Abstract

A hexagonal microlens array directly fabricated on an indium tin oxide glass substrate by the combination of direct laser writing and inductively coupled plasma etching is demonstrated to enhance the outcoupling efficiency of the organic light emitting devices, which can avoid the loss of photons and the mechanical and thermal deformations at the glass/microlenses interface. An atomic force microscope measurement indicates the contour of the fabricated hexagonal microlens is nearly an ideal part of a hemisphere. From the comparison with the operating OLED without a microlens array, the outcoupling efficiency is enhanced more than 40% with the hexagonal microlens array on the glass substrate, and the enhanced emission from the active area of the device with the hexagonal microlens array at the viewing angles from 0° to 40° can clearly be seen.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. H. Lu and J. C. Sturm, “Optimization of external coupling and light emission in organic light-emitting devices: modeling and experiment,” J. Appl. Phys. 91, 595-604 (2002).
    [CrossRef]
  2. Y. Sun, N. C. Giebink, H. Kanno, B. W. Ma, M. E. Thompson, and S. R. Forrest, “Management of singlet and triplet excitons for efficient white organic light-emitting devices,” Nature 440, 908-912 (2006).
    [CrossRef] [PubMed]
  3. S. Moller and S. R. Forrest, “Improved light outcoupling in organic light emitting diodes employing ordered microlens arrays,” J. Appl. Phys. 91, 3324-3327 (2002).
    [CrossRef]
  4. H. Peng, Y. L. Ho, X.-J. Yu, M. Wong, and H.-S. Kwok, “Coupling efficiency enhancement in organic light-emitting devices using microlens array theory and experiment,” J. Display Technol. 1, 278-282 (2005).
    [CrossRef]
  5. Y. Sun and S. R. Forrest, “Organic light emitting devices with enhanced outcoupling via microlenses fabricated by imprint lithography,” J. Appl. Phys. 100, 073106 (2006).
    [CrossRef]
  6. J. Lim, S. S. Oh, D. Y. Kim, S. H. Cho, I. T. Kim, S. H. Han, H. Takezoe, E. H. Choi, G. S. Cho, Y. H. Seo, S. O. Kang, and B. Park, “Enhanced outcoupling factor of microcavity organic light-emitting devices with irregular microlens array,” Opt. Express 14, 6564-6571 (2006).
    [CrossRef] [PubMed]
  7. M.-K. Wei, I.-L. Su, Y.-J. Chen, M. Chang, H.-Y. Ling, and T.-C. Wu, “The influence of a microlens array on planar organic light-emitting devices,” J. Micromech. Microeng. 16, 368-374 (2006).
    [CrossRef]
  8. H.-Y. Lin, J.-H. Lee, M.-K. Wei, C.-L. Dai, C.-F. Wu, Y.-H. Ho, H.-Y. Lin, and T.-C. Wu, “Improvement of the outcoupling efficiency of an organic light-emitting device by attaching microstructured films,” Opt. Commun. 275, 464-469 (2007).
    [CrossRef]
  9. M.-K. Wei, J.-H. Lee, H.-Y. Lin, Y.-H. Ho, K.-Y. Chen, C.-C. Lin, C.-F. Wu, H.-Y. Lin, J.-H. Tsai, and T.-C. Wu, “Efficiency improvement and spectral shift of an organic light-emitting device by attaching a hexagon-based microlens array,” J. Opt. A: Pure Appl. Opt. 10, 055302 (2008).
    [CrossRef]
  10. H.-Y. Lin, Y.-H. Ho, J.-H. Lee, K.-Y. Chen, J.-H. Fang, S.-C. Hsu, M.-K. Wei, H.-Y. Lin, J.-H. Tsai, and T.-C. Wu, “Patterned microlens array for efficiency improvement of small-pixelated organic light-emitting devices,” Opt. Express 16, 11044-11051(2008).
    [CrossRef] [PubMed]
  11. C. P. Lin, H. Yang, and C. K. Chao, “Hexagonal microlens array modeling and fabrication using a thermal reflow process,” J. Micromech. Microeng. 13, 775-781 (2003).
    [CrossRef]
  12. H. Yang, C. K. Chao, M. K. Wei, and C. P. Lin, “High fill-factor microlens array mold insert fabrication using a thermal reflow process,” J. Micromech. Microeng. 14, 1197-1204(2004).
    [CrossRef]
  13. T. Hessler, M. Rossi, R. E. Kunz, and M. T. Gale, “Analysis and optimization of fabrication of continuous-relief diffractive optical elements,” Appl. Opt. 37, 4069-4079 (1998).
    [CrossRef]
  14. E. Gogolides and P. Vauvert, “Etching of SiO2 and Si in fluorocarbon plasma: a detailed surface model accounting for etching and deposition,” J. Appl. Phys. 88, 5570-5584 (2000).
    [CrossRef]
  15. F. Gaboriau, M.-C. Fernandez-Peignon, G. Cartry, and Ch. Cardinaud, “Etching mechanisms of Si and SiO2 in inductively coupled fluorocarbon plasmas: correlation between plasma species and surface etching,” J. Vac. Sci. Technol. A 23, 226-233 (2005).
    [CrossRef]
  16. V. Raballand, G. Cartry, and C. Cardinaud, “A model for Si, SiCH, SiO2, SiOCH, and porous SiOCH etch rate calculation in inductively coupled fluorocarbon plasma with a pulsed bias: importance of the fluorocarbon layer,” J. Appl. Phys. 102, 063306 (2007).
    [CrossRef]

