Abstract

A thermal oxidation fabrication technique is employed to form low-loss high-index-contrast silicon shallow-ridge waveguides in silicon-on-insulator (SOI) with maximally tight vertical confinement. Drop-port responses from weakly coupled ring resonators demonstrate propagation losses below 0.36dB/cm for TE modes. This technique is also combined with “magic width” designs mitigating severe lateral radiation leakage for TM modes to achieve propagation loss values of 0.94dB/cm. We discuss the fabrication process utilized to form these low-loss waveguides and implications for sensor devices in particular.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Densmore, D. X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520-2522 (2006).
    [CrossRef]
  2. J. P. R. Lacey and F. P. Payne, “Radiation loss from planar waveguides with random wall imperfections,” IEE Proc. Optoelectron. 137, 282-288 (1990).
    [CrossRef]
  3. M. A. Webster, R. M. Pafchek, A. Mitchell, and T. L. Koch, “Width dependence of inherent TM-mode lateral leakage loss in silicon-on-insulator ridge waveguides,” IEEE Photon. Technol. Lett. 19, 429-431 (2007).
    [CrossRef]
  4. H. Kogelnik, “Theory of optical waveguides,” in Guided-Wave Optoelectronics, T. Tamir, ed. (Springer Verlag, 1990), pp. 7-87.
    [CrossRef]
  5. T. L. Koch, R. M. Pafchek, and M. A. Webster, “Fabrication of optical waveguides,” U.S. patent application 20060098928 (11 May 2006).
  6. A. Ksendzov and Y. Lin, “Integrated optics ring-resonator sensors for protein detection,” Opt. Lett. 30, 3344-3346 (2005).
    [CrossRef]
  7. M. A. Webster, R. M. Pafchek, G. Sukumaran, and T. L. Koch, “Low-loss quasi-planar ridge waveguides formed on thin silicon-on-insulator,” Appl. Phys. Lett. 87, 231108 (2005).
    [CrossRef]
  8. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925-928 (2003).
    [CrossRef] [PubMed]
  9. Rsoft Design Group, Inc., 400 Executive Boulevard, Suite 100, Ossining, N.Y. 10562, USA, www.rsoftdesign.com.

2007 (1)

M. A. Webster, R. M. Pafchek, A. Mitchell, and T. L. Koch, “Width dependence of inherent TM-mode lateral leakage loss in silicon-on-insulator ridge waveguides,” IEEE Photon. Technol. Lett. 19, 429-431 (2007).
[CrossRef]

2006 (1)

A. Densmore, D. X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520-2522 (2006).
[CrossRef]

2005 (2)

A. Ksendzov and Y. Lin, “Integrated optics ring-resonator sensors for protein detection,” Opt. Lett. 30, 3344-3346 (2005).
[CrossRef]

M. A. Webster, R. M. Pafchek, G. Sukumaran, and T. L. Koch, “Low-loss quasi-planar ridge waveguides formed on thin silicon-on-insulator,” Appl. Phys. Lett. 87, 231108 (2005).
[CrossRef]

2003 (1)

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925-928 (2003).
[CrossRef] [PubMed]

1990 (2)

J. P. R. Lacey and F. P. Payne, “Radiation loss from planar waveguides with random wall imperfections,” IEE Proc. Optoelectron. 137, 282-288 (1990).
[CrossRef]

H. Kogelnik, “Theory of optical waveguides,” in Guided-Wave Optoelectronics, T. Tamir, ed. (Springer Verlag, 1990), pp. 7-87.
[CrossRef]

Armani, D. K.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925-928 (2003).
[CrossRef] [PubMed]

Cheben, P.

A. Densmore, D. X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520-2522 (2006).
[CrossRef]

Delge, A.

A. Densmore, D. X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520-2522 (2006).
[CrossRef]

Densmore, A.

A. Densmore, D. X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520-2522 (2006).
[CrossRef]

Janz, S.

A. Densmore, D. X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520-2522 (2006).
[CrossRef]

Kippenberg, T. J.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925-928 (2003).
[CrossRef] [PubMed]

Koch, T. L.

M. A. Webster, R. M. Pafchek, A. Mitchell, and T. L. Koch, “Width dependence of inherent TM-mode lateral leakage loss in silicon-on-insulator ridge waveguides,” IEEE Photon. Technol. Lett. 19, 429-431 (2007).
[CrossRef]

M. A. Webster, R. M. Pafchek, G. Sukumaran, and T. L. Koch, “Low-loss quasi-planar ridge waveguides formed on thin silicon-on-insulator,” Appl. Phys. Lett. 87, 231108 (2005).
[CrossRef]

T. L. Koch, R. M. Pafchek, and M. A. Webster, “Fabrication of optical waveguides,” U.S. patent application 20060098928 (11 May 2006).

Kogelnik, H.

H. Kogelnik, “Theory of optical waveguides,” in Guided-Wave Optoelectronics, T. Tamir, ed. (Springer Verlag, 1990), pp. 7-87.
[CrossRef]

Ksendzov, A.

Lacey, J. P. R.

J. P. R. Lacey and F. P. Payne, “Radiation loss from planar waveguides with random wall imperfections,” IEE Proc. Optoelectron. 137, 282-288 (1990).
[CrossRef]

Lamontagne, B.

A. Densmore, D. X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520-2522 (2006).
[CrossRef]

Lapointe, J.

A. Densmore, D. X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520-2522 (2006).
[CrossRef]

Lin, Y.

Mitchell, A.

