Abstract

We propose and optimize a hybrid erbium-doped fiber amplifier/fiber Raman amplifier (EDFA/FRA). A large number of parameters of a wide-band hybrid amplifier consisting of an erbium-doped fiber amplifier (EDFA) and a fiber Raman amplifier (FRA) have been optimized using an effective and fast global optimization method called particle swarm optimization. Two types of hybrid EDFA/FRA with six- and 10-pumped FRAs have been optimized. A large number of variables affect the hybrid EDFA/FRA performance, thus we need a global optimization method to be able to deal with these variables. Particle swarm optimization helps us to find optimum parameters of a hybrid EDFA/FRA and reduce the gain spectrum variations to 2.91 and 2.03dB for the six and 10 pumped FRAs, respectively. The optimum design supports the amplification of 60 signal channels in the wavelength range of 1529.21627.1nm for a wavelength-division multiplexing system.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. H. Ahmed, M. Shalaby, and F. M. Misk, “Combined erbium and Raman amplification at 1.55 ?m in submarine links using backward pumping at 1.48 ?m,” Pure Appl. Opt. 7, 659-666(1998).
    [CrossRef]
  2. J. D. A. Castanon, I. O. Nasieva, S. K. Turitsyn, N. Brochier, and E. Pincemin, “Optimal span length in high-speed transmission systems with hybrid Raman-erbium-doped fiber amplification,” Opt. Lett. 30, 23-25 (2005).
    [CrossRef]
  3. M. N. Islam, Raman Amplifiers for Telecommunications I & II (Springer, 2004).
  4. H. Masuda and S. Kawai, “Wide-band and gain-flattened hybrid fiber amplifier consisting of an EDFA and a multiwavelength pumped Raman amplifier,” IEEE Photon. Technol. Lett. 11, 647-649 (1999).
    [CrossRef]
  5. A. Carena, V. Curri, and P. Poggiolini, “On the optimization of hybrid Raman/erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 13, 1170-1172 (2001).
    [CrossRef]
  6. Z. Li, C. L. Zhao, Y. J. Wen, C. Lu, Y. Wang, and J. Chen, “Optimization of Raman/EDFA hybrid amplifier based on dual-order stimulated Raman scattering using a single-pump,” Opt. Commun. 265, 655-658 (2006).
    [CrossRef]
  7. A. Mowla and N. Granpayeh, “A novel design approach for erbium-doped fiber amplifiers by particle swarm optimization,” Prog. Electromagn. Res. 3, 103-118 (2008).
    [CrossRef]
  8. A. Mowla and N. Granpayeh, “Design of a flat gain multi-pumped distributed fiber Raman amplifier by particle swarm optimization,” J. Opt. Soc. Am. A 253059-3066(2008).
  9. C. Cheng, Z. Xu, and C. Sui, “A novel design method: A genetic algorithm applied to an erbium-doped fiber amplifier,” Opt. Commun. 227, 371-382 (2003).
    [CrossRef]
  10. X. Liu and Y. Li, “Optimizing the bandwidth and noise performance of distributed multi-pump Raman amplifiers,” Opt. Commun. 230, 425-431 (2004).
    [CrossRef]
  11. C. R Giles and E. Desurvire, “Modeling erbium-doped fiber amplifiers,” J. Lightwave Technol. 9, 271-283 (1991).
    [CrossRef]
  12. J. Bromage, “Raman amplification for fiber communications systems,” J. Lightwave Technol. 22, 79-93 (2004).
    [CrossRef]
  13. X. Liu and B. Lee, “A fast and stable method for Raman amplifier propagation equations,” Opt. Express 11, 2163-2176(2003).
    [CrossRef] [PubMed]
  14. X. Liu and B. Lee, “Effective shooting algorithm and its application to fiber amplifiers,” Opt. Express 11, 1452-1461(2003).
    [CrossRef] [PubMed]
  15. C. Headley and G. P. Agrawal, Raman Amplification in Fiber Optical Communication Systems (Elsevier, 2005), pp. 33-163.
  16. W. J. Miniscalco, “Erbium-doped glasses for fiber amplifiers at 1500 nm,” J. Lightwave Technol. 9, 234-250 (1991).
    [CrossRef]
  17. R. C. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,” in Proceedings of the 6th International Symposium on Micro Machine and Human Science (IEEE, 1995), pp. 39-43
    [CrossRef]
  18. J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” Proc. IEEE Int. Conf. on Neural Networks (IEEE, 1995), pp. 1942-1948.
  19. A. P. Engelbrecht, Fundamentals of Computational Swarm Intelligence (Wiley, 2005), Chap. 16.

