Abstract

A method of retrieval of the aerosol particle size distribution (APSD) from multiwavelength lidar signals is presented. Assumed distribution (usually a bimodal combination of lognormal functions) with a few free parameters is directly substituted into the lidar equations. The minimization technique allows one to find the parameters that provide the best fit of the assumed APSD by comparison of theoretically generated and experimental signals. Prior knowledge of the lidar ratio is not required. The approach was tested on a typical synthetic APSD consisting of spherical droplets. Comparison of lidar measurements with results from a condensation particle counter was also performed. For signals registered at 35 wavelengths from the UV to the near IR a satisfactory retrieval of synthetic APSD is possible for the particles within the 1003000nm range.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20, 211-220 (1981).
    [CrossRef] [PubMed]
  2. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1999).
  3. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, 1957).
  4. J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics (Wiley, 1997).
  5. G. M. Wing and J. D. Zahrt, Primer on Integral Equations of the First Kind (Society for Industrial and Applied Mathematics, 1991)
    [CrossRef]
  6. C. E. Groetsch Inverse Problems in the Mathematical Sciences (Vieweg, 1993).
  7. B. M. Herman, S. R. Browning, and J. A. Reagan, “Determination of aerosol size distributions from lidar measurements,” J. Atmos. Sci. 28, 763-771 (1971).
    [CrossRef]
  8. K. Rajeev and K. Parameswaran, “Iterative method for the inversion of multiwavelength lidar signals to determine aerosol size distribution,” Appl. Opt. 37, 4690-4700 (1998).
    [CrossRef]
  9. J. Heintzenberg, H. Müller, H. Quenzel, and E. Thomalla, “Information content of optical data with respect to aerosol properties: numerical studies with a randomized minimization-search-technique inversion algorithm,” Appl. Opt. 20, 1308-1315 (1981).
    [CrossRef] [PubMed]
  10. H. Müller and H. Quenzel, “Information content of multispectral lidar measurements with respect to the aerosol size distribution,” Appl. Opt. 24, 648-654 (1985).
    [CrossRef] [PubMed]
  11. D. Müller, U. Wandinger, and A. Ansmann, “Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: theory,” Appl. Opt. 38, 2346-2357 (1999)..
    [CrossRef]
  12. D. Müller, U. Wandinger, and A. Ansmann, “Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: simulation,” Appl. Opt. 38, 2358 -2368 (1999).
    [CrossRef]
  13. I. Veselovskii, A. Kolgotin, V. Griaznov, D. Müller, U. Wandinger, and D. N. Whiteman, “Inversion with regularization for the retrieval of tropospheric aerosol parameters from multiwavelength lidar sounding,” Appl. Opt. 41, 3685-3699 (2002).
    [CrossRef] [PubMed]
  14. I. Veselovskii, A. Kolgotin, V. Griaznov, D. Muller, K. Franke, and D. N. Whiteman, “Inversion of multiwavelength Raman lidar data for retrieval of bimodal aerosol size distribution,” Appl. Opt. 43, 1180-1195 (2004).
    [CrossRef] [PubMed]
  15. I. Veselovskii, A. Kolgotin, D. Müller, and D. N. Whiteman, “Information content of multiwavelength lidar data with respect to microphysical particle properties derived from eigenvalue analysis,” Appl. Opt. 44, 5292-5303 (2005).
    [CrossRef] [PubMed]
  16. C. Böckmann, “Hybrid regularization method for the ill-posed inversion of multiwavelength lidar data in the retrieval of aerosol size distributions,” Appl. Opt. 40, 1329-1342 (2001).
    [CrossRef]
  17. C. Böckmann, I. Mironova, D. Müller, L. Schneidenbach, and R. Nessler, “Microphysical aerosol parameters from multiwavelength lidar,” J. Opt. Soc. Am. A 22, 518-528 (2005).