M. A. Webster, R. M. Pafchek, A. Mitchell, and T. L. Koch, “Width dependence of inherent TM-mode lateral leakage loss in silicon-on-insulator ridge waveguides,” IEEE Photon. Technol. Lett. 19, 429-431 (2007).
[CrossRef]

Pafchek, R. M.

M. A. Webster, R. M. Pafchek, A. Mitchell, and T. L. Koch, “Width dependence of inherent TM-mode lateral leakage loss in silicon-on-insulator ridge waveguides,” IEEE Photon. Technol. Lett. 19, 429-431 (2007).
[CrossRef]

M. A. Webster, R. M. Pafchek, G. Sukumaran, and T. L. Koch, “Low-loss quasi-planar ridge waveguides formed on thin silicon-on-insulator,” Appl. Phys. Lett. 87, 231108 (2005).
[CrossRef]

T. L. Koch, R. M. Pafchek, and M. A. Webster, “Fabrication of optical waveguides,” U.S. patent application 20060098928 (11 May 2006).

Payne, F. P.

J. P. R. Lacey and F. P. Payne, “Radiation loss from planar waveguides with random wall imperfections,” IEE Proc. Optoelectron. 137, 282-288 (1990).
[CrossRef]

Post, E.

A. Densmore, D. X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520-2522 (2006).
[CrossRef]

Schmid, J. H.

A. Densmore, D. X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520-2522 (2006).
[CrossRef]

Spillane, S. M.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925-928 (2003).
[CrossRef] [PubMed]

Sukumaran, G.

M. A. Webster, R. M. Pafchek, G. Sukumaran, and T. L. Koch, “Low-loss quasi-planar ridge waveguides formed on thin silicon-on-insulator,” Appl. Phys. Lett. 87, 231108 (2005).
[CrossRef]

Vahala, K. J.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925-928 (2003).
[CrossRef] [PubMed]

Waldron, P.

A. Densmore, D. X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520-2522 (2006).
[CrossRef]

Webster, M. A.

M. A. Webster, R. M. Pafchek, A. Mitchell, and T. L. Koch, “Width dependence of inherent TM-mode lateral leakage loss in silicon-on-insulator ridge waveguides,” IEEE Photon. Technol. Lett. 19, 429-431 (2007).
[CrossRef]

M. A. Webster, R. M. Pafchek, G. Sukumaran, and T. L. Koch, “Low-loss quasi-planar ridge waveguides formed on thin silicon-on-insulator,” Appl. Phys. Lett. 87, 231108 (2005).
[CrossRef]

T. L. Koch, R. M. Pafchek, and M. A. Webster, “Fabrication of optical waveguides,” U.S. patent application 20060098928 (11 May 2006).

Xu, D. X.

A. Densmore, D. X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520-2522 (2006).
[CrossRef]

Appl. Phys. Lett. (1)

M. A. Webster, R. M. Pafchek, G. Sukumaran, and T. L. Koch, “Low-loss quasi-planar ridge waveguides formed on thin silicon-on-insulator,” Appl. Phys. Lett. 87, 231108 (2005).
[CrossRef]

IEE Proc. Optoelectron. (1)

J. P. R. Lacey and F. P. Payne, “Radiation loss from planar waveguides with random wall imperfections,” IEE Proc. Optoelectron. 137, 282-288 (1990).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

M. A. Webster, R. M. Pafchek, A. Mitchell, and T. L. Koch, “Width dependence of inherent TM-mode lateral leakage loss in silicon-on-insulator ridge waveguides,” IEEE Photon. Technol. Lett. 19, 429-431 (2007).
[CrossRef]

A. Densmore, D. X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520-2522 (2006).
[CrossRef]

Nature (1)

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925-928 (2003).
[CrossRef] [PubMed]

Opt. Lett. (1)

Other (3)

Rsoft Design Group, Inc., 400 Executive Boulevard, Suite 100, Ossining, N.Y. 10562, USA, www.rsoftdesign.com.

H. Kogelnik, “Theory of optical waveguides,” in Guided-Wave Optoelectronics, T. Tamir, ed. (Springer Verlag, 1990), pp. 7-87.
[CrossRef]

T. L. Koch, R. M. Pafchek, and M. A. Webster, “Fabrication of optical waveguides,” U.S. patent application 20060098928 (11 May 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Weighting function for TE and TM modes for a 205 nm slab SOI guide with H 2 O upper cladding.

Fig. 2
Fig. 2

Dependence of TM modal effective index change on silicon core thickness for the slab waveguide system described in Fig. 1 when an additional 1 nm thick layer of material with index n = 1.5 is deposited on upper core surface.

Fig. 3
Fig. 3

Quasi-planar ridge SOI waveguide geometry. BOX thickness is 2 μm .

Fig. 4
Fig. 4

Processing steps for ridge waveguide fabrication.

Fig. 5
Fig. 5

AFM trace of a 1.44 μm ridge waveguide displaying < 0.2 nm surface roughness.

Fig. 6
Fig. 6

(a) Ring resonator with add-drop ports and (b) an exemplary drop-port response.

Fig. 7
Fig. 7

Drop-port responses for the TE and TM modes for a 400 μm radius ring resonator with “magic width” waveguide of 1.44 μm .

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δ n eff = c ε o Δ ( n 2 ( x ) ) E · E * d x ( E × H * + E * × H ) · z ^ d x ,
Δ n eff = Δ n ( x ) · f ( x ) d x ,
f ( x ) = 2 c ε o n ( x ) E · E * ( E × H * + E * × H ) · z ^ d x .
W magic = M · λ · ( n TE - slab-core 2 N eff - TM 2 ) 1 2 for     M = 1 , 2 , 3 , ,
Δ ω = α rt v g ,

Metrics