Abstract

We employed digital holographic microscopy to visually test microoptoelectromechanical systems (MOEMS). The sample is a blazed-angle adjustable grating. Considering the periodic structure of the sample, a local area unwrapping method based on a binary template was adopted to demodulate the fringes obtained by referring to a reference hologram. A series of holograms at different deformation states due to different drive voltages were captured to analyze the dynamic character of the MOEMS, and the uniformity of different microcantilever beams was also inspected. The results show this testing method is effective for a periodic structure.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Hornbeck, “Spatial light modulator and method,” U.S. patent 4,662,746 (5 May 1987).
  2. E. Novak, “MEMS metrology techniques,” Proc. SPIE 5716, 173-181(2005).
    [CrossRef]
  3. K. C. Maitland, H. J. Shin, H. Ra, D. Lee, O. Solgaard, and R. Richards-Kortum, “Single fiber confocal microscope with a two-axis gimbaled MEMS scanner for cellular imaging,” Opt. Express 14, 8604-8612 (2006).
    [CrossRef] [PubMed]
  4. Z. Li, K. Herrmann, and F. Pohlenz, “Lateral scanning confocal microscopy for the determination of in-plane displacements of microelectromechanical systems devices,” Opt. Lett. 32, 1743-1745 (2007).
    [CrossRef] [PubMed]
  5. H. J. Tiziani, R. Achi, R. N. Kramer, and L. Wiegers, “Theoretical analysis of confocal microscopy with microlenses,” Appl. Opt. 35, 120-125 (1996).
    [CrossRef] [PubMed]
  6. M. Roy, C. J. R. Sheppard, G. Cox, and P. Hariharan, “White-light interference microscopy: a way to obtain high lateral resolution over an extended range of heights,” Opt. Express 14, 6788-6793 (2006).
    [CrossRef] [PubMed]
  7. J. Schmit and A. Olszak, “High-precision shape measurement by white-light interferometry with real-time scanner error correction,” Appl. Opt. 41, 5943-5950 (2002).
    [CrossRef] [PubMed]
  8. P. Pavlicek and J. Soubusta, “Theoretical measurement uncertainty of white-light interferometry on rough surfaces,” Appl. Opt. 42, 1809-1813 (2003).
    [CrossRef] [PubMed]
  9. G. Coppola, P. Ferraro, M. Iodice, S. De Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Technol. 15, 529-539 (2004).
    [CrossRef]
  10. P. Ferraro, S. De Nicola, G. Coppola, A. Finizio, M. Iodice, C. Magro, and G. Pierattini, “Testing silicon MEMS structures subjected to thermal loading by digital holography,” Proc. SPIE 5343, 235-243 (2004).
    [CrossRef]
  11. V. Ostasevicius, A. Palevicius, A. Daugela, M. Ragulskis, and R. Palevicius, “Holographic imaging technique for characterization of MEMS switch dynamics,” Proc. SPIE 5389, 73-84(2004).
    [CrossRef]
  12. L. Xu, X. Y. Peng, J. M. Miao, and A. K. Asundi, “Studies of digital microscopic holography with applications to microstructure testing,” Appl. Opt. 40, 5046-5051 (2001).
    [CrossRef]
  13. J. L. Zhao, P. Zhang, J. B. Zhou, D. X. Yang, D. S. Yang, and E. P. Li,” Visualizations of light-induced refractive index changes in photorefractive crystals employing digital holography,” Chin. Phys. Lett. 20, 1748-1751 (2003).
    [CrossRef]
  14. J. Strand and T. Taxt, “Performance evaluation of two-dimensional phase unwrapping algorithms,” Appl. Opt. 38, 4333-4344 (1999).
    [CrossRef]
  15. G. Coppola, V. Striano, P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini, and P. Maccagnani, “A nondestructive dynamic characterization of a microheater through digital holography microscopy,” J. Microelectromech. Syst. 16, 659-667 (2007).
    [CrossRef]
  16. G. Fornaro, G. Franceschetti, R. Lanari, E. Sansosti, and M. Tesauro, “Global and local phase-unwrapping techniques: a comparison,” J. Opt. Soc. Am. A 14, 2702-2708 (1997).
    [CrossRef]
  17. U. Schnars and W. P. O. Juptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85 (2002).
    [CrossRef]
  18. T. Kreis, Handbook of Holographic Interferometry (Wiley-VCH, 2005), pp. 23-24, 29-30, 115-117.

