Opt. Express 6, 92-103 (2000).
    [CrossRef] [PubMed]
  23. L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. V. Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
    [CrossRef]
  24. C. Roller, A. Fried, J. Walega, P. Weibring, and F. Tittel, “Advances in hardware, system diagnostics software, and acquisition procedures for high performance airborne tunable diode laser measurements of formaldehyde,” Appl. Phys. B 82, 247-264 (2006).
    [CrossRef]
  25. E. Schlosser, J. Wolfrum, L. Hildebrandt, H. Seifert, B. Oser, and V. Ebert, “Diode laser based in situ detection of alkali atoms: development of a new method for determination of residence-time distribution in combustion plants,” Appl. Phys. B 75, 237-247 (2002).
    [CrossRef]
  26. A. G. Berezin, O. V. Ershov, and A. I. Nadezhdinskii, “Trace complex-molecule detection using near-IR diode lasers,” Appl. Phys. B 75, 203-214 (2002).
    [CrossRef]
  27. P. Werle, P. Mazzinghi, F. D'Amato, M. De Rosa, K. Maurer, and F. Slemr, “Signal processing and calibration procedures for in situ diode-laser absorption spectroscopy,” Spectrochim. Acta, Part A 60, 1685-1705 (2004).
    [CrossRef]

2008 (3)

Y. Arita, R. Stevens, and P. Ewart, “Multi-mode absorption spectroscopy of oxygen for measurement of concentration, temperature and pressure,” Appl. Phys. B 90, 205-211 (2008).
[CrossRef]

X. T. Lou, G. Somesfalean, F. Xu, Y. G. Zhang, and Z. G. Zhang, “Gas sensing by tunable multimode diode laser using correlation spectroscopy,” Appl. Phys. B 93, 671-676 (2008).
[CrossRef]

X. T. Lou, G. Somesfalean, and Z. G. Zhang, “Gas detection by correlation spectroscopy employing a multimode diode laser,” Appl. Opt. 47, 2392-2398 (2008).
[CrossRef] [PubMed]

2007 (1)

B. B. Stephens, P. S. Bakwin, P. P. Tans, R. M. Teclaw, and D. D. Baumann, “Application of a differential fuel-cell analyzer for measuring atmospheric oxygen variations,” J. Atmos. Ocean. Technol. 24, 82-94 (2007).
[CrossRef]

2006 (2)

R. P. Kovacich, N. A. Martin, M. G. Clift, C. Stocks, I. Gaskin, and J. Hobby, “Highly accurate measurement of oxygen using a paramagnetic gas sensor,” Meas. Sci. Technol. 17, 1579-1585 (2006).
[CrossRef]

C. Roller, A. Fried, J. Walega, P. Weibring, and F. Tittel, “Advances in hardware, system diagnostics software, and acquisition procedures for high performance airborne tunable diode laser measurements of formaldehyde,” Appl. Phys. B 82, 247-264 (2006).
[CrossRef]

2005 (2)

G. Somesfalean, M. Sjoholm, L. Persson, H. Gao, T. Svensson, and S. Svanberg, “Temporal correlation scheme for spectroscopic gas analysis using multimode diode lasers,” Appl. Phys. Lett. 86, 184102 (2005).
[CrossRef]

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. V. Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

2004 (1)

P. Werle, P. Mazzinghi, F. D'Amato, M. De Rosa, K. Maurer, and F. Slemr, “Signal processing and calibration procedures for in situ diode-laser absorption spectroscopy,” Spectrochim. Acta, Part A 60, 1685-1705 (2004).
[CrossRef]

2003 (2)

J. P. Dakin, M. J. Gunning, P. Chambers, and Z. J. Xin, “Detection of gases by correlation spectroscopy,” Sens. Actuators B 90, 124-131 (2003).
[CrossRef]

R. Ramamoorthy, P. K. Dutta, and S. A. Akbar, “Oxygen sensors: materials, methods, designs and applications,” J. Mater. Sci. 38, 4271-4282 (2003).
[CrossRef]

2002 (2)

E. Schlosser, J. Wolfrum, L. Hildebrandt, H. Seifert, B. Oser, and V. Ebert, “Diode laser based in situ detection of alkali atoms: development of a new method for determination of residence-time distribution in combustion plants,” Appl. Phys. B 75, 237-247 (2002).
[CrossRef]

A. G. Berezin, O. V. Ershov, and A. I. Nadezhdinskii, “Trace complex-molecule detection using near-IR diode lasers,” Appl. Phys. B 75, 203-214 (2002).
[CrossRef]

2001 (2)

P. Vogel and V. Ebert, “Near shot noise detection of oxygen in the A-band with vertical-cavity surface-emitting lasers,” Appl. Phys. B 72, 127-135 (2001).

