Abstract

Simultaneous high-speed in-cylinder measurements of laser-induced fluorescence of biacetyl as a fuel tracer and mid-infrared broadband absorption of fuel and combustion products (water and carbon dioxide) using a spark plug probe are compared in an optical engine. The study addresses uncertainties and the applicability of absorption measurements at a location slightly offset to the spark plug when information about mixing at the spark plug is desired. Absorbance profiles reflect important engine operation events, such as valve opening and closing, mixing, combustion, and outgassing from crevices.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Zhao, M.-C. Lai, and D. L. Harrington, “Automotive spark-ignited direct-injection gasoline engines,” Prog. Energy Combust. Sci. 25, 437-562 (1999).
    [CrossRef]
  2. J. D. Smith and V. Sick, “Crank-angle resolved imaging of fuel distribution, ignition and combustion in a direct-injection spark-ignition engine,” SAE Transactions Journal of Engines 114, 1575-1585 (2005).
  3. M. Koenig and M. J. Hall, “Cycle-resolved measurements of precombustion fuel concentration near the spark plug in a gasoline SI engine,” SAE paper 981053 (Society for Automotive Engineering, 1998).
  4. T. Berg, V. Beushausen, O. Thiele, and H. Voges, “Fibre optics spark plug sensor for the optimisation of engine combustion processes,” Motortech. Z. 67, 2-6 (2006).
  5. C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems,” Prog. Energy Combust. Sci. 31, 75-121 (2005).
    [CrossRef]
  6. J. D. Smith and V. Sick, “Crank-angle resolved imaging of biacetyl laser-induced fluorescence in an optical internal combustion engine,” Appl. Phys. B 81, 579-584 (2005).
    [CrossRef]
  7. N. Wermuth and V. Sick, “Absorption and fluorescence data of acetone, 3-pentanone, biacetyl, and toluene at engine-specific combinations of temperature and pressure,” SAE Trans. J. Fuels Lubricants 114, 804-814 (2005).
  8. P. Guibert, V. Modica, and C. Morin, “Influence of pressure, temperature and gas phase composition on biacetyl laser-induced fluorescence,” Exp. Fluids 40, 245-256 (2005).
    [CrossRef]
  9. J. D. Smith and V. Sick, “Quantitative, dynamic fuel distribution measurements in combustion-related devices using laser-induced fluorescence imaging of biacetyl in iso-octane,” Proc. Combust. Inst. 31, 747-755 (2007).
    [CrossRef]
  10. R. Zhang, S. V. Bohac, and V. Sick, “Stability of iso-octane mixtures with 3-pentanone or biacetyl as fluorescence tracers in combustion experiments,” Exp. Fluids 40, 161-163 (2006).
    [CrossRef]
  11. V. Sick and C. K. Westbrook, “Diagnostic implications of the reactivity of fluorescence tracers,” Proc. Combust. Inst. doi: 10.1016/j.proci.2008.05.012.
  12. P. Perona and J. Malik, “Scale-space and edge detection using anisotropic diffusion,” IEEE Trans. Pattern Anal. Mach. Intell. 12, 629-639 (1990).
    [CrossRef]
  13. L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. C. Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. H. Toth, J. V. Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96, 139-204 (2005).
    [CrossRef]
  14. U. Fissenewert, V. Sick, and H. Pucher, “Characterization of combustion and NO formation in a spray-guided gasoline direct-injection engine using chemiluminescence imaging, NO-PLIF, and fast NO exhaust gas analysis,” SAE Trans. J. Fuels Lubricants 114, 786-803 (2005).
  15. W. Koban, J. D. Koch, V. Sick, N. Wermuth, R. K. Hanson, and C. Schulz, “Predicting LIF signal strength for toluene and 3-pentanone under engine-related temperature and pressure conditions,” Proc. Combust. Inst. 30, 1545-1553(2005).
    [CrossRef]
  16. C. M. Fajardo and V. Sick, “Flow field assessment in a fired spray-guided spark-ignition direct-injection engine based on UV particle image velocimetry with sub crank angle resolution,” Proc. Combust. Inst. 31, 3023-3031 (2007).
    [CrossRef]

2007 (2)