2008

M.-K. Wei, J.-H. Lee, H.-Y. Lin, Y.-H. Ho, K.-Y. Chen, C.-C. Lin, C.-F. Wu, H.-Y. Lin, J.-H. Tsai, and T.-C. Wu, “Efficiency improvement and spectral shift of an organic light-emitting device by attaching a hexagon-based microlens array,” J. Opt. A: Pure Appl. Opt. 10, 055302 (2008).
[CrossRef]

H.-Y. Lin, Y.-H. Ho, J.-H. Lee, K.-Y. Chen, J.-H. Fang, S.-C. Hsu, M.-K. Wei, H.-Y. Lin, J.-H. Tsai, and T.-C. Wu, “Patterned microlens array for efficiency improvement of small-pixelated organic light-emitting devices,” Opt. Express 16, 11044-11051(2008).
[CrossRef] [PubMed]

2007

H.-Y. Lin, J.-H. Lee, M.-K. Wei, C.-L. Dai, C.-F. Wu, Y.-H. Ho, H.-Y. Lin, and T.-C. Wu, “Improvement of the outcoupling efficiency of an organic light-emitting device by attaching microstructured films,” Opt. Commun. 275, 464-469 (2007).
[CrossRef]

V. Raballand, G. Cartry, and C. Cardinaud, “A model for Si, SiCH, SiO2, SiOCH, and porous SiOCH etch rate calculation in inductively coupled fluorocarbon plasma with a pulsed bias: importance of the fluorocarbon layer,” J. Appl. Phys. 102, 063306 (2007).
[CrossRef]

2006

J. Lim, S. S. Oh, D. Y. Kim, S. H. Cho, I. T. Kim, S. H. Han, H. Takezoe, E. H. Choi, G. S. Cho, Y. H. Seo, S. O. Kang, and B. Park, “Enhanced outcoupling factor of microcavity organic light-emitting devices with irregular microlens array,” Opt. Express 14, 6564-6571 (2006).
[CrossRef] [PubMed]

Y. Sun and S. R. Forrest, “Organic light emitting devices with enhanced outcoupling via microlenses fabricated by imprint lithography,” J. Appl. Phys. 100, 073106 (2006).
[CrossRef]

Y. Sun, N. C. Giebink, H. Kanno, B. W. Ma, M. E. Thompson, and S. R. Forrest, “Management of singlet and triplet excitons for efficient white organic light-emitting devices,” Nature 440, 908-912 (2006).
[CrossRef] [PubMed]

M.-K. Wei, I.-L. Su, Y.-J. Chen, M. Chang, H.-Y. Ling, and T.-C. Wu, “The influence of a microlens array on planar organic light-emitting devices,” J. Micromech. Microeng. 16, 368-374 (2006).
[CrossRef]

2005

H. Peng, Y. L. Ho, X.-J. Yu, M. Wong, and H.-S. Kwok, “Coupling efficiency enhancement in organic light-emitting devices using microlens array theory and experiment,” J. Display Technol. 1, 278-282 (2005).
[CrossRef]

F. Gaboriau, M.-C. Fernandez-Peignon, G. Cartry, and Ch. Cardinaud, “Etching mechanisms of Si and SiO2 in inductively coupled fluorocarbon plasmas: correlation between plasma species and surface etching,” J. Vac. Sci. Technol. A 23, 226-233 (2005).
[CrossRef]