J. Wang, S. T. Sanders, J. B. Jeffries, and R. K. Hanson, “Oxygen measurements at high pressures with vertical cavity surface-emitting lasers,” Appl. Phys. B 72, 865-872 (2001).
[CrossRef]

2000 (2)

1998 (1)

P. Werle, “A review of recent advances in semiconductor laser based gas monitors,” Spectrochim. Acta, Part A 54, 197-236 (1998).
[CrossRef]

1997 (1)

V. Weldon, J. O. Gorman, J. J. Perez-Camacho, D. McDonald, J. Hegarty, J. C. Connolly, N. A. Morris, R. U. Martinelli, and J. H. Abeles, “Laser diode based oxygen sensing: a comparison of VCSEL and DFB laser diodes emitting in the 762 nm region,” Infrared Phys. Technol. 38, 325-329 (1997).
[CrossRef]

1996 (2)

C. Corsi, M. Gabrysch, and M. Inguscio, “Detection of molecular oxygen at high temperature using a DFB-diode-laser at 761 nm,” Opt. Commun. 128, 35-40 (1996).
[CrossRef]

W. Y. Xu, K. A. Kneas, J. N. Demas, and B. A. DeGraff, “Oxygen sensors based on luminescence quenching of metal complexes: osmium complexes suitable for laser diode excitation,” Anal. Chem. 68, 2605-2609 (1996).
[CrossRef] [PubMed]

1994 (2)

1992 (1)

1990 (1)

1987 (1)

M. Kroll, J. A. McClintock, and O. Ollinger, “Measurement of gaseous oxygen using diode laser spectroscopy,” Appl. Phys. Lett. 51, 1465-1467 (1987).
[CrossRef]

1986 (1)

R. Kocache, “The measurement of oxygen in gas mixtures,” J. Phys. E 19, 401-412 (1986).
[CrossRef]

Abeles, J. H.

V. Weldon, J. O. Gorman, J. J. Perez-Camacho, D. McDonald, J. Hegarty, J. C. Connolly, N. A. Morris, R. U. Martinelli, and J. H. Abeles, “Laser diode based oxygen sensing: a comparison of VCSEL and DFB laser diodes emitting in the 762 nm region,” Infrared Phys. Technol. 38, 325-329 (1997).
[CrossRef]

Akbar, S. A.

R. Ramamoorthy, P. K. Dutta, and S. A. Akbar, “Oxygen sensors: materials, methods, designs and applications,” J. Mater. Sci. 38, 4271-4282 (2003).
[CrossRef]

Arita, Y.

Y. Arita, R. Stevens, and P. Ewart, “Multi-mode absorption spectroscopy of oxygen for measurement of concentration, temperature and pressure,” Appl. Phys. B 90, 205-211 (2008).
[CrossRef]

Auwera, J. V.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. V. Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Bakwin, P. S.

B. B. Stephens, P. S. Bakwin, P. P. Tans, R. M. Teclaw, and D. D. Baumann, “Application of a differential fuel-cell analyzer for measuring atmospheric oxygen variations,” J. Atmos. Ocean. Technol. 24, 82-94 (2007).
[CrossRef]

Barbe, A.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. V. Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Baumann, D. D.

B. B. Stephens, P. S. Bakwin, P. P. Tans, R. M. Teclaw, and D. D. Baumann, “Application of a differential fuel-cell analyzer for measuring atmospheric oxygen variations,” J. Atmos. Ocean. Technol. 24, 82-94 (2007).
[CrossRef]

Benner, D. C.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. V. Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Berezin, A. G.

A. G. Berezin, O. V. Ershov, and A. I. Nadezhdinskii, “Trace complex-molecule detection using near-IR diode lasers,” Appl. Phys. B 75, 203-214 (2002).
[CrossRef]

Birk, M.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. V. Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Brown, L. R.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. V. Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Bruce, D. M.

Carleer, M. R.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. V. Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Carlisle, C. B.

Carr, L. W.

Cassidy, D. T.

Chackerian, C.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. V. Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Chambers, P.

J. P. Dakin, M. J. Gunning, P. Chambers, and Z. J. Xin, “Detection of gases by correlation spectroscopy,” Sens. Actuators B 90, 124-131 (2003).
[CrossRef]

Chance, K.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. V. Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Clift, M. G.

R. P. Kovacich, N. A. Martin, M. G. Clift, C. Stocks, I. Gaskin, and J. Hobby, “Highly accurate measurement of oxygen using a paramagnetic gas sensor,” Meas. Sci. Technol. 17, 1579-1585 (2006).
[CrossRef]

Connolly, J. C.

V. Weldon, J. O. Gorman, J. J. Perez-Camacho, D. McDonald, J. Hegarty, J. C. Connolly, N. A. Morris, R. U. Martinelli, and J. H. Abeles, “Laser diode based oxygen sensing: a comparison of VCSEL and DFB laser diodes emitting in the 762 nm region,” Infrared Phys. Technol. 38, 325-329 (1997).
[CrossRef]

Cooper, D. E.

Corsi, C.

C. Corsi, M. Gabrysch, and M. Inguscio, “Detection of molecular oxygen at high temperature using a DFB-diode-laser at 761 nm,” Opt. Commun. 128, 35-40 (1996).
[CrossRef]

Coudert, L. H.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. V. Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Dakin, J. P.

J. P. Dakin, M. J. Gunning, P. Chambers, and Z. J. Xin, “Detection of gases by correlation spectroscopy,” Sens. Actuators B 90, 124-131 (2003).
[CrossRef]

D'Amato, F.