J. D. Smith and V. Sick, “Quantitative, dynamic fuel distribution measurements in combustion-related devices using laser-induced fluorescence imaging of biacetyl in iso-octane,” Proc. Combust. Inst. 31, 747-755 (2007).
[CrossRef]

C. M. Fajardo and V. Sick, “Flow field assessment in a fired spray-guided spark-ignition direct-injection engine based on UV particle image velocimetry with sub crank angle resolution,” Proc. Combust. Inst. 31, 3023-3031 (2007).
[CrossRef]

2006 (2)

R. Zhang, S. V. Bohac, and V. Sick, “Stability of iso-octane mixtures with 3-pentanone or biacetyl as fluorescence tracers in combustion experiments,” Exp. Fluids 40, 161-163 (2006).
[CrossRef]

T. Berg, V. Beushausen, O. Thiele, and H. Voges, “Fibre optics spark plug sensor for the optimisation of engine combustion processes,” Motortech. Z. 67, 2-6 (2006).

2005 (8)

C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems,” Prog. Energy Combust. Sci. 31, 75-121 (2005).
[CrossRef]

J. D. Smith and V. Sick, “Crank-angle resolved imaging of biacetyl laser-induced fluorescence in an optical internal combustion engine,” Appl. Phys. B 81, 579-584 (2005).
[CrossRef]

N. Wermuth and V. Sick, “Absorption and fluorescence data of acetone, 3-pentanone, biacetyl, and toluene at engine-specific combinations of temperature and pressure,” SAE Trans. J. Fuels Lubricants 114, 804-814 (2005).

P. Guibert, V. Modica, and C. Morin, “Influence of pressure, temperature and gas phase composition on biacetyl laser-induced fluorescence,” Exp. Fluids 40, 245-256 (2005).
[CrossRef]

J. D. Smith and V. Sick, “Crank-angle resolved imaging of fuel distribution, ignition and combustion in a direct-injection spark-ignition engine,” SAE Transactions Journal of Engines 114, 1575-1585 (2005).

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. C. Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. H. Toth, J. V. Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96, 139-204 (2005).
[CrossRef]

U. Fissenewert, V. Sick, and H. Pucher, “Characterization of combustion and NO formation in a spray-guided gasoline direct-injection engine using chemiluminescence imaging, NO-PLIF, and fast NO exhaust gas analysis,” SAE Trans. J. Fuels Lubricants 114, 786-803 (2005).

W. Koban, J. D. Koch, V. Sick, N. Wermuth, R. K. Hanson, and C. Schulz, “Predicting LIF signal strength for toluene and 3-pentanone under engine-related temperature and pressure conditions,” Proc. Combust. Inst. 30, 1545-1553(2005).
[CrossRef]

1999 (1)

F. Zhao, M.-C. Lai, and D. L. Harrington, “Automotive spark-ignited direct-injection gasoline engines,” Prog. Energy Combust. Sci. 25, 437-562 (1999).
[CrossRef]

1990 (1)

P. Perona and J. Malik, “Scale-space and edge detection using anisotropic diffusion,” IEEE Trans. Pattern Anal. Mach. Intell. 12, 629-639 (1990).
[CrossRef]

Auwera, J. V.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. C. Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. H. Toth, J. V. Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96, 139-204 (2005).
[CrossRef]

Barbe, A.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. C. Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. H. Toth, J. V. Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96, 139-204 (2005).
[CrossRef]

Benner, D. C.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. C. Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. H. Toth, J. V. Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96, 139-204 (2005).
[CrossRef]

Berg, T.

T. Berg, V. Beushausen, O. Thiele, and H. Voges, “Fibre optics spark plug sensor for the optimisation of engine combustion processes,” Motortech. Z. 67, 2-6 (2006).

Beushausen, V.

T. Berg, V. Beushausen, O. Thiele, and H. Voges, “Fibre optics spark plug sensor for the optimisation of engine combustion processes,” Motortech. Z. 67, 2-6 (2006).

Birk, M.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. C. Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. H. Toth, J. V. Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96, 139-204 (2005).
[CrossRef]

Bohac, S. V.