2008 (1)

A. Mowla and N. Granpayeh, “A novel design approach for erbium-doped fiber amplifiers by particle swarm optimization,” Prog. Electromagn. Res. 3, 103-118 (2008).
[CrossRef]

2006 (1)

Z. Li, C. L. Zhao, Y. J. Wen, C. Lu, Y. Wang, and J. Chen, “Optimization of Raman/EDFA hybrid amplifier based on dual-order stimulated Raman scattering using a single-pump,” Opt. Commun. 265, 655-658 (2006).
[CrossRef]

2005 (3)

A. P. Engelbrecht, Fundamentals of Computational Swarm Intelligence (Wiley, 2005), Chap. 16.

C. Headley and G. P. Agrawal, Raman Amplification in Fiber Optical Communication Systems (Elsevier, 2005), pp. 33-163.

J. D. A. Castanon, I. O. Nasieva, S. K. Turitsyn, N. Brochier, and E. Pincemin, “Optimal span length in high-speed transmission systems with hybrid Raman-erbium-doped fiber amplification,” Opt. Lett. 30, 23-25 (2005).
[CrossRef]

2004 (3)

M. N. Islam, Raman Amplifiers for Telecommunications I & II (Springer, 2004).

X. Liu and Y. Li, “Optimizing the bandwidth and noise performance of distributed multi-pump Raman amplifiers,” Opt. Commun. 230, 425-431 (2004).
[CrossRef]

J. Bromage, “Raman amplification for fiber communications systems,” J. Lightwave Technol. 22, 79-93 (2004).
[CrossRef]

2003 (3)

2001 (1)

A. Carena, V. Curri, and P. Poggiolini, “On the optimization of hybrid Raman/erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 13, 1170-1172 (2001).
[CrossRef]

1999 (1)

H. Masuda and S. Kawai, “Wide-band and gain-flattened hybrid fiber amplifier consisting of an EDFA and a multiwavelength pumped Raman amplifier,” IEEE Photon. Technol. Lett. 11, 647-649 (1999).
[CrossRef]

1998 (1)

M. H. Ahmed, M. Shalaby, and F. M. Misk, “Combined erbium and Raman amplification at 1.55 ?m in submarine links using backward pumping at 1.48 ?m,” Pure Appl. Opt. 7, 659-666(1998).
[CrossRef]

1995 (1)

R. C. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,” in Proceedings of the 6th International Symposium on Micro Machine and Human Science (IEEE, 1995), pp. 39-43
[CrossRef]

1991 (2)

W. J. Miniscalco, “Erbium-doped glasses for fiber amplifiers at 1500 nm,” J. Lightwave Technol. 9, 234-250 (1991).
[CrossRef]

C. R Giles and E. Desurvire, “Modeling erbium-doped fiber amplifiers,” J. Lightwave Technol. 9, 271-283 (1991).
[CrossRef]

Agrawal, G. P.

C. Headley and G. P. Agrawal, Raman Amplification in Fiber Optical Communication Systems (Elsevier, 2005), pp. 33-163.

Ahmed, M. H.