P. Werle, P. Mazzinghi, F. D'Amato, M. De Rosa, K. Maurer, and F. Slemr, “Signal processing and calibration procedures for in situ diode-laser absorption spectroscopy,” Spectrochim. Acta, Part A 60, 1685-1705 (2004).
[CrossRef]

Dana, V.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. V. Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Day, T.

De Rosa, M.

P. Werle, P. Mazzinghi, F. D'Amato, M. De Rosa, K. Maurer, and F. Slemr, “Signal processing and calibration procedures for in situ diode-laser absorption spectroscopy,” Spectrochim. Acta, Part A 60, 1685-1705 (2004).
[CrossRef]

DeGraff, B. A.

W. Y. Xu, K. A. Kneas, J. N. Demas, and B. A. DeGraff, “Oxygen sensors based on luminescence quenching of metal complexes: osmium complexes suitable for laser diode excitation,” Anal. Chem. 68, 2605-2609 (1996).
[CrossRef] [PubMed]

Demas, J. N.

W. Y. Xu, K. A. Kneas, J. N. Demas, and B. A. DeGraff, “Oxygen sensors based on luminescence quenching of metal complexes: osmium complexes suitable for laser diode excitation,” Anal. Chem. 68, 2605-2609 (1996).
[CrossRef] [PubMed]

Devi, V. M.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. V. Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

di Sopra, F. M.

Dibble, R. W.

Dutta, P. K.

R. Ramamoorthy, P. K. Dutta, and S. A. Akbar, “Oxygen sensors: materials, methods, designs and applications,” J. Mater. Sci. 38, 4271-4282 (2003).
[CrossRef]

Ebert, V.

E. Schlosser, J. Wolfrum, L. Hildebrandt, H. Seifert, B. Oser, and V. Ebert, “Diode laser based in situ detection of alkali atoms: development of a new method for determination of residence-time distribution in combustion plants,” Appl. Phys. B 75, 237-247 (2002).
[CrossRef]

P. Vogel and V. Ebert, “Near shot noise detection of oxygen in the A-band with vertical-cavity surface-emitting lasers,” Appl. Phys. B 72, 127-135 (2001).

Edner, H.

Ershov, O. V.

A. G. Berezin, O. V. Ershov, and A. I. Nadezhdinskii, “Trace complex-molecule detection using near-IR diode lasers,” Appl. Phys. B 75, 203-214 (2002).
[CrossRef]

Ewart, P.

Y. Arita, R. Stevens, and P. Ewart, “Multi-mode absorption spectroscopy of oxygen for measurement of concentration, temperature and pressure,” Appl. Phys. B 90, 205-211 (2008).
[CrossRef]

Flaud, J. M.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. V. Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Fried, A.

C. Roller, A. Fried, J. Walega, P. Weibring, and F. Tittel, “Advances in hardware, system diagnostics software, and acquisition procedures for high performance airborne tunable diode laser measurements of formaldehyde,” Appl. Phys. B 82, 247-264 (2006).
[CrossRef]

Gabrysch, M.

C. Corsi, M. Gabrysch, and M. Inguscio, “Detection of molecular oxygen at high temperature using a DFB-diode-laser at 761 nm,” Opt. Commun. 128, 35-40 (1996).
[CrossRef]

Gamache, R. R.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. V. Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Gao, H.

G. Somesfalean, M. Sjoholm, L. Persson, H. Gao, T. Svensson, and S. Svanberg, “Temporal correlation scheme for spectroscopic gas analysis using multimode diode lasers,” Appl. Phys. Lett. 86, 184102 (2005).
[CrossRef]

Gaskin, I.

R. P. Kovacich, N. A. Martin, M. G. Clift, C. Stocks, I. Gaskin, and J. Hobby, “Highly accurate measurement of oxygen using a paramagnetic gas sensor,” Meas. Sci. Technol. 17, 1579-1585 (2006).
[CrossRef]

Gauggel, H. P.

Goldman, A.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. V. Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Gorman, J. O.

V. Weldon, J. O. Gorman, J. J. Perez-Camacho, D. McDonald, J. Hegarty, J. C. Connolly, N. A. Morris, R. U. Martinelli, and J. H. Abeles, “Laser diode based oxygen sensing: a comparison of VCSEL and DFB laser diodes emitting in the 762 nm region,” Infrared Phys. Technol. 38, 325-329 (1997).
[CrossRef]

Gulden, K.

Gunning, M. J.

J. P. Dakin, M. J. Gunning, P. Chambers, and Z. J. Xin, “Detection of gases by correlation spectroscopy,” Sens. Actuators B 90, 124-131 (2003).
[CrossRef]

Hanson, R. K.

J. Wang, S. T. Sanders, J. B. Jeffries, and R. K. Hanson, “Oxygen measurements at high pressures with vertical cavity surface-emitting lasers,” Appl. Phys. B 72, 865-872 (2001).
[CrossRef]

Hartmann, J. M.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. V. Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Hegarty, J.