    [CrossRef]
  18. S. K. Shifrin and I. G. Zolotov, “Determination of the aerosol particle-size distribution from simultaneous data on spectral attenuation and the small-angle phase function,” Appl. Opt. 36, 6047-6056 (1997).
    [CrossRef] [PubMed]
  19. S. K. Shifrin and I. Zolotov, “The Use of Direct Observations over the Aerosol Particle Size Distribution for Inverting Lidar Data,” J. Atmos. Ocean. Technol. 20, 1411-1420 (2003).
    [CrossRef]
  20. D. A. Ligon, T. W. Chen, and J. B. Gillespie, “Determination of aerosol parameters from light--scattering data using an inverse Monte Carlo technique,” Appl. Opt. 35, 4297-4303 (1996).
    [CrossRef] [PubMed]
  21. D. A. Ligon, J. B. Gillespie, and P. Pellegrino, “Aerosol properties from spectral extinction and backscatter estimated by an inverse Monte Carlo method,” Appl. Opt. 39, 4402-4410(2000).
    [CrossRef]
  22. H. Yoshiyama, A. Ohi, and K. Ohta, “Derivation of the aerosol size distribution from a bistatic system of a multiwavelength laser with the singular value decomposition method,” Appl. Opt. 35, 2642-2648 (1996).
    [CrossRef] [PubMed]
  23. Y. J. Kaufman, D. Tanre, J.-F. Leon, and J. Pelon, “Retrievals of profiles of fine and coarse aerosols using lidar and radiometric space measurements,” IEEE Trans. Geosci. Remote Sens. 41, 1743-1754 (2003).
    [CrossRef]
  24. T. Nishizawa, H. Okamoto, N. Sugimoto, I. Matsui, A. Shimizu, and K. Aoki, “An algorithm that retrieves aerosol properties from dual-wavelength polarization lidar measurements,” J. Geophys. Res. 112, D06212 (2007).
    [CrossRef]
  25. J. A. Curcio and G. L. Knestrick, “Correlation of atmospheric transmission with backscattering,” J. Opt. Soc. Am. 48, 686-689 (1958).
    [CrossRef]
  26. O. D. Barteneva, “Scattering functions of light in the atmospheric boundary,” Bull. Acad. Sci. USSR 12, 1237-1244(1960).
  27. S. Twomey and H. B. Howell, “The relative merit of white and monochromatic light for the determination of visibility by backscattering measurements,” Appl. Opt. 4, 501-506 (1965).
    [CrossRef]
  28. E. J. O'Connor, A. J. Illingworth, and R. J. Hogan, “A technique for autocalibration of cloud lidar,” J. Atmos. Ocean. Technol. 21, 777-786 (2004).
    [CrossRef]
  29. Y. Sasano, E. V. Browell, and S. Ismail, “Error caused by using a constant extinction/backscattering ratio in the lidar solution,” Appl. Opt. 24, 3929-3932 (1985).
    [CrossRef] [PubMed]
  30. G. Pappalardo, “Aerosol lidar ratio measurement in the framework of EARLINET,” Geophys. Res. Abstr. 7, 08329 (2005).
  31. E. Landulfo, A. Papayannis, P. Artaxo, A. D. A. Castanho, A. Z. de Freitas, R. F. Souza, N. D. Vieira, Jr., M. P. Jorge, O. R. Sanchez-Coyllo, and D. S. Moreira, “Synergetic measurements of aerosols over São Paulo, Brazil using LIDAR, sunphotometer and satellite data during the dry season,” Atmos. Chem. Phys. 3, 1523-1539 (2003).
    [CrossRef]
  32. Y. Iwasaka, T. Shibata, T. Nagatani, G. Y. Shi, Y. S. Kim, A. Matsuki, D. Trochkine, D. Zhang, M. Yamada, M. Nagatani, H. Nakata, Z. Shen, G. Li, B. Chen, and K. Kawahira, “Large depolarization ratio of free tropospheric aerosols over the Taklamakan Desert revealed by lidar measurements: possible diffusion and transport of