R. Zhang, S. V. Bohac, and V. Sick, “Stability of iso-octane mixtures with 3-pentanone or biacetyl as fluorescence tracers in combustion experiments,” Exp. Fluids 40, 161-163 (2006).
[CrossRef]

Brown, L. R.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. C. Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. H. Toth, J. V. Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96, 139-204 (2005).
[CrossRef]

Carleer, M. R.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. C. Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. H. Toth, J. V. Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96, 139-204 (2005).
[CrossRef]

Chance, K.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. C. Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. H. Toth, J. V. Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96, 139-204 (2005).
[CrossRef]

Coudert, L. H.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. C. Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. H. Toth, J. V. Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96, 139-204 (2005).
[CrossRef]

Dana, V.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. C. Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. H. Toth, J. V. Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96, 139-204 (2005).
[CrossRef]

Devi, V. M.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. C. Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. H. Toth, J. V. Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96, 139-204 (2005).
[CrossRef]

Fajardo, C. M.

C. M. Fajardo and V. Sick, “Flow field assessment in a fired spray-guided spark-ignition direct-injection engine based on UV particle image velocimetry with sub crank angle resolution,” Proc. Combust. Inst. 31, 3023-3031 (2007).
[CrossRef]

Fissenewert, U.

U. Fissenewert, V. Sick, and H. Pucher, “Characterization of combustion and NO formation in a spray-guided gasoline direct-injection engine using chemiluminescence imaging, NO-PLIF, and fast NO exhaust gas analysis,” SAE Trans. J. Fuels Lubricants 114, 786-803 (2005).

Flaud, J.-M.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. C. Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. H. Toth, J. V. Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96, 139-204 (2005).
[CrossRef]

Gamache, R. R.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. C. Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. H. Toth, J. V. Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96, 139-204 (2005).
[CrossRef]

Goldman, A.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. C. Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. H. Toth, J. V. Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96, 139-204 (2005).
[CrossRef]

Guibert, P.

P. Guibert, V. Modica, and C. Morin, “Influence of pressure, temperature and gas phase composition on biacetyl laser-induced fluorescence,” Exp. Fluids 40, 245-256 (2005).
[CrossRef]

Hall, M. J.

M. Koenig and M. J. Hall, “Cycle-resolved measurements of precombustion fuel concentration near the spark plug in a gasoline SI engine,” SAE paper 981053 (Society for Automotive Engineering, 1998).

Hanson, R. K.

W. Koban, J. D. Koch, V. Sick, N. Wermuth, R. K. Hanson, and C. Schulz, “Predicting LIF signal strength for toluene and 3-pentanone under engine-related temperature and pressure conditions,” Proc. Combust. Inst. 30, 1545-1553(2005).
[CrossRef]

Harrington, D. L.

F. Zhao, M.-C. Lai, and D. L. Harrington, “Automotive spark-ignited direct-injection gasoline engines,” Prog. Energy Combust. Sci. 25, 437-562 (1999).
[CrossRef]

Hartmann, J.-M.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. C. Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. H. Toth, J. V. Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96, 139-204 (2005).
[CrossRef]

Jacquemart, D.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. C. Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. H. Toth, J. V. Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96, 139-204 (2005).
[CrossRef]

Jucks, K. W.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. C. Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. H. Toth, J. V. Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96, 139-204 (2005).
[CrossRef]

Koban, W.

W. Koban, J. D. Koch, V. Sick, N. Wermuth, R. K. Hanson, and C. Schulz, “Predicting LIF signal strength for toluene and 3-pentanone under engine-related temperature and pressure conditions,” Proc. Combust. Inst. 30, 1545-1553(2005).
[CrossRef]

Koch, J. D.

W. Koban, J. D. Koch, V. Sick, N. Wermuth, R. K. Hanson, and C. Schulz, “Predicting LIF signal strength for toluene and 3-pentanone under engine-related temperature and pressure conditions,” Proc. Combust. Inst. 30, 1545-1553(2005).
[CrossRef]

Koenig, M.

M. Koenig and M. J. Hall, “Cycle-resolved measurements of precombustion fuel concentration near the spark plug in a gasoline SI engine,” SAE paper 981053 (Society for Automotive Engineering, 1998).

Lai, M.-C.