V. Weldon, J. O. Gorman, J. J. Perez-Camacho, D. McDonald, J. Hegarty, J. C. Connolly, N. A. Morris, R. U. Martinelli, and J. H. Abeles, “Laser diode based oxygen sensing: a comparison of VCSEL and DFB laser diodes emitting in the 762 nm region,” Infrared Phys. Technol. 38, 325-329 (1997).
[CrossRef]

Hess, M.

Hildebrandt, L.

E. Schlosser, J. Wolfrum, L. Hildebrandt, H. Seifert, B. Oser, and V. Ebert, “Diode laser based in situ detection of alkali atoms: development of a new method for determination of residence-time distribution in combustion plants,” Appl. Phys. B 75, 237-247 (2002).
[CrossRef]

Hobby, J.

R. P. Kovacich, N. A. Martin, M. G. Clift, C. Stocks, I. Gaskin, and J. Hobby, “Highly accurate measurement of oxygen using a paramagnetic gas sensor,” Meas. Sci. Technol. 17, 1579-1585 (2006).
[CrossRef]

Hovel, R.

Inguscio, M.

C. Corsi, M. Gabrysch, and M. Inguscio, “Detection of molecular oxygen at high temperature using a DFB-diode-laser at 761 nm,” Opt. Commun. 128, 35-40 (1996).
[CrossRef]

Jacquemart, D.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. V. Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Jeffries, J. B.

J. Wang, S. T. Sanders, J. B. Jeffries, and R. K. Hanson, “Oxygen measurements at high pressures with vertical cavity surface-emitting lasers,” Appl. Phys. B 72, 865-872 (2001).
[CrossRef]

Jucks, K. W.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. V. Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Kneas, K. A.

W. Y. Xu, K. A. Kneas, J. N. Demas, and B. A. DeGraff, “Oxygen sensors based on luminescence quenching of metal complexes: osmium complexes suitable for laser diode excitation,” Anal. Chem. 68, 2605-2609 (1996).
[CrossRef] [PubMed]

Kocache, R.

R. Kocache, “The measurement of oxygen in gas mixtures,” J. Phys. E 19, 401-412 (1986).
[CrossRef]

Kovacich, R. P.

R. P. Kovacich, N. A. Martin, M. G. Clift, C. Stocks, I. Gaskin, and J. Hobby, “Highly accurate measurement of oxygen using a paramagnetic gas sensor,” Meas. Sci. Technol. 17, 1579-1585 (2006).
[CrossRef]

Kroll, M.

M. Kroll, J. A. McClintock, and O. Ollinger, “Measurement of gaseous oxygen using diode laser spectroscopy,” Appl. Phys. Lett. 51, 1465-1467 (1987).
[CrossRef]

Lou, X. T.

X. T. Lou, G. Somesfalean, F. Xu, Y. G. Zhang, and Z. G. Zhang, “Gas sensing by tunable multimode diode laser using correlation spectroscopy,” Appl. Phys. B 93, 671-676 (2008).
[CrossRef]

X. T. Lou, G. Somesfalean, and Z. G. Zhang, “Gas detection by correlation spectroscopy employing a multimode diode laser,” Appl. Opt. 47, 2392-2398 (2008).
[CrossRef] [PubMed]

Maki, A. G.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. V. Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Mandin, J. Y.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. V. Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Martin, N. A.

R. P. Kovacich, N. A. Martin, M. G. Clift, C. Stocks, I. Gaskin, and J. Hobby, “Highly accurate measurement of oxygen using a paramagnetic gas sensor,” Meas. Sci. Technol. 17, 1579-1585 (2006).
[CrossRef]

Martinelli, R. U.

V. Weldon, J. O. Gorman, J. J. Perez-Camacho, D. McDonald, J. Hegarty, J. C. Connolly, N. A. Morris, R. U. Martinelli, and J. H. Abeles, “Laser diode based oxygen sensing: a comparison of VCSEL and DFB laser diodes emitting in the 762 nm region,” Infrared Phys. Technol. 38, 325-329 (1997).
[CrossRef]

H. Riris, C. B. Carlisle, L. W. Carr, D. E. Cooper, R. U. Martinelli, and R. J. Menna, “Design of an open-path near-infrared diode-laser sensor: application to oxygen, water, and carbon-dioxide vapor detection,” Appl. Opt. 33, 7059-7066 (1994).
[CrossRef] [PubMed]

Massie, S. T.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. V. Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Maurer, K.

P. Werle, P. Mazzinghi, F. D'Amato, M. De Rosa, K. Maurer, and F. Slemr, “Signal processing and calibration procedures for in situ diode-laser absorption spectroscopy,” Spectrochim. Acta, Part A 60, 1685-1705 (2004).
[CrossRef]

Mazzinghi, P.

P. Werle, P. Mazzinghi, F. D'Amato, M. De Rosa, K. Maurer, and F. Slemr, “Signal processing and calibration procedures for in situ diode-laser absorption spectroscopy,” Spectrochim. Acta, Part A 60, 1685-1705 (2004).
[CrossRef]

McClintock, J. A.

M. Kroll, J. A. McClintock, and O. Ollinger, “Measurement of gaseous oxygen using diode laser spectroscopy,” Appl. Phys. Lett. 51, 1465-1467 (1987).
[CrossRef]

McDonald, D.