2007 (2)

Z. Li, K. Herrmann, and F. Pohlenz, “Lateral scanning confocal microscopy for the determination of in-plane displacements of microelectromechanical systems devices,” Opt. Lett. 32, 1743-1745 (2007).
[CrossRef] [PubMed]

G. Coppola, V. Striano, P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini, and P. Maccagnani, “A nondestructive dynamic characterization of a microheater through digital holography microscopy,” J. Microelectromech. Syst. 16, 659-667 (2007).
[CrossRef]

2006 (2)

2005 (2)

E. Novak, “MEMS metrology techniques,” Proc. SPIE 5716, 173-181(2005).
[CrossRef]

T. Kreis, Handbook of Holographic Interferometry (Wiley-VCH, 2005), pp. 23-24, 29-30, 115-117.

2004 (3)

G. Coppola, P. Ferraro, M. Iodice, S. De Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Technol. 15, 529-539 (2004).
[CrossRef]

P. Ferraro, S. De Nicola, G. Coppola, A. Finizio, M. Iodice, C. Magro, and G. Pierattini, “Testing silicon MEMS structures subjected to thermal loading by digital holography,” Proc. SPIE 5343, 235-243 (2004).
[CrossRef]

V. Ostasevicius, A. Palevicius, A. Daugela, M. Ragulskis, and R. Palevicius, “Holographic imaging technique for characterization of MEMS switch dynamics,” Proc. SPIE 5389, 73-84(2004).
[CrossRef]

2003 (2)

J. L. Zhao, P. Zhang, J. B. Zhou, D. X. Yang, D. S. Yang, and E. P. Li,” Visualizations of light-induced refractive index changes in photorefractive crystals employing digital holography,” Chin. Phys. Lett. 20, 1748-1751 (2003).
[CrossRef]

P. Pavlicek and J. Soubusta, “Theoretical measurement uncertainty of white-light interferometry on rough surfaces,” Appl. Opt. 42, 1809-1813 (2003).
[CrossRef] [PubMed]

2002 (2)

U. Schnars and W. P. O. Juptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85 (2002).
[CrossRef]

J. Schmit and A. Olszak, “High-precision shape measurement by white-light interferometry with real-time scanner error correction,” Appl. Opt. 41, 5943-5950 (2002).
[CrossRef] [PubMed]

2001 (1)

1999 (1)

1997 (1)

1996 (1)

Achi, R.

Asundi, A. K.

Coppola, G.

G. Coppola, V. Striano, P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini, and P. Maccagnani, “A nondestructive dynamic characterization of a microheater through digital holography microscopy,” J. Microelectromech. Syst. 16, 659-667 (2007).
[CrossRef]

G. Coppola, P. Ferraro, M. Iodice, S. De Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Technol. 15, 529-539 (2004).
[CrossRef]

P. Ferraro, S. De Nicola, G. Coppola, A. Finizio, M. Iodice, C. Magro, and G. Pierattini, “Testing silicon MEMS structures subjected to thermal loading by digital holography,” Proc. SPIE 5343, 235-243 (2004).
[CrossRef]

Cox, G.

Daugela, A.

V. Ostasevicius, A. Palevicius, A. Daugela, M. Ragulskis, and R. Palevicius, “Holographic imaging technique for characterization of MEMS switch dynamics,” Proc. SPIE 5389, 73-84(2004).
[CrossRef]

De Nicola, S.