F. Zhao, M.-C. Lai, and D. L. Harrington, “Automotive spark-ignited direct-injection gasoline engines,” Prog. Energy Combust. Sci. 25, 437-562 (1999).
[CrossRef]

Maki, A. G.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. C. Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. H. Toth, J. V. Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96, 139-204 (2005).
[CrossRef]

Malik, J.

P. Perona and J. Malik, “Scale-space and edge detection using anisotropic diffusion,” IEEE Trans. Pattern Anal. Mach. Intell. 12, 629-639 (1990).
[CrossRef]

Mandin, J.-Y.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. C. Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. H. Toth, J. V. Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96, 139-204 (2005).
[CrossRef]

Massie, S. T.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. C. Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. H. Toth, J. V. Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96, 139-204 (2005).
[CrossRef]

Modica, V.

P. Guibert, V. Modica, and C. Morin, “Influence of pressure, temperature and gas phase composition on biacetyl laser-induced fluorescence,” Exp. Fluids 40, 245-256 (2005).
[CrossRef]

Morin, C.

P. Guibert, V. Modica, and C. Morin, “Influence of pressure, temperature and gas phase composition on biacetyl laser-induced fluorescence,” Exp. Fluids 40, 245-256 (2005).
[CrossRef]

Orphal, J.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. C. Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. H. Toth, J. V. Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96, 139-204 (2005).
[CrossRef]

Perona, P.

P. Perona and J. Malik, “Scale-space and edge detection using anisotropic diffusion,” IEEE Trans. Pattern Anal. Mach. Intell. 12, 629-639 (1990).
[CrossRef]

Perrin, A.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. C. Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. H. Toth, J. V. Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96, 139-204 (2005).
[CrossRef]

Pucher, H.

U. Fissenewert, V. Sick, and H. Pucher, “Characterization of combustion and NO formation in a spray-guided gasoline direct-injection engine using chemiluminescence imaging, NO-PLIF, and fast NO exhaust gas analysis,” SAE Trans. J. Fuels Lubricants 114, 786-803 (2005).

Rinsland, C. P.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. C. Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. H. Toth, J. V. Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96, 139-204 (2005).
[CrossRef]

Rothman, L. S.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. C. Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. H. Toth, J. V. Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96, 139-204 (2005).
[CrossRef]

Schulz, C.

W. Koban, J. D. Koch, V. Sick, N. Wermuth, R. K. Hanson, and C. Schulz, “Predicting LIF signal strength for toluene and 3-pentanone under engine-related temperature and pressure conditions,” Proc. Combust. Inst. 30, 1545-1553(2005).
[CrossRef]

C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems,” Prog. Energy Combust. Sci. 31, 75-121 (2005).
[CrossRef]

Sick, V.

C. M. Fajardo and V. Sick, “Flow field assessment in a fired spray-guided spark-ignition direct-injection engine based on UV particle image velocimetry with sub crank angle resolution,” Proc. Combust. Inst. 31, 3023-3031 (2007).
[CrossRef]

J. D. Smith and V. Sick, “Quantitative, dynamic fuel distribution measurements in combustion-related devices using laser-induced fluorescence imaging of biacetyl in iso-octane,” Proc. Combust. Inst. 31, 747-755 (2007).
[CrossRef]

R. Zhang, S. V. Bohac, and V. Sick, “Stability of iso-octane mixtures with 3-pentanone or biacetyl as fluorescence tracers in combustion experiments,” Exp. Fluids 40, 161-163 (2006).
[CrossRef]

U. Fissenewert, V. Sick, and H. Pucher, “Characterization of combustion and NO formation in a spray-guided gasoline direct-injection engine using chemiluminescence imaging, NO-PLIF, and fast NO exhaust gas analysis,” SAE Trans. J. Fuels Lubricants 114, 786-803 (2005).

W. Koban, J. D. Koch, V. Sick, N. Wermuth, R. K. Hanson, and C. Schulz, “Predicting LIF signal strength for toluene and 3-pentanone under engine-related temperature and pressure conditions,” Proc. Combust. Inst. 30, 1545-1553(2005).
[CrossRef]

C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems,” Prog. Energy Combust. Sci. 31, 75-121 (2005).
[CrossRef]

J. D. Smith and V. Sick, “Crank-angle resolved imaging of fuel distribution, ignition and combustion in a direct-injection spark-ignition engine,” SAE Transactions Journal of Engines 114, 1575-1585 (2005).