V. Weldon, J. O. Gorman, J. J. Perez-Camacho, D. McDonald, J. Hegarty, J. C. Connolly, N. A. Morris, R. U. Martinelli, and J. H. Abeles, “Laser diode based oxygen sensing: a comparison of VCSEL and DFB laser diodes emitting in the 762 nm region,” Infrared Phys. Technol. 38, 325-329 (1997).
[CrossRef]

Menna, R. J.

Morris, N. A.

V. Weldon, J. O. Gorman, J. J. Perez-Camacho, D. McDonald, J. Hegarty, J. C. Connolly, N. A. Morris, R. U. Martinelli, and J. H. Abeles, “Laser diode based oxygen sensing: a comparison of VCSEL and DFB laser diodes emitting in the 762 nm region,” Infrared Phys. Technol. 38, 325-329 (1997).
[CrossRef]

Moser, M.

Nadezhdinskii, A. I.

A. G. Berezin, O. V. Ershov, and A. I. Nadezhdinskii, “Trace complex-molecule detection using near-IR diode lasers,” Appl. Phys. B 75, 203-214 (2002).
[CrossRef]

Nguyen, Q. V.

Ollinger, O.

M. Kroll, J. A. McClintock, and O. Ollinger, “Measurement of gaseous oxygen using diode laser spectroscopy,” Appl. Phys. Lett. 51, 1465-1467 (1987).
[CrossRef]

Orphal, J.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. V. Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Oser, B.

E. Schlosser, J. Wolfrum, L. Hildebrandt, H. Seifert, B. Oser, and V. Ebert, “Diode laser based in situ detection of alkali atoms: development of a new method for determination of residence-time distribution in combustion plants,” Appl. Phys. B 75, 237-247 (2002).
[CrossRef]

Perez-Camacho, J. J.

V. Weldon, J. O. Gorman, J. J. Perez-Camacho, D. McDonald, J. Hegarty, J. C. Connolly, N. A. Morris, R. U. Martinelli, and J. H. Abeles, “Laser diode based oxygen sensing: a comparison of VCSEL and DFB laser diodes emitting in the 762 nm region,” Infrared Phys. Technol. 38, 325-329 (1997).
[CrossRef]

Perrin, A.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. V. Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Persson, L.

G. Somesfalean, M. Sjoholm, L. Persson, H. Gao, T. Svensson, and S. Svanberg, “Temporal correlation scheme for spectroscopic gas analysis using multimode diode lasers,” Appl. Phys. Lett. 86, 184102 (2005).
[CrossRef]

Ramamoorthy, R.

R. Ramamoorthy, P. K. Dutta, and S. A. Akbar, “Oxygen sensors: materials, methods, designs and applications,” J. Mater. Sci. 38, 4271-4282 (2003).
[CrossRef]

Rinsland, C. P.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. V. Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Riris, H.

Roller, C.

C. Roller, A. Fried, J. Walega, P. Weibring, and F. Tittel, “Advances in hardware, system diagnostics software, and acquisition procedures for high performance airborne tunable diode laser measurements of formaldehyde,” Appl. Phys. B 82, 247-264 (2006).
[CrossRef]

Rothman, L. S.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. V. Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Sanders, S. T.

J. Wang, S. T. Sanders, J. B. Jeffries, and R. K. Hanson, “Oxygen measurements at high pressures with vertical cavity surface-emitting lasers,” Appl. Phys. B 72, 865-872 (2001).
[CrossRef]

Sandsten, J.

Schlosser, E.

E. Schlosser, J. Wolfrum, L. Hildebrandt, H. Seifert, B. Oser, and V. Ebert, “Diode laser based in situ detection of alkali atoms: development of a new method for determination of residence-time distribution in combustion plants,” Appl. Phys. B 75, 237-247 (2002).
[CrossRef]

Seifert, H.

E. Schlosser, J. Wolfrum, L. Hildebrandt, H. Seifert, B. Oser, and V. Ebert, “Diode laser based in situ detection of alkali atoms: development of a new method for determination of residence-time distribution in combustion plants,” Appl. Phys. B 75, 237-247 (2002).
[CrossRef]

Silver, J. A.

Sjoholm, M.

G. Somesfalean, M. Sjoholm, L. Persson, H. Gao, T. Svensson, and S. Svanberg, “Temporal correlation scheme for spectroscopic gas analysis using multimode diode lasers,” Appl. Phys. Lett. 86, 184102 (2005).
[CrossRef]

Slemr, F.

P. Werle, P. Mazzinghi, F. D'Amato, M. De Rosa, K. Maurer, and F. Slemr, “Signal processing and calibration procedures for in situ diode-laser absorption spectroscopy,” Spectrochim. Acta, Part A 60, 1685-1705 (2004).
[CrossRef]

Smith, M. A. H.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. V. Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Somesfalean, G.