G. Coppola, V. Striano, P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini, and P. Maccagnani, “A nondestructive dynamic characterization of a microheater through digital holography microscopy,” J. Microelectromech. Syst. 16, 659-667 (2007).
[CrossRef]

P. Ferraro, S. De Nicola, G. Coppola, A. Finizio, M. Iodice, C. Magro, and G. Pierattini, “Testing silicon MEMS structures subjected to thermal loading by digital holography,” Proc. SPIE 5343, 235-243 (2004).
[CrossRef]

G. Coppola, P. Ferraro, M. Iodice, S. De Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Technol. 15, 529-539 (2004).
[CrossRef]

Ferraro, P.

G. Coppola, V. Striano, P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini, and P. Maccagnani, “A nondestructive dynamic characterization of a microheater through digital holography microscopy,” J. Microelectromech. Syst. 16, 659-667 (2007).
[CrossRef]

P. Ferraro, S. De Nicola, G. Coppola, A. Finizio, M. Iodice, C. Magro, and G. Pierattini, “Testing silicon MEMS structures subjected to thermal loading by digital holography,” Proc. SPIE 5343, 235-243 (2004).
[CrossRef]

G. Coppola, P. Ferraro, M. Iodice, S. De Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Technol. 15, 529-539 (2004).
[CrossRef]

Finizio, A.

G. Coppola, V. Striano, P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini, and P. Maccagnani, “A nondestructive dynamic characterization of a microheater through digital holography microscopy,” J. Microelectromech. Syst. 16, 659-667 (2007).
[CrossRef]

G. Coppola, P. Ferraro, M. Iodice, S. De Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Technol. 15, 529-539 (2004).
[CrossRef]

P. Ferraro, S. De Nicola, G. Coppola, A. Finizio, M. Iodice, C. Magro, and G. Pierattini, “Testing silicon MEMS structures subjected to thermal loading by digital holography,” Proc. SPIE 5343, 235-243 (2004).
[CrossRef]

Fornaro, G.

Franceschetti, G.

Grilli, S.

G. Coppola, P. Ferraro, M. Iodice, S. De Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Technol. 15, 529-539 (2004).
[CrossRef]

Hariharan, P.

Herrmann,, K.

Hornbeck, L.

L. Hornbeck, “Spatial light modulator and method,” U.S. patent 4,662,746 (5 May 1987).

Iodice, M.

G. Coppola, P. Ferraro, M. Iodice, S. De Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Technol. 15, 529-539 (2004).
[CrossRef]

P. Ferraro, S. De Nicola, G. Coppola, A. Finizio, M. Iodice, C. Magro, and G. Pierattini, “Testing silicon MEMS structures subjected to thermal loading by digital holography,” Proc. SPIE 5343, 235-243 (2004).
[CrossRef]

Juptner, W. P. O.

U. Schnars and W. P. O. Juptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85 (2002).
[CrossRef]

Kramer, R. N.

Kreis, T.

T. Kreis, Handbook of Holographic Interferometry (Wiley-VCH, 2005), pp. 23-24, 29-30, 115-117.

Lanari, R.

Lee, D.

Li, E. P.

J. L. Zhao, P. Zhang, J. B. Zhou, D. X. Yang, D. S. Yang, and E. P. Li,” Visualizations of light-induced refractive index changes in photorefractive crystals employing digital holography,” Chin. Phys. Lett. 20, 1748-1751 (2003).
[CrossRef]

Li, Z.

Maccagnani, P.

G. Coppola, V. Striano, P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini, and P. Maccagnani, “A nondestructive dynamic characterization of a microheater through digital holography microscopy,” J. Microelectromech. Syst. 16, 659-667 (2007).
[CrossRef]

Magro, C.

P. Ferraro, S. De Nicola, G. Coppola, A. Finizio, M. Iodice, C. Magro, and G. Pierattini, “Testing silicon MEMS structures subjected to thermal loading by digital holography,” Proc. SPIE 5343, 235-243 (2004).
[CrossRef]

Maitland, K. C.

Miao, J. M.

Novak, E.

E. Novak, “MEMS metrology techniques,” Proc. SPIE 5716, 173-181(2005).
[CrossRef]

Olszak, A.

Ostasevicius, V.