N. Wermuth and V. Sick, “Absorption and fluorescence data of acetone, 3-pentanone, biacetyl, and toluene at engine-specific combinations of temperature and pressure,” SAE Trans. J. Fuels Lubricants 114, 804-814 (2005).

J. D. Smith and V. Sick, “Crank-angle resolved imaging of biacetyl laser-induced fluorescence in an optical internal combustion engine,” Appl. Phys. B 81, 579-584 (2005).
[CrossRef]

V. Sick and C. K. Westbrook, “Diagnostic implications of the reactivity of fluorescence tracers,” Proc. Combust. Inst. doi: 10.1016/j.proci.2008.05.012.

Smith, J. D.

J. D. Smith and V. Sick, “Quantitative, dynamic fuel distribution measurements in combustion-related devices using laser-induced fluorescence imaging of biacetyl in iso-octane,” Proc. Combust. Inst. 31, 747-755 (2007).
[CrossRef]

J. D. Smith and V. Sick, “Crank-angle resolved imaging of biacetyl laser-induced fluorescence in an optical internal combustion engine,” Appl. Phys. B 81, 579-584 (2005).
[CrossRef]

J. D. Smith and V. Sick, “Crank-angle resolved imaging of fuel distribution, ignition and combustion in a direct-injection spark-ignition engine,” SAE Transactions Journal of Engines 114, 1575-1585 (2005).

Smith, M. A. H.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. C. Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. H. Toth, J. V. Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96, 139-204 (2005).
[CrossRef]

Tennyson, J.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. C. Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. H. Toth, J. V. Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96, 139-204 (2005).
[CrossRef]

Thiele, O.

T. Berg, V. Beushausen, O. Thiele, and H. Voges, “Fibre optics spark plug sensor for the optimisation of engine combustion processes,” Motortech. Z. 67, 2-6 (2006).

Tolchenov, R. N.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. C. Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. H. Toth, J. V. Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96, 139-204 (2005).
[CrossRef]

Toth, R. H.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. C. Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. H. Toth, J. V. Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96, 139-204 (2005).
[CrossRef]

Varanasi, P.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. C. Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. H. Toth, J. V. Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96, 139-204 (2005).
[CrossRef]

Voges, H.

T. Berg, V. Beushausen, O. Thiele, and H. Voges, “Fibre optics spark plug sensor for the optimisation of engine combustion processes,” Motortech. Z. 67, 2-6 (2006).

Wagner, G.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. C. Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. H. Toth, J. V. Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96, 139-204 (2005).
[CrossRef]

Wermuth, N.

W. Koban, J. D. Koch, V. Sick, N. Wermuth, R. K. Hanson, and C. Schulz, “Predicting LIF signal strength for toluene and 3-pentanone under engine-related temperature and pressure conditions,” Proc. Combust. Inst. 30, 1545-1553(2005).
[CrossRef]

N. Wermuth and V. Sick, “Absorption and fluorescence data of acetone, 3-pentanone, biacetyl, and toluene at engine-specific combinations of temperature and pressure,” SAE Trans. J. Fuels Lubricants 114, 804-814 (2005).

Westbrook, C. K.

V. Sick and C. K. Westbrook, “Diagnostic implications of the reactivity of fluorescence tracers,” Proc. Combust. Inst. doi: 10.1016/j.proci.2008.05.012.

Zhang, R.

R. Zhang, S. V. Bohac, and V. Sick, “Stability of iso-octane mixtures with 3-pentanone or biacetyl as fluorescence tracers in combustion experiments,” Exp. Fluids 40, 161-163 (2006).
[CrossRef]

Zhao, F.