X. T. Lou, G. Somesfalean, and Z. G. Zhang, “Gas detection by correlation spectroscopy employing a multimode diode laser,” Appl. Opt. 47, 2392-2398 (2008).
[CrossRef] [PubMed]

X. T. Lou, G. Somesfalean, F. Xu, Y. G. Zhang, and Z. G. Zhang, “Gas sensing by tunable multimode diode laser using correlation spectroscopy,” Appl. Phys. B 93, 671-676 (2008).
[CrossRef]

G. Somesfalean, M. Sjoholm, L. Persson, H. Gao, T. Svensson, and S. Svanberg, “Temporal correlation scheme for spectroscopic gas analysis using multimode diode lasers,” Appl. Phys. Lett. 86, 184102 (2005).
[CrossRef]

Stephens, B. B.

B. B. Stephens, P. S. Bakwin, P. P. Tans, R. M. Teclaw, and D. D. Baumann, “Application of a differential fuel-cell analyzer for measuring atmospheric oxygen variations,” J. Atmos. Ocean. Technol. 24, 82-94 (2007).
[CrossRef]

Stevens, R.

Y. Arita, R. Stevens, and P. Ewart, “Multi-mode absorption spectroscopy of oxygen for measurement of concentration, temperature and pressure,” Appl. Phys. B 90, 205-211 (2008).
[CrossRef]

Stocks, C.

R. P. Kovacich, N. A. Martin, M. G. Clift, C. Stocks, I. Gaskin, and J. Hobby, “Highly accurate measurement of oxygen using a paramagnetic gas sensor,” Meas. Sci. Technol. 17, 1579-1585 (2006).
[CrossRef]

Svanberg, S.

G. Somesfalean, M. Sjoholm, L. Persson, H. Gao, T. Svensson, and S. Svanberg, “Temporal correlation scheme for spectroscopic gas analysis using multimode diode lasers,” Appl. Phys. Lett. 86, 184102 (2005).
[CrossRef]

J. Sandsten, P. Wiebring, H. Edner, and S. Svanberg, “Real-time gas-correlation imaging employing thermal background radiation,” Opt. Express 6, 92-103 (2000).
[CrossRef] [PubMed]

Svensson, T.

G. Somesfalean, M. Sjoholm, L. Persson, H. Gao, T. Svensson, and S. Svanberg, “Temporal correlation scheme for spectroscopic gas analysis using multimode diode lasers,” Appl. Phys. Lett. 86, 184102 (2005).
[CrossRef]

Tans, P. P.

B. B. Stephens, P. S. Bakwin, P. P. Tans, R. M. Teclaw, and D. D. Baumann, “Application of a differential fuel-cell analyzer for measuring atmospheric oxygen variations,” J. Atmos. Ocean. Technol. 24, 82-94 (2007).
[CrossRef]

Teclaw, R. M.

B. B. Stephens, P. S. Bakwin, P. P. Tans, R. M. Teclaw, and D. D. Baumann, “Application of a differential fuel-cell analyzer for measuring atmospheric oxygen variations,” J. Atmos. Ocean. Technol. 24, 82-94 (2007).
[CrossRef]

Tennyson, J.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. V. Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Tittel, F.

C. Roller, A. Fried, J. Walega, P. Weibring, and F. Tittel, “Advances in hardware, system diagnostics software, and acquisition procedures for high performance airborne tunable diode laser measurements of formaldehyde,” Appl. Phys. B 82, 247-264 (2006).
[CrossRef]

Tolchenov, R. N.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. V. Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Toth, R. A.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. V. Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Varanasi, P.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. V. Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Vogel, P.

P. Vogel and V. Ebert, “Near shot noise detection of oxygen in the A-band with vertical-cavity surface-emitting lasers,” Appl. Phys. B 72, 127-135 (2001).

Wagner, G.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. V. Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Walega, J.

C. Roller, A. Fried, J. Walega, P. Weibring, and F. Tittel, “Advances in hardware, system diagnostics software, and acquisition procedures for high performance airborne tunable diode laser measurements of formaldehyde,” Appl. Phys. B 82, 247-264 (2006).
[CrossRef]

Wang, J.

J. Wang, S. T. Sanders, J. B. Jeffries, and R. K. Hanson, “Oxygen measurements at high pressures with vertical cavity surface-emitting lasers,” Appl. Phys. B 72, 865-872 (2001).
[CrossRef]

Weibring, P.

C. Roller, A. Fried, J. Walega, P. Weibring, and F. Tittel, “Advances in hardware, system diagnostics software, and acquisition procedures for high performance airborne tunable diode laser measurements of formaldehyde,” Appl. Phys. B 82, 247-264 (2006).
[CrossRef]

Weldon, V.

V. Weldon, J. O. Gorman, J. J. Perez-Camacho, D. McDonald, J. Hegarty, J. C. Connolly, N. A. Morris, R. U. Martinelli, and J. H. Abeles, “Laser diode based oxygen sensing: a comparison of VCSEL and DFB laser diodes emitting in the 762 nm region,” Infrared Phys. Technol. 38, 325-329 (1997).
[CrossRef]

Werle, P.

P. Werle, P. Mazzinghi, F. D'Amato, M. De Rosa, K. Maurer, and F. Slemr, “Signal processing and calibration procedures for in situ diode-laser absorption spectroscopy,” Spectrochim. Acta, Part A 60, 1685-1705 (2004).
[CrossRef]

P. Werle, “A review of recent advances in semiconductor laser based gas monitors,” Spectrochim. Acta, Part A 54, 197-236 (1998).
[CrossRef]

Wiebring, P.