M. H. Ahmed, M. Shalaby, and F. M. Misk, “Combined erbium and Raman amplification at 1.55 ?m in submarine links using backward pumping at 1.48 ?m,” Pure Appl. Opt. 7, 659-666(1998).
[CrossRef]

Brochier, N.

Bromage, J.

Carena, A.

A. Carena, V. Curri, and P. Poggiolini, “On the optimization of hybrid Raman/erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 13, 1170-1172 (2001).
[CrossRef]

Castanon, J. D. A.

Chen, J.

Z. Li, C. L. Zhao, Y. J. Wen, C. Lu, Y. Wang, and J. Chen, “Optimization of Raman/EDFA hybrid amplifier based on dual-order stimulated Raman scattering using a single-pump,” Opt. Commun. 265, 655-658 (2006).
[CrossRef]

Cheng, C.

C. Cheng, Z. Xu, and C. Sui, “A novel design method: A genetic algorithm applied to an erbium-doped fiber amplifier,” Opt. Commun. 227, 371-382 (2003).
[CrossRef]

Curri, V.

A. Carena, V. Curri, and P. Poggiolini, “On the optimization of hybrid Raman/erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 13, 1170-1172 (2001).
[CrossRef]

Desurvire, E.

C. R Giles and E. Desurvire, “Modeling erbium-doped fiber amplifiers,” J. Lightwave Technol. 9, 271-283 (1991).
[CrossRef]

Eberhart, R. C.

J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” Proc. IEEE Int. Conf. on Neural Networks (IEEE, 1995), pp. 1942-1948.

R. C. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,” in Proceedings of the 6th International Symposium on Micro Machine and Human Science (IEEE, 1995), pp. 39-43
[CrossRef]

Engelbrecht, A. P.

A. P. Engelbrecht, Fundamentals of Computational Swarm Intelligence (Wiley, 2005), Chap. 16.

Giles, C. R

C. R Giles and E. Desurvire, “Modeling erbium-doped fiber amplifiers,” J. Lightwave Technol. 9, 271-283 (1991).
[CrossRef]

Granpayeh, N.

A. Mowla and N. Granpayeh, “A novel design approach for erbium-doped fiber amplifiers by particle swarm optimization,” Prog. Electromagn. Res. 3, 103-118 (2008).
[CrossRef]

A. Mowla and N. Granpayeh, “Design of a flat gain multi-pumped distributed fiber Raman amplifier by particle swarm optimization,” J. Opt. Soc. Am. A 253059-3066(2008).

Headley, C.

C. Headley and G. P. Agrawal, Raman Amplification in Fiber Optical Communication Systems (Elsevier, 2005), pp. 33-163.

Islam, M. N

M. N. Islam, Raman Amplifiers for Telecommunications I & II (Springer, 2004).

Kawai, S.

H. Masuda and S. Kawai, “Wide-band and gain-flattened hybrid fiber amplifier consisting of an EDFA and a multiwavelength pumped Raman amplifier,” IEEE Photon. Technol. Lett. 11, 647-649 (1999).
[CrossRef]

Kennedy, J.

J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” Proc. IEEE Int. Conf. on Neural Networks (IEEE, 1995), pp. 1942-1948.

R. C. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,” in Proceedings of the 6th International Symposium on Micro Machine and Human Science (IEEE, 1995), pp. 39-43
[CrossRef]

Lee, B.

Li, Y.

X. Liu and Y. Li, “Optimizing the bandwidth and noise performance of distributed multi-pump Raman amplifiers,” Opt. Commun. 230, 425-431 (2004).
[CrossRef]

Li, Z.

Z. Li, C. L. Zhao, Y. J. Wen, C. Lu, Y. Wang, and J. Chen, “Optimization of Raman/EDFA hybrid amplifier based on dual-order stimulated Raman scattering using a single-pump,” Opt. Commun. 265, 655-658 (2006).
[CrossRef]

Liu, X.

Lu, C.