F. Zhao, M.-C. Lai, and D. L. Harrington, “Automotive spark-ignited direct-injection gasoline engines,” Prog. Energy Combust. Sci. 25, 437-562 (1999).
[CrossRef]

Appl. Phys. B (1)

J. D. Smith and V. Sick, “Crank-angle resolved imaging of biacetyl laser-induced fluorescence in an optical internal combustion engine,” Appl. Phys. B 81, 579-584 (2005).
[CrossRef]

Exp. Fluids (2)

P. Guibert, V. Modica, and C. Morin, “Influence of pressure, temperature and gas phase composition on biacetyl laser-induced fluorescence,” Exp. Fluids 40, 245-256 (2005).
[CrossRef]

R. Zhang, S. V. Bohac, and V. Sick, “Stability of iso-octane mixtures with 3-pentanone or biacetyl as fluorescence tracers in combustion experiments,” Exp. Fluids 40, 161-163 (2006).
[CrossRef]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

P. Perona and J. Malik, “Scale-space and edge detection using anisotropic diffusion,” IEEE Trans. Pattern Anal. Mach. Intell. 12, 629-639 (1990).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transf. (1)

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. C. Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. H. Toth, J. V. Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96, 139-204 (2005).
[CrossRef]

Motortech. Z. (1)

T. Berg, V. Beushausen, O. Thiele, and H. Voges, “Fibre optics spark plug sensor for the optimisation of engine combustion processes,” Motortech. Z. 67, 2-6 (2006).

Proc. Combust. Inst. (3)

J. D. Smith and V. Sick, “Quantitative, dynamic fuel distribution measurements in combustion-related devices using laser-induced fluorescence imaging of biacetyl in iso-octane,” Proc. Combust. Inst. 31, 747-755 (2007).
[CrossRef]

W. Koban, J. D. Koch, V. Sick, N. Wermuth, R. K. Hanson, and C. Schulz, “Predicting LIF signal strength for toluene and 3-pentanone under engine-related temperature and pressure conditions,” Proc. Combust. Inst. 30, 1545-1553(2005).
[CrossRef]

C. M. Fajardo and V. Sick, “Flow field assessment in a fired spray-guided spark-ignition direct-injection engine based on UV particle image velocimetry with sub crank angle resolution,” Proc. Combust. Inst. 31, 3023-3031 (2007).
[CrossRef]

Prog. Energy Combust. Sci. (2)

C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems,” Prog. Energy Combust. Sci. 31, 75-121 (2005).
[CrossRef]

F. Zhao, M.-C. Lai, and D. L. Harrington, “Automotive spark-ignited direct-injection gasoline engines,” Prog. Energy Combust. Sci. 25, 437-562 (1999).
[CrossRef]

SAE Trans. J. Fuels Lubricants (2)

N. Wermuth and V. Sick, “Absorption and fluorescence data of acetone, 3-pentanone, biacetyl, and toluene at engine-specific combinations of temperature and pressure,” SAE Trans. J. Fuels Lubricants 114, 804-814 (2005).

U. Fissenewert, V. Sick, and H. Pucher, “Characterization of combustion and NO formation in a spray-guided gasoline direct-injection engine using chemiluminescence imaging, NO-PLIF, and fast NO exhaust gas analysis,” SAE Trans. J. Fuels Lubricants 114, 786-803 (2005).

SAE Transactions Journal of Engines (1)

J. D. Smith and V. Sick, “Crank-angle resolved imaging of fuel distribution, ignition and combustion in a direct-injection spark-ignition engine,” SAE Transactions Journal of Engines 114, 1575-1585 (2005).

Other (2)

M. Koenig and M. J. Hall, “Cycle-resolved measurements of precombustion fuel concentration near the spark plug in a gasoline SI engine,” SAE paper 981053 (Society for Automotive Engineering, 1998).

V. Sick and C. K. Westbrook, “Diagnostic implications of the reactivity of fluorescence tracers,” Proc. Combust. Inst. doi: 10.1016/j.proci.2008.05.012.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Absorption spectrum of fuel, water, and carbon dioxide at 296 K The spectral simulations used the HITRAN database.

Fig. 2
Fig. 2

Schematic of the experimental setup. The cylinder outline geometry is based on a computational grid (courtesy of Brian Peterson). The labeled optical elements are A&F, dielectric mirror HT532/HR355; B, half-wave plate; C, beam splitter cube; D, cylindrical lens; E, cylindrical lens combination; G, high-speed image-intensified relay optics; H, GG420 color glass filter.