Wolfrum, J.

E. Schlosser, J. Wolfrum, L. Hildebrandt, H. Seifert, B. Oser, and V. Ebert, “Diode laser based in situ detection of alkali atoms: development of a new method for determination of residence-time distribution in combustion plants,” Appl. Phys. B 75, 237-247 (2002).
[CrossRef]

Xin, Z. J.

J. P. Dakin, M. J. Gunning, P. Chambers, and Z. J. Xin, “Detection of gases by correlation spectroscopy,” Sens. Actuators B 90, 124-131 (2003).
[CrossRef]

Xu, F.

X. T. Lou, G. Somesfalean, F. Xu, Y. G. Zhang, and Z. G. Zhang, “Gas sensing by tunable multimode diode laser using correlation spectroscopy,” Appl. Phys. B 93, 671-676 (2008).
[CrossRef]

Xu, W. Y.

W. Y. Xu, K. A. Kneas, J. N. Demas, and B. A. DeGraff, “Oxygen sensors based on luminescence quenching of metal complexes: osmium complexes suitable for laser diode excitation,” Anal. Chem. 68, 2605-2609 (1996).
[CrossRef] [PubMed]

Zappe, H. P.

Zhang, Y. G.

X. T. Lou, G. Somesfalean, F. Xu, Y. G. Zhang, and Z. G. Zhang, “Gas sensing by tunable multimode diode laser using correlation spectroscopy,” Appl. Phys. B 93, 671-676 (2008).
[CrossRef]

Zhang, Z. G.

X. T. Lou, G. Somesfalean, F. Xu, Y. G. Zhang, and Z. G. Zhang, “Gas sensing by tunable multimode diode laser using correlation spectroscopy,” Appl. Phys. B 93, 671-676 (2008).
[CrossRef]

X. T. Lou, G. Somesfalean, and Z. G. Zhang, “Gas detection by correlation spectroscopy employing a multimode diode laser,” Appl. Opt. 47, 2392-2398 (2008).
[CrossRef] [PubMed]

Anal. Chem. (1)

W. Y. Xu, K. A. Kneas, J. N. Demas, and B. A. DeGraff, “Oxygen sensors based on luminescence quenching of metal complexes: osmium complexes suitable for laser diode excitation,” Anal. Chem. 68, 2605-2609 (1996).
[CrossRef] [PubMed]

Appl. Opt. (5)

Appl. Phys. B (7)

X. T. Lou, G. Somesfalean, F. Xu, Y. G. Zhang, and Z. G. Zhang, “Gas sensing by tunable multimode diode laser using correlation spectroscopy,” Appl. Phys. B 93, 671-676 (2008).
[CrossRef]

Y. Arita, R. Stevens, and P. Ewart, “Multi-mode absorption spectroscopy of oxygen for measurement of concentration, temperature and pressure,” Appl. Phys. B 90, 205-211 (2008).
[CrossRef]

P. Vogel and V. Ebert, “Near shot noise detection of oxygen in the A-band with vertical-cavity surface-emitting lasers,” Appl. Phys. B 72, 127-135 (2001).

J. Wang, S. T. Sanders, J. B. Jeffries, and R. K. Hanson, “Oxygen measurements at high pressures with vertical cavity surface-emitting lasers,” Appl. Phys. B 72, 865-872 (2001).
[CrossRef]

C. Roller, A. Fried, J. Walega, P. Weibring, and F. Tittel, “Advances in hardware, system diagnostics software, and acquisition procedures for high performance airborne tunable diode laser measurements of formaldehyde,” Appl. Phys. B 82, 247-264 (2006).
[CrossRef]

E. Schlosser, J. Wolfrum, L. Hildebrandt, H. Seifert, B. Oser, and V. Ebert, “Diode laser based in situ detection of alkali atoms: development of a new method for determination of residence-time distribution in combustion plants,” Appl. Phys. B 75, 237-247 (2002).
[CrossRef]

A. G. Berezin, O. V. Ershov, and A. I. Nadezhdinskii, “Trace complex-molecule detection using near-IR diode lasers,” Appl. Phys. B 75, 203-214 (2002).
[CrossRef]

Appl. Phys. Lett. (2)

G. Somesfalean, M. Sjoholm, L. Persson, H. Gao, T. Svensson, and S. Svanberg, “Temporal correlation scheme for spectroscopic gas analysis using multimode diode lasers,” Appl. Phys. Lett. 86, 184102 (2005).
[CrossRef]

M. Kroll, J. A. McClintock, and O. Ollinger, “Measurement of gaseous oxygen using diode laser spectroscopy,” Appl. Phys. Lett. 51, 1465-1467 (1987).
[CrossRef]

Infrared Phys. Technol. (1)