Z. Li, C. L. Zhao, Y. J. Wen, C. Lu, Y. Wang, and J. Chen, “Optimization of Raman/EDFA hybrid amplifier based on dual-order stimulated Raman scattering using a single-pump,” Opt. Commun. 265, 655-658 (2006).
[CrossRef]

Masuda, H.

H. Masuda and S. Kawai, “Wide-band and gain-flattened hybrid fiber amplifier consisting of an EDFA and a multiwavelength pumped Raman amplifier,” IEEE Photon. Technol. Lett. 11, 647-649 (1999).
[CrossRef]

Miniscalco, W. J.

W. J. Miniscalco, “Erbium-doped glasses for fiber amplifiers at 1500 nm,” J. Lightwave Technol. 9, 234-250 (1991).
[CrossRef]

Misk, F. M.

M. H. Ahmed, M. Shalaby, and F. M. Misk, “Combined erbium and Raman amplification at 1.55 ?m in submarine links using backward pumping at 1.48 ?m,” Pure Appl. Opt. 7, 659-666(1998).
[CrossRef]

Mowla, A.

A. Mowla and N. Granpayeh, “A novel design approach for erbium-doped fiber amplifiers by particle swarm optimization,” Prog. Electromagn. Res. 3, 103-118 (2008).
[CrossRef]

A. Mowla and N. Granpayeh, “Design of a flat gain multi-pumped distributed fiber Raman amplifier by particle swarm optimization,” J. Opt. Soc. Am. A 253059-3066(2008).

Nasieva, I. O.

Pincemin, E.

Poggiolini, P.

A. Carena, V. Curri, and P. Poggiolini, “On the optimization of hybrid Raman/erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 13, 1170-1172 (2001).
[CrossRef]

Shalaby, M.

M. H. Ahmed, M. Shalaby, and F. M. Misk, “Combined erbium and Raman amplification at 1.55 ?m in submarine links using backward pumping at 1.48 ?m,” Pure Appl. Opt. 7, 659-666(1998).
[CrossRef]

Sui, C.

C. Cheng, Z. Xu, and C. Sui, “A novel design method: A genetic algorithm applied to an erbium-doped fiber amplifier,” Opt. Commun. 227, 371-382 (2003).
[CrossRef]

Turitsyn, S. K.

Wang, Y.

Z. Li, C. L. Zhao, Y. J. Wen, C. Lu, Y. Wang, and J. Chen, “Optimization of Raman/EDFA hybrid amplifier based on dual-order stimulated Raman scattering using a single-pump,” Opt. Commun. 265, 655-658 (2006).
[CrossRef]

Wen, Y. J.

Z. Li, C. L. Zhao, Y. J. Wen, C. Lu, Y. Wang, and J. Chen, “Optimization of Raman/EDFA hybrid amplifier based on dual-order stimulated Raman scattering using a single-pump,” Opt. Commun. 265, 655-658 (2006).
[CrossRef]

Xu, Z.

C. Cheng, Z. Xu, and C. Sui, “A novel design method: A genetic algorithm applied to an erbium-doped fiber amplifier,” Opt. Commun. 227, 371-382 (2003).
[CrossRef]

Zhao, C. L.

Z. Li, C. L. Zhao, Y. J. Wen, C. Lu, Y. Wang, and J. Chen, “Optimization of Raman/EDFA hybrid amplifier based on dual-order stimulated Raman scattering using a single-pump,” Opt. Commun. 265, 655-658 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

H. Masuda and S. Kawai, “Wide-band and gain-flattened hybrid fiber amplifier consisting of an EDFA and a multiwavelength pumped Raman amplifier,” IEEE Photon. Technol. Lett. 11, 647-649 (1999).
[CrossRef]

A. Carena, V. Curri, and P. Poggiolini, “On the optimization of hybrid Raman/erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 13, 1170-1172 (2001).
[CrossRef]