V. Ostasevicius, A. Palevicius, A. Daugela, M. Ragulskis, and R. Palevicius, “Holographic imaging technique for characterization of MEMS switch dynamics,” Proc. SPIE 5389, 73-84(2004).
[CrossRef]

Palevicius, A.

V. Ostasevicius, A. Palevicius, A. Daugela, M. Ragulskis, and R. Palevicius, “Holographic imaging technique for characterization of MEMS switch dynamics,” Proc. SPIE 5389, 73-84(2004).
[CrossRef]

Palevicius, R.

V. Ostasevicius, A. Palevicius, A. Daugela, M. Ragulskis, and R. Palevicius, “Holographic imaging technique for characterization of MEMS switch dynamics,” Proc. SPIE 5389, 73-84(2004).
[CrossRef]

Pavlicek, P.

Peng, X. Y.

Pierattini, G.

G. Coppola, V. Striano, P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini, and P. Maccagnani, “A nondestructive dynamic characterization of a microheater through digital holography microscopy,” J. Microelectromech. Syst. 16, 659-667 (2007).
[CrossRef]

P. Ferraro, S. De Nicola, G. Coppola, A. Finizio, M. Iodice, C. Magro, and G. Pierattini, “Testing silicon MEMS structures subjected to thermal loading by digital holography,” Proc. SPIE 5343, 235-243 (2004).
[CrossRef]

Pohlenz, F.

Ra, H.

Ragulskis, M.

V. Ostasevicius, A. Palevicius, A. Daugela, M. Ragulskis, and R. Palevicius, “Holographic imaging technique for characterization of MEMS switch dynamics,” Proc. SPIE 5389, 73-84(2004).
[CrossRef]

Richards-Kortum, R.

Roy, M.

Sansosti, E.

Schmit, J.

Schnars, U.

U. Schnars and W. P. O. Juptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85 (2002).
[CrossRef]

Sheppard, C. J. R.

Shin, H. J.

Solgaard, O.

Soubusta, J.

Strand, J.

Striano, V.

G. Coppola, V. Striano, P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini, and P. Maccagnani, “A nondestructive dynamic characterization of a microheater through digital holography microscopy,” J. Microelectromech. Syst. 16, 659-667 (2007).
[CrossRef]

Taxt, T.

Tesauro, M.

Tiziani, H. J.

Wiegers, L.

Xu, L.

Yang, D. S.

J. L. Zhao, P. Zhang, J. B. Zhou, D. X. Yang, D. S. Yang, and E. P. Li,” Visualizations of light-induced refractive index changes in photorefractive crystals employing digital holography,” Chin. Phys. Lett. 20, 1748-1751 (2003).
[CrossRef]

Yang, D. X.

J. L. Zhao, P. Zhang, J. B. Zhou, D. X. Yang, D. S. Yang, and E. P. Li,” Visualizations of light-induced refractive index changes in photorefractive crystals employing digital holography,” Chin. Phys. Lett. 20, 1748-1751 (2003).
[CrossRef]

Zhang, P.

J. L. Zhao, P. Zhang, J. B. Zhou, D. X. Yang, D. S. Yang, and E. P. Li,” Visualizations of light-induced refractive index changes in photorefractive crystals employing digital holography,” Chin. Phys. Lett. 20, 1748-1751 (2003).
[CrossRef]

Zhao, J. L.

J. L. Zhao, P. Zhang, J. B. Zhou, D. X. Yang, D. S. Yang, and E. P. Li,” Visualizations of light-induced refractive index changes in photorefractive crystals employing digital holography,” Chin. Phys. Lett. 20, 1748-1751 (2003).
[CrossRef]

Zhou, J. B.