V. Weldon, J. O. Gorman, J. J. Perez-Camacho, D. McDonald, J. Hegarty, J. C. Connolly, N. A. Morris, R. U. Martinelli, and J. H. Abeles, “Laser diode based oxygen sensing: a comparison of VCSEL and DFB laser diodes emitting in the 762 nm region,” Infrared Phys. Technol. 38, 325-329 (1997).
[CrossRef]

J. Atmos. Ocean. Technol. (1)

B. B. Stephens, P. S. Bakwin, P. P. Tans, R. M. Teclaw, and D. D. Baumann, “Application of a differential fuel-cell analyzer for measuring atmospheric oxygen variations,” J. Atmos. Ocean. Technol. 24, 82-94 (2007).
[CrossRef]

J. Mater. Sci. (1)

R. Ramamoorthy, P. K. Dutta, and S. A. Akbar, “Oxygen sensors: materials, methods, designs and applications,” J. Mater. Sci. 38, 4271-4282 (2003).
[CrossRef]

J. Phys. E (1)

R. Kocache, “The measurement of oxygen in gas mixtures,” J. Phys. E 19, 401-412 (1986).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. V. Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Meas. Sci. Technol. (1)

R. P. Kovacich, N. A. Martin, M. G. Clift, C. Stocks, I. Gaskin, and J. Hobby, “Highly accurate measurement of oxygen using a paramagnetic gas sensor,” Meas. Sci. Technol. 17, 1579-1585 (2006).
[CrossRef]

Opt. Commun. (1)

C. Corsi, M. Gabrysch, and M. Inguscio, “Detection of molecular oxygen at high temperature using a DFB-diode-laser at 761 nm,” Opt. Commun. 128, 35-40 (1996).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Sens. Actuators B (1)

J. P. Dakin, M. J. Gunning, P. Chambers, and Z. J. Xin, “Detection of gases by correlation spectroscopy,” Sens. Actuators B 90, 124-131 (2003).
[CrossRef]

Spectrochim. Acta, Part A (2)

P. Werle, “A review of recent advances in semiconductor laser based gas monitors,” Spectrochim. Acta, Part A 54, 197-236 (1998).
[CrossRef]

P. Werle, P. Mazzinghi, F. D'Amato, M. De Rosa, K. Maurer, and F. Slemr, “Signal processing and calibration procedures for in situ diode-laser absorption spectroscopy,” Spectrochim. Acta, Part A 60, 1685-1705 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic diagram of the MDL-based COSPEC-based oxygen sensor.

Fig. 2
Fig. 2

(a) HITRAN-calculated line strength for the oxygen A band. (b) Multimode emission spectrum of the DL.

Fig. 3
Fig. 3

Example set of the normalized sample and reference WMS 2 f signals in a ramp scan with optical path lengths of 30 and 200 cm , respectively.

Fig. 4
Fig. 4

Plots of successive 10 s measurements within 9 min with a sample optical path length of (a)  30 cm and (b)  3 cm . The sensitivity was derived from the standard deviation of the 50 measurements to be (a)  700 ppm m and (b)  600 ppm m .

Fig. 5
Fig. 5

Scatter plot between the evaluated and predicted PICs with the optical path length of the sample arm ranging from 30 to 270 cm . A measurement accuracy of 2.2% was evaluated from the fitted slope of 0.978 ± 0.002 . R 2 = 0.999 indicates a high measurement linearity.

Fig. 6
Fig. 6

System performance evaluation using another two MDLs. (a), (b) The sensitivities were evaluated to be 500 and 1000 ppm m , respectively. (c), (d) The accuracies were evaluated to be 1.9% and 1.1%, respectively. Both linearities were nearly perfect ( R 2 = 0.999 ).

Fig. 7
Fig. 7

Sensitivity of the TDLAS oxygen sensor evaluated using two methods. (a) Fifty successive 2 s averaging measurements with an optical path length of 30 cm , yielding a sensitivity of 200 ppm m corresponding to a minimum detectable absorbance of 1.7 × 10 5 . (b) WMS 2 f signal (48 averages in 2 s ) for the measurement on 2 cm of ambient air, indicating a sensitivity of 400 ppm m for SNR = 1 .

Fig. 8
Fig. 8

Accuracy and linearity evaluation of the TDLAS oxygen sensor by the same procedure as for the MDL-based COSPEC measurements. An accuracy of 1.4% ( slope = 0.986 ± 0.002 ) with a high linearity ( R 2 = 0.999 ) was evaluated.

Fig. 9
Fig. 9

Stability evaluation of the TDLAS oxygen sensor by measurements on 100 cm of ambient air every 10 min during approximatley 140 min . The integration time for each measurement was 2 s . The zero-time WMS 2 f signal was used as the calibration signal, while all the following signals were treated as sample signals. The drift was obviously intensified at the time point of 70 min due to the draught caused by opening the door of our laboratory.

Fig. 10
Fig. 10

Recovery performance evaluation of the TDLAS oxygen sensor by simulating an accident of current driver power down for measuring 100 cm of ambient air. The measurement was performed every second without average. A WMS 2 f signal obtained 120 s after repowering the current driver was used for calibration. The recovery times for three different power-down time intervals ( 1 s , 1 min , and 8 h ) were evaluated to be approximately 55, 70, and 90 s , respectively.

Metrics