Fig. 3
Fig. 3

Schematic of the spark plug probe. The left image is shown with one channel for illustrative purposes, and the right image shows the position of the absorption path relative to the spark plug electrodes.

Fig. 4
Fig. 4

Horizontal and vertical cross sections shown to illustrate the locations of the LIF and spark plug probe measurements relative to the spark plug electrodes. The LIF measurements are taken in the hatched area in the right image.

Fig. 5
Fig. 5

Comparison of the spark plug probe absorbance measurements with the LIF signals in the homogeneous charge motored experiment. The LIF data are spatially averaged within the rectangle shown (132 pixels) and then averaged at each CAD over 100 cycles. The data contain one standard deviation variation bars. The data reflect the change number density as the chamber volume changes when the piston moves during the engine cycle. This change in the absence of engine blowby losses is shown as a solid curve.

Fig. 6
Fig. 6

Individual data from simultaneous LIF and absorption measurements for 100 cycles measured during the homogeneous charge motored experiment. The average and standard deviation of the same data are shown in Fig. 5 as a function of crank angle and illustrate the change in slope observed here as a pressure and temperature influence primarily on the LIF signal strength.

Fig. 7
Fig. 7

Information on precision for LIF and absorption measurements from the homogeneous charge motored experiment is available from normalized standard deviation data. Ensemble standard deviation data from 100 consecutive engine cycles normalized by the average at their respective CAD are used to eliminate the influence of pressure and temperature dependence on the signals. Note that the noise limit of the absorption measurements was determined from runs without fuel injection to be 1% or less. LIF data are not available after 70 CAD .

Fig. 8
Fig. 8

Fully processed fuel concentration images from the late injected motored experiment. These images are used to visualize fuel plume development. Statistical information is also extracted from the data analysis window to the left of the spark electrodes (shown only in the 39 ° BTDC image for illustrative purposes) and is compared to the absorbance measurements. In images at 33 23 ° BTDC , circles are placed in the images to the left of the spark plug to identify a fuel droplet which moves from left to right with the flow field (see text for more details.)

Fig. 9
Fig. 9

LIF and absorbance probe fuel concentrations from the cycle shown in Fig. 8 from the late injected motored experiment. The LIF measurement shows the presence of fuel approximately 8 CADs before fuel registers in the absorbance data. This delay is expected from the spatial separation of LIF measurement window and spark plug sensor based on the flow direction that was evident from the droplet motion shown in Fig. 8.

Fig. 10
Fig. 10

100 cycle average of quantitative LIF and absorbance data from the late injected motored experiment normalized by data from the homogeneous charge motored experiment to calibrate the signals (see text for details on calibration). The systematic delay in the arrival of fuel at the spark plug probe is consistent with estimated droplet velocities that were extracted from LIF image sequences.

Fig. 11
Fig. 11

Individual, simultaneously acquired LIF and absorption data points that were used to generate the average values and standard deviation bars in Fig. 10 are presented. The correlation is much weaker for stratified engine operation than for homogeneous mixing conditions. See Fig. 5 for comparison. The large spatial and temporal fuel gradients in fuel concentrations are manifested in this plot.

Fig. 12
Fig. 12

Single-cycle LIF image sequence from a homogeneous charge part load combustion experiment. Note that the luminosity of the spark plasma is visible from 29 22 ° BTDC . The biacetyl is consumed in the flame showing the corrugated growth of the flame front starting at 22 ° BTDC .

Fig. 13
Fig. 13

Single-cycle LIF, fuel, and combustion product absorbance measurements from the homogeneous charge part load combustion experiment. The LIF data were extracted from the images shown in Fig. 12. Note that the location of the LIF data analysis window has been moved to avoid capturing spark luminosity.

Fig. 14
Fig. 14

Fuel and product gas absorbance signals averaged over 200 consecutive engine cycles. The traces show important engine operation characteristics such as ignition, outgassing, gas dynamics, and residual gas levels.

Tables (1)

Tables Icon

Table 1 Optical Engine Parameters

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S LIF = c I Laser ( λ ) V ( X tracer p k T ) σ ( λ , p , T , y ) φ ( λ , p , T , y ) ,
ln ( I I 0 ) = σ · c · L ,

Metrics