J. L. Zhao, P. Zhang, J. B. Zhou, D. X. Yang, D. S. Yang, and E. P. Li,” Visualizations of light-induced refractive index changes in photorefractive crystals employing digital holography,” Chin. Phys. Lett. 20, 1748-1751 (2003).
[CrossRef]

Appl. Opt. (5)

Chin. Phys. Lett. (1)

J. L. Zhao, P. Zhang, J. B. Zhou, D. X. Yang, D. S. Yang, and E. P. Li,” Visualizations of light-induced refractive index changes in photorefractive crystals employing digital holography,” Chin. Phys. Lett. 20, 1748-1751 (2003).
[CrossRef]

J. Microelectromech. Syst. (1)

G. Coppola, V. Striano, P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini, and P. Maccagnani, “A nondestructive dynamic characterization of a microheater through digital holography microscopy,” J. Microelectromech. Syst. 16, 659-667 (2007).
[CrossRef]

J. Opt. Soc. Am. A (1)

Meas. Sci. Technol. (2)

U. Schnars and W. P. O. Juptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85 (2002).
[CrossRef]

G. Coppola, P. Ferraro, M. Iodice, S. De Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Technol. 15, 529-539 (2004).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Proc. SPIE (3)

E. Novak, “MEMS metrology techniques,” Proc. SPIE 5716, 173-181(2005).
[CrossRef]

P. Ferraro, S. De Nicola, G. Coppola, A. Finizio, M. Iodice, C. Magro, and G. Pierattini, “Testing silicon MEMS structures subjected to thermal loading by digital holography,” Proc. SPIE 5343, 235-243 (2004).
[CrossRef]

V. Ostasevicius, A. Palevicius, A. Daugela, M. Ragulskis, and R. Palevicius, “Holographic imaging technique for characterization of MEMS switch dynamics,” Proc. SPIE 5389, 73-84(2004).
[CrossRef]

Other (2)

L. Hornbeck, “Spatial light modulator and method,” U.S. patent 4,662,746 (5 May 1987).

T. Kreis, Handbook of Holographic Interferometry (Wiley-VCH, 2005), pp. 23-24, 29-30, 115-117.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup for digital holographic microscopy ( d 1 8 cm , d 2 8 cm , and d 3 5 cm ).

Fig. 2
Fig. 2

Digital holograms and wrapped phase pattern of the micro cantilever beams array: (a), (b) holograms at the drive voltage of 0 V and 130 V , respectively; (c) wrapped phase pattern from (a) and (b).

Fig. 3
Fig. 3

Comparison of the deformation without (curve 1) and with (curve 2) the template unwrapping method at x = 594 pixels along the y direction at the drive voltage of 130 V .

Fig. 4
Fig. 4

White-light images of the sample and the binary template: (a) white-light image (about 0.2 × 0.15 mm 2 of the sample; 1 4 , four micro cantilever beams; rectangle box with broken line, one of the micro cantilever beams); (b) binary template.

Fig. 5
Fig. 5

Deformation of micro cantilever beams array at different voltages: (a)  80 V ; (b)  105 V ; (c)  130 V . Each chart in the left-top corner of every picture depicts the profile of the deformation ( x = 594 pixels) along the y direction [three frames are excerpted from the video (Media 12)].

Fig. 6
Fig. 6

Deformation comparison of the four micro cantilever beams versus drive voltage.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

O ( x , y ) = O h ( x h , y h ) 1 i λ exp ( i k r ) r d x h d y h ,
r = [ ( x h x ) 2 + ( y h y ) 2 + d 2 ] 1 / 2 ,
g ( x h x , y h y ) = 1 i λ exp { i k [ ( x h x ) 2 + ( y h y ) 2 + d 2 ] 1 / 2 } [ ( x h x ) 2 + ( y h y ) 2 + d 2 ] 1 / 2 ,
O ( x , y ) = O h ( x , y ) * g ( x , y ) = [ h ( x , y ) R ( x , y ) ] * g ( x , y ) ,
O ( x , y ) = F 1 { F [ h ( x , y ) R ( x , y ) ] G ( v , u ) } ,
G ( v , u ) = exp { i k d [ 1 ( λ v ) 2 ( λ u ) 2 ] 1 / 2 } .
O ( x , y ) = F 1 { F [ h ( x , y ) ] } .
Δ ϕ = ϕ 1 ϕ 2 = 4 π λ Δ L ,

Metrics