J. Lightwave Technol. (3)

C. R Giles and E. Desurvire, “Modeling erbium-doped fiber amplifiers,” J. Lightwave Technol. 9, 271-283 (1991).
[CrossRef]

J. Bromage, “Raman amplification for fiber communications systems,” J. Lightwave Technol. 22, 79-93 (2004).
[CrossRef]

W. J. Miniscalco, “Erbium-doped glasses for fiber amplifiers at 1500 nm,” J. Lightwave Technol. 9, 234-250 (1991).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Commun. (3)

C. Cheng, Z. Xu, and C. Sui, “A novel design method: A genetic algorithm applied to an erbium-doped fiber amplifier,” Opt. Commun. 227, 371-382 (2003).
[CrossRef]

X. Liu and Y. Li, “Optimizing the bandwidth and noise performance of distributed multi-pump Raman amplifiers,” Opt. Commun. 230, 425-431 (2004).
[CrossRef]

Z. Li, C. L. Zhao, Y. J. Wen, C. Lu, Y. Wang, and J. Chen, “Optimization of Raman/EDFA hybrid amplifier based on dual-order stimulated Raman scattering using a single-pump,” Opt. Commun. 265, 655-658 (2006).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Prog. Electromagn. Res. (1)

A. Mowla and N. Granpayeh, “A novel design approach for erbium-doped fiber amplifiers by particle swarm optimization,” Prog. Electromagn. Res. 3, 103-118 (2008).
[CrossRef]

Pure Appl. Opt. (1)

M. H. Ahmed, M. Shalaby, and F. M. Misk, “Combined erbium and Raman amplification at 1.55 ?m in submarine links using backward pumping at 1.48 ?m,” Pure Appl. Opt. 7, 659-666(1998).
[CrossRef]

Other (5)

M. N. Islam, Raman Amplifiers for Telecommunications I & II (Springer, 2004).

C. Headley and G. P. Agrawal, Raman Amplification in Fiber Optical Communication Systems (Elsevier, 2005), pp. 33-163.

R. C. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,” in Proceedings of the 6th International Symposium on Micro Machine and Human Science (IEEE, 1995), pp. 39-43
[CrossRef]

J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” Proc. IEEE Int. Conf. on Neural Networks (IEEE, 1995), pp. 1942-1948.

A. P. Engelbrecht, Fundamentals of Computational Swarm Intelligence (Wiley, 2005), Chap. 16.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Configurations of hybrid EDFA/FRA with a six- or 10-backward-pumped FRA.

Fig. 2
Fig. 2

Characteristics of the fibers. (a) DCF, SMF, and DSF attenuation spectra, (b) Raman gain efficiency of DSF, and (c) emission and absorption cross sections of Er + 3 doped in Al/P-silica SMF.

Fig. 3
Fig. 3

Optimum signal gain spectra of hybrid EDFA/FRAs with six- and 10-pumped FRAs.

Fig. 4
Fig. 4

Comparison of the time consumption of PSO and the GA.

Tables (5)

Tables Icon

Table 1 Characteristics of Hybrid EDFA/FRA Fiber Modules

Tables Icon

Table 2 EDFA and FRA Parameters Used in Modeling

Tables Icon

Table 3 Characteristics of the WDM Transmission System

Tables Icon

Table 4 Variables of the Optimization and Their Ranges

Tables Icon

Table 5 Values of the Parameters and Characteristics of Hybrid EDFA/FRA with 6- or 10-Backward-Pumped FRA Optimized by PSO

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

υ i ( k ) = φ υ i ( k 1 ) + ρ 1 C f ( x Pbest i x i ( k ) ) + ρ 2 C f ( x Gbest i x i ( k ) ) ,
φ = 1 0.7 1 k 1 k max ,
x i ( k ) = x i ( k 1 ) + υ i ( k ) , ( k = k + 1 ) .
F obj = Max | 10 × log ( P s k ( L ) P s k ( 0 ) ) | ,

Metrics