2004

H. Yang, C. K. Chao, M. K. Wei, and C. P. Lin, “High fill-factor microlens array mold insert fabrication using a thermal reflow process,” J. Micromech. Microeng. 14, 1197-1204(2004).
[CrossRef]

2003

C. P. Lin, H. Yang, and C. K. Chao, “Hexagonal microlens array modeling and fabrication using a thermal reflow process,” J. Micromech. Microeng. 13, 775-781 (2003).
[CrossRef]

2002

M. H. Lu and J. C. Sturm, “Optimization of external coupling and light emission in organic light-emitting devices: modeling and experiment,” J. Appl. Phys. 91, 595-604 (2002).
[CrossRef]

S. Moller and S. R. Forrest, “Improved light outcoupling in organic light emitting diodes employing ordered microlens arrays,” J. Appl. Phys. 91, 3324-3327 (2002).
[CrossRef]

2000

E. Gogolides and P. Vauvert, “Etching of SiO2 and Si in fluorocarbon plasma: a detailed surface model accounting for etching and deposition,” J. Appl. Phys. 88, 5570-5584 (2000).
[CrossRef]

1998

Cardinaud, C.

V. Raballand, G. Cartry, and C. Cardinaud, “A model for Si, SiCH, SiO2, SiOCH, and porous SiOCH etch rate calculation in inductively coupled fluorocarbon plasma with a pulsed bias: importance of the fluorocarbon layer,” J. Appl. Phys. 102, 063306 (2007).
[CrossRef]

Cardinaud, Ch.

F. Gaboriau, M.-C. Fernandez-Peignon, G. Cartry, and Ch. Cardinaud, “Etching mechanisms of Si and SiO2 in inductively coupled fluorocarbon plasmas: correlation between plasma species and surface etching,” J. Vac. Sci. Technol. A 23, 226-233 (2005).
[CrossRef]

Cartry, G.

V. Raballand, G. Cartry, and C. Cardinaud, “A model for Si, SiCH, SiO2, SiOCH, and porous SiOCH etch rate calculation in inductively coupled fluorocarbon plasma with a pulsed bias: importance of the fluorocarbon layer,” J. Appl. Phys. 102, 063306 (2007).
[CrossRef]

F. Gaboriau, M.-C. Fernandez-Peignon, G. Cartry, and Ch. Cardinaud, “Etching mechanisms of Si and SiO2 in inductively coupled fluorocarbon plasmas: correlation between plasma species and surface etching,” J. Vac. Sci. Technol. A 23, 226-233 (2005).
[CrossRef]

Chang, M.

M.-K. Wei, I.-L. Su, Y.-J. Chen, M. Chang, H.-Y. Ling, and T.-C. Wu, “The influence of a microlens array on planar organic light-emitting devices,” J. Micromech. Microeng. 16, 368-374 (2006).
[CrossRef]

Chao, C. K.

H. Yang, C. K. Chao, M. K. Wei, and C. P. Lin, “High fill-factor microlens array mold insert fabrication using a thermal reflow process,” J. Micromech. Microeng. 14, 1197-1204(2004).
[CrossRef]

C. P. Lin, H. Yang, and C. K. Chao, “Hexagonal microlens array modeling and fabrication using a thermal reflow process,” J. Micromech. Microeng. 13, 775-781 (2003).
[CrossRef]

Chen, K.-Y.

M.-K. Wei, J.-H. Lee, H.-Y. Lin, Y.-H. Ho, K.-Y. Chen, C.-C. Lin, C.-F. Wu, H.-Y. Lin, J.-H. Tsai, and T.-C. Wu, “Efficiency improvement and spectral shift of an organic light-emitting device by attaching a hexagon-based microlens array,” J. Opt. A: Pure Appl. Opt. 10, 055302 (2008).
[CrossRef]

H.-Y. Lin, Y.-H. Ho, J.-H. Lee, K.-Y. Chen, J.-H. Fang, S.-C. Hsu, M.-K. Wei, H.-Y. Lin, J.-H. Tsai, and T.-C. Wu, “Patterned microlens array for efficiency improvement of small-pixelated organic light-emitting devices,” Opt. Express 16, 11044-11051(2008).
[CrossRef] [PubMed]

Chen, Y.-J.

M.-K. Wei, I.-L. Su, Y.-J. Chen, M. Chang, H.-Y. Ling, and T.-C. Wu, “The influence of a microlens array on planar organic light-emitting devices,” J. Micromech. Microeng. 16, 368-374 (2006).
[CrossRef]

Cho, G. S.

Cho, S. H.

Choi, E. H.

Dai, C.-L.

H.-Y. Lin, J.-H. Lee, M.-K. Wei, C.-L. Dai, C.-F. Wu, Y.-H. Ho, H.-Y. Lin, and T.-C. Wu, “Improvement of the outcoupling efficiency of an organic light-emitting device by attaching microstructured films,” Opt. Commun. 275, 464-469 (2007).
[CrossRef]

Fang, J.-H.

Fernandez-Peignon, M.-C.

F. Gaboriau, M.-C. Fernandez-Peignon, G. Cartry, and Ch. Cardinaud, “Etching mechanisms of Si and SiO2 in inductively coupled fluorocarbon plasmas: correlation between plasma species and surface etching,” J. Vac. Sci. Technol. A 23, 226-233 (2005).
[CrossRef]

Forrest, S. R.

Y. Sun and S. R. Forrest, “Organic light emitting devices with enhanced outcoupling via microlenses fabricated by imprint lithography,” J. Appl. Phys. 100, 073106 (2006).
[CrossRef]

Y. Sun, N. C. Giebink, H. Kanno, B. W. Ma, M. E. Thompson, and S. R. Forrest, “Management of singlet and triplet excitons for efficient white organic light-emitting devices,” Nature 440, 908-912 (2006).
[CrossRef] [PubMed]

S. Moller and S. R. Forrest, “Improved light outcoupling in organic light emitting diodes employing ordered microlens arrays,” J. Appl. Phys. 91, 3324-3327 (2002).
[CrossRef]

Gaboriau, F.

F. Gaboriau, M.-C. Fernandez-Peignon, G. Cartry, and Ch. Cardinaud, “Etching mechanisms of Si and SiO2 in inductively coupled fluorocarbon plasmas: correlation between plasma species and surface etching,” J. Vac. Sci. Technol. A 23, 226-233 (2005).
[CrossRef]

Gale, M. T.

Giebink, N. C.

Y. Sun, N. C. Giebink, H. Kanno, B. W. Ma, M. E. Thompson, and S. R. Forrest, “Management of singlet and triplet excitons for efficient white organic light-emitting devices,” Nature 440, 908-912 (2006).
[CrossRef] [PubMed]

Gogolides, E.

E. Gogolides and P. Vauvert, “Etching of SiO2 and Si in fluorocarbon plasma: a detailed surface model accounting for etching and deposition,” J. Appl. Phys. 88, 5570-5584 (2000).
[CrossRef]

Han, S. H.

Hessler, T.

Ho, Y. L.

Ho, Y.-H.

H.-Y. Lin, Y.-H. Ho, J.-H. Lee, K.-Y. Chen, J.-H. Fang, S.-C. Hsu, M.-K. Wei, H.-Y. Lin, J.-H. Tsai, and T.-C. Wu, “Patterned microlens array for efficiency improvement of small-pixelated organic light-emitting devices,” Opt. Express 16, 11044-11051(2008).
[CrossRef] [PubMed]

M.-K. Wei, J.-H. Lee, H.-Y. Lin, Y.-H. Ho, K.-Y. Chen, C.-C. Lin, C.-F. Wu, H.-Y. Lin, J.-H. Tsai, and T.-C. Wu, “Efficiency improvement and spectral shift of an organic light-emitting device by attaching a hexagon-based microlens array,” J. Opt. A: Pure Appl. Opt. 10, 055302 (2008).
[CrossRef]

H.-Y. Lin, J.-H. Lee, M.-K. Wei, C.-L. Dai, C.-F. Wu, Y.-H. Ho, H.-Y. Lin, and T.-C. Wu, “Improvement of the outcoupling efficiency of an organic light-emitting device by attaching microstructured films,” Opt. Commun. 275, 464-469 (2007).
[CrossRef]

Hsu, S.-C.

Kang, S. O.

Kanno, H.

Y. Sun, N. C. Giebink, H. Kanno, B. W. Ma, M. E. Thompson, and S. R. Forrest, “Management of singlet and triplet excitons for efficient white organic light-emitting devices,” Nature 440, 908-912 (2006).
[CrossRef] [PubMed]

Kim, D. Y.

Kim, I. T.

Kunz, R. E.

Kwok, H.-S.

Lee, J.-H.

H.-Y. Lin, Y.-H. Ho, J.-H. Lee, K.-Y. Chen, J.-H. Fang, S.-C. Hsu, M.-K. Wei, H.-Y. Lin, J.-H. Tsai, and T.-C. Wu, “Patterned microlens array for efficiency improvement of small-pixelated organic light-emitting devices,” Opt. Express 16, 11044-11051(2008).
[CrossRef] [PubMed]

M.-K. Wei, J.-H. Lee, H.-Y. Lin, Y.-H. Ho, K.-Y. Chen, C.-C. Lin, C.-F. Wu, H.-Y. Lin, J.-H. Tsai, and T.-C. Wu, “Efficiency improvement and spectral shift of an organic light-emitting device by attaching a hexagon-based microlens array,” J. Opt. A: Pure Appl. Opt. 10, 055302 (2008).
[CrossRef]

H.-Y. Lin, J.-H. Lee, M.-K. Wei, C.-L. Dai, C.-F. Wu, Y.-H. Ho, H.-Y. Lin, and T.-C. Wu, “Improvement of the outcoupling efficiency of an organic light-emitting device by attaching microstructured films,” Opt. Commun. 275, 464-469 (2007).
[CrossRef]

Lim, J.

Lin, C. P.

H. Yang, C. K. Chao, M. K. Wei, and C. P. Lin, “High fill-factor microlens array mold insert fabrication using a thermal reflow process,” J. Micromech. Microeng. 14, 1197-1204(2004).
[CrossRef]

C. P. Lin, H. Yang, and C. K. Chao, “Hexagonal microlens array modeling and fabrication using a thermal reflow process,” J. Micromech. Microeng. 13, 775-781 (2003).
[CrossRef]

Lin, C.-C.

M.-K. Wei, J.-H. Lee, H.-Y. Lin, Y.-H. Ho, K.-Y. Chen, C.-C. Lin, C.-F. Wu, H.-Y. Lin, J.-H. Tsai, and T.-C. Wu, “Efficiency improvement and spectral shift of an organic light-emitting device by attaching a hexagon-based microlens array,” J. Opt. A: Pure Appl. Opt. 10, 055302 (2008).
[CrossRef]

Lin, H.-Y.

M.-K. Wei, J.-H. Lee, H.-Y. Lin, Y.-H. Ho, K.-Y. Chen, C.-C. Lin, C.-F. Wu, H.-Y. Lin, J.-H. Tsai, and T.-C. Wu, “Efficiency improvement and spectral shift of an organic light-emitting device by attaching a hexagon-based microlens array,” J. Opt. A: Pure Appl. Opt. 10, 055302 (2008).
[CrossRef]

M.-K. Wei, J.-H. Lee, H.-Y. Lin, Y.-H. Ho, K.-Y. Chen, C.-C. Lin, C.-F. Wu, H.-Y. Lin, J.-H. Tsai, and T.-C. Wu, “Efficiency improvement and spectral shift of an organic light-emitting device by attaching a hexagon-based microlens array,” J. Opt. A: Pure Appl. Opt. 10, 055302 (2008).
[CrossRef]

H.-Y. Lin, Y.-H. Ho, J.-H. Lee, K.-Y. Chen, J.-H. Fang, S.-C. Hsu, M.-K. Wei, H.-Y. Lin, J.-H. Tsai, and T.-C. Wu, “Patterned microlens array for efficiency improvement of small-pixelated organic light-emitting devices,” Opt. Express 16, 11044-11051(2008).
[CrossRef] [PubMed]

H.-Y. Lin, Y.-H. Ho, J.-H. Lee, K.-Y. Chen, J.-H. Fang, S.-C. Hsu, M.-K. Wei, H.-Y. Lin, J.-H. Tsai, and T.-C. Wu, “Patterned microlens array for efficiency improvement of small-pixelated organic light-emitting devices,” Opt. Express 16, 11044-11051(2008).
[CrossRef] [PubMed]

H.-Y. Lin, J.-H. Lee, M.-K. Wei, C.-L. Dai, C.-F. Wu, Y.-H. Ho, H.-Y. Lin, and T.-C. Wu, “Improvement of the outcoupling efficiency of an organic light-emitting device by attaching microstructured films,” Opt. Commun. 275, 464-469 (2007).
[CrossRef]

H.-Y. Lin, J.-H. Lee, M.-K. Wei, C.-L. Dai, C.-F. Wu, Y.-H. Ho, H.-Y. Lin, and T.-C. Wu, “Improvement of the outcoupling efficiency of an organic light-emitting device by attaching microstructured films,” Opt. Commun. 275, 464-469 (2007).
[CrossRef]

Ling, H.-Y.

M.-K. Wei, I.-L. Su, Y.-J. Chen, M. Chang, H.-Y. Ling, and T.-C. Wu, “The influence of a microlens array on planar organic light-emitting devices,” J. Micromech. Microeng. 16, 368-374 (2006).
[CrossRef]

Lu, M. H.

M. H. Lu and J. C. Sturm, “Optimization of external coupling and light emission in organic light-emitting devices: modeling and experiment,” J. Appl. Phys. 91, 595-604 (2002).
[CrossRef]

Ma, B. W.

Y. Sun, N. C. Giebink, H. Kanno, B. W. Ma, M. E. Thompson, and S. R. Forrest, “Management of singlet and triplet excitons for efficient white organic light-emitting devices,” Nature 440, 908-912 (2006).
[CrossRef] [PubMed]

Moller, S.

S. Moller and S. R. Forrest, “Improved light outcoupling in organic light emitting diodes employing ordered microlens arrays,” J. Appl. Phys. 91, 3324-3327 (2002).
[CrossRef]

Oh, S. S.

Park, B.

Peng, H.

Raballand, V.

V. Raballand, G. Cartry, and C. Cardinaud, “A model for Si, SiCH, SiO2, SiOCH, and porous SiOCH etch rate calculation in inductively coupled fluorocarbon plasma with a pulsed bias: importance of the fluorocarbon layer,” J. Appl. Phys. 102, 063306 (2007).
[CrossRef]

Rossi, M.

Seo, Y. H.

Sturm, J. C.

M. H. Lu and J. C. Sturm, “Optimization of external coupling and light emission in organic light-emitting devices: modeling and experiment,” J. Appl. Phys. 91, 595-604 (2002).
[CrossRef]

Su, I.-L.

M.-K. Wei, I.-L. Su, Y.-J. Chen, M. Chang, H.-Y. Ling, and T.-C. Wu, “The influence of a microlens array on planar organic light-emitting devices,” J. Micromech. Microeng. 16, 368-374 (2006).
[CrossRef]

Sun, Y.

Y. Sun and S. R. Forrest, “Organic light emitting devices with enhanced outcoupling via microlenses fabricated by imprint lithography,” J. Appl. Phys. 100, 073106 (2006).
[CrossRef]

Y. Sun, N. C. Giebink, H. Kanno, B. W. Ma, M. E. Thompson, and S. R. Forrest, “Management of singlet and triplet excitons for efficient white organic light-emitting devices,” Nature 440, 908-912 (2006).
[CrossRef] [PubMed]

Takezoe, H.

Thompson, M. E.

Y. Sun, N. C. Giebink, H. Kanno, B. W. Ma, M. E. Thompson, and S. R. Forrest, “Management of singlet and triplet excitons for efficient white organic light-emitting devices,” Nature 440, 908-912 (2006).
[CrossRef] [PubMed]

Tsai, J.-H.

H.-Y. Lin, Y.-H. Ho, J.-H. Lee, K.-Y. Chen, J.-H. Fang, S.-C. Hsu, M.-K. Wei, H.-Y. Lin, J.-H. Tsai, and T.-C. Wu, “Patterned microlens array for efficiency improvement of small-pixelated organic light-emitting devices,” Opt. Express 16, 11044-11051(2008).
[CrossRef] [PubMed]

M.-K. Wei, J.-H. Lee, H.-Y. Lin, Y.-H. Ho, K.-Y. Chen, C.-C. Lin, C.-F. Wu, H.-Y. Lin, J.-H. Tsai, and T.-C. Wu, “Efficiency improvement and spectral shift of an organic light-emitting device by attaching a hexagon-based microlens array,” J. Opt. A: Pure Appl. Opt. 10, 055302 (2008).
[CrossRef]

Vauvert, P.

E. Gogolides and P. Vauvert, “Etching of SiO2 and Si in fluorocarbon plasma: a detailed surface model accounting for etching and deposition,” J. Appl. Phys. 88, 5570-5584 (2000).
[CrossRef]

Wei, M. K.

H. Yang, C. K. Chao, M. K. Wei, and C. P. Lin, “High fill-factor microlens array mold insert fabrication using a thermal reflow process,” J. Micromech. Microeng. 14, 1197-1204(2004).
[CrossRef]

Wei, M.-K.

M.-K. Wei, J.-H. Lee, H.-Y. Lin, Y.-H. Ho, K.-Y. Chen, C.-C. Lin, C.-F. Wu, H.-Y. Lin, J.-H. Tsai, and T.-C. Wu, “Efficiency improvement and spectral shift of an organic light-emitting device by attaching a hexagon-based microlens array,” J. Opt. A: Pure Appl. Opt. 10, 055302 (2008).
[CrossRef]

H.-Y. Lin, Y.-H. Ho, J.-H. Lee, K.-Y. Chen, J.-H. Fang, S.-C. Hsu, M.-K. Wei, H.-Y. Lin, J.-H. Tsai, and T.-C. Wu, “Patterned microlens array for efficiency improvement of small-pixelated organic light-emitting devices,” Opt. Express 16, 11044-11051(2008).
[CrossRef] [PubMed]

H.-Y. Lin, J.-H. Lee, M.-K. Wei, C.-L. Dai, C.-F. Wu, Y.-H. Ho, H.-Y. Lin, and T.-C. Wu, “Improvement of the outcoupling efficiency of an organic light-emitting device by attaching microstructured films,” Opt. Commun. 275, 464-469 (2007).
[CrossRef]

M.-K. Wei, I.-L. Su, Y.-J. Chen, M. Chang, H.-Y. Ling, and T.-C. Wu, “The influence of a microlens array on planar organic light-emitting devices,” J. Micromech. Microeng. 16, 368-374 (2006).
[CrossRef]

Wong, M.

Wu, C.-F.

M.-K. Wei, J.-H. Lee, H.-Y. Lin, Y.-H. Ho, K.-Y. Chen, C.-C. Lin, C.-F. Wu, H.-Y. Lin, J.-H. Tsai, and T.-C. Wu, “Efficiency improvement and spectral shift of an organic light-emitting device by attaching a hexagon-based microlens array,” J. Opt. A: Pure Appl. Opt. 10, 055302 (2008).
[CrossRef]

H.-Y. Lin, J.-H. Lee, M.-K. Wei, C.-L. Dai, C.-F. Wu, Y.-H. Ho, H.-Y. Lin, and T.-C. Wu, “Improvement of the outcoupling efficiency of an organic light-emitting device by attaching microstructured films,” Opt. Commun. 275, 464-469 (2007).
[CrossRef]

Wu, T.-C.

M.-K. Wei, J.-H. Lee, H.-Y. Lin, Y.-H. Ho, K.-Y. Chen, C.-C. Lin, C.-F. Wu, H.-Y. Lin, J.-H. Tsai, and T.-C. Wu, “Efficiency improvement and spectral shift of an organic light-emitting device by attaching a hexagon-based microlens array,” J. Opt. A: Pure Appl. Opt. 10, 055302 (2008).
[CrossRef]

H.-Y. Lin, Y.-H. Ho, J.-H. Lee, K.-Y. Chen, J.-H. Fang, S.-C. Hsu, M.-K. Wei, H.-Y. Lin, J.-H. Tsai, and T.-C. Wu, “Patterned microlens array for efficiency improvement of small-pixelated organic light-emitting devices,” Opt. Express 16, 11044-11051(2008).
[CrossRef] [PubMed]

H.-Y. Lin, J.-H. Lee, M.-K. Wei, C.-L. Dai, C.-F. Wu, Y.-H. Ho, H.-Y. Lin, and T.-C. Wu, “Improvement of the outcoupling efficiency of an organic light-emitting device by attaching microstructured films,” Opt. Commun. 275, 464-469 (2007).
[CrossRef]

M.-K. Wei, I.-L. Su, Y.-J. Chen, M. Chang, H.-Y. Ling, and T.-C. Wu, “The influence of a microlens array on planar organic light-emitting devices,” J. Micromech. Microeng. 16, 368-374 (2006).
[CrossRef]

Yang, H.

H. Yang, C. K. Chao, M. K. Wei, and C. P. Lin, “High fill-factor microlens array mold insert fabrication using a thermal reflow process,” J. Micromech. Microeng. 14, 1197-1204(2004).
[CrossRef]

C. P. Lin, H. Yang, and C. K. Chao, “Hexagonal microlens array modeling and fabrication using a thermal reflow process,” J. Micromech. Microeng. 13, 775-781 (2003).
[CrossRef]

Yu, X.-J.

Appl. Opt.

J. Appl. Phys.

V. Raballand, G. Cartry, and C. Cardinaud, “A model for Si, SiCH, SiO2, SiOCH, and porous SiOCH etch rate calculation in inductively coupled fluorocarbon plasma with a pulsed bias: importance of the fluorocarbon layer,” J. Appl. Phys. 102, 063306 (2007).
[CrossRef]

M. H. Lu and J. C. Sturm, “Optimization of external coupling and light emission in organic light-emitting devices: modeling and experiment,” J. Appl. Phys. 91, 595-604 (2002).
[CrossRef]

S. Moller and S. R. Forrest, “Improved light outcoupling in organic light emitting diodes employing ordered microlens arrays,” J. Appl. Phys. 91, 3324-3327 (2002).
[CrossRef]

Y. Sun and S. R. Forrest, “Organic light emitting devices with enhanced outcoupling via microlenses fabricated by imprint lithography,” J. Appl. Phys. 100, 073106 (2006).
[CrossRef]

E. Gogolides and P. Vauvert, “Etching of SiO2 and Si in fluorocarbon plasma: a detailed surface model accounting for etching and deposition,” J. Appl. Phys. 88, 5570-5584 (2000).
[CrossRef]

J. Display Technol.

J. Micromech. Microeng.

C. P. Lin, H. Yang, and C. K. Chao, “Hexagonal microlens array modeling and fabrication using a thermal reflow process,” J. Micromech. Microeng. 13, 775-781 (2003).
[CrossRef]

H. Yang, C. K. Chao, M. K. Wei, and C. P. Lin, “High fill-factor microlens array mold insert fabrication using a thermal reflow process,” J. Micromech. Microeng. 14, 1197-1204(2004).
[CrossRef]

M.-K. Wei, I.-L. Su, Y.-J. Chen, M. Chang, H.-Y. Ling, and T.-C. Wu, “The influence of a microlens array on planar organic light-emitting devices,” J. Micromech. Microeng. 16, 368-374 (2006).
[CrossRef]

J. Opt. A: Pure Appl. Opt.

M.-K. Wei, J.-H. Lee, H.-Y. Lin, Y.-H. Ho, K.-Y. Chen, C.-C. Lin, C.-F. Wu, H.-Y. Lin, J.-H. Tsai, and T.-C. Wu, “Efficiency improvement and spectral shift of an organic light-emitting device by attaching a hexagon-based microlens array,” J. Opt. A: Pure Appl. Opt. 10, 055302 (2008).
[CrossRef]

J. Vac. Sci. Technol. A

F. Gaboriau, M.-C. Fernandez-Peignon, G. Cartry, and Ch. Cardinaud, “Etching mechanisms of Si and SiO2 in inductively coupled fluorocarbon plasmas: correlation between plasma species and surface etching,” J. Vac. Sci. Technol. A 23, 226-233 (2005).
[CrossRef]

Nature

Y. Sun, N. C. Giebink, H. Kanno, B. W. Ma, M. E. Thompson, and S. R. Forrest, “Management of singlet and triplet excitons for efficient white organic light-emitting devices,” Nature 440, 908-912 (2006).
[CrossRef] [PubMed]

Opt. Commun.

H.-Y. Lin, J.-H. Lee, M.-K. Wei, C.-L. Dai, C.-F. Wu, Y.-H. Ho, H.-Y. Lin, and T.-C. Wu, “Improvement of the outcoupling efficiency of an organic light-emitting device by attaching microstructured films,” Opt. Commun. 275, 464-469 (2007).
[CrossRef]

Opt. Express

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the hexagonal microlens array: (a) top and (b) sectional views.

Fig. 2
Fig. 2

Fabrication process of the hexagonal microlens array on the glass substrate of OLED with direct laser writing and inductively coupled plasma etching.

Fig. 3
Fig. 3

Schematic of the OLED structure with the hexagonal microlens array on the glass substrate in this study.

Fig. 4
Fig. 4

AFM images of the fabricated hexagonal microlens array: (a) 3D and cross-sectional images of the hexagonal microlens array on the photoresist AZ4562 before ICP etching, (b) 3D and cross-sectional images of the hexagonal microlens array on the ITO glass substrate after ICP etching.

Fig. 5
Fig. 5

Electrical characteristics (J-V) of the fabricated OLED.

Fig. 6
Fig. 6

Normalized EL spectra of the fabricated OLED at 10 V .

Fig. 7
Fig. 7

Luminance as a function of the applied voltage for OLEDs with and without the hexagonal microlens array.

Fig. 8
Fig. 8

Photographs of the OELDs with the hexagonal microlens array (left half part) and with the hexagonal microlens array (right half part) on the glass substrate at 10 V : (a) normal viewing angle ( 0 ° ), (b)  20 ° , and (c)  40 ° .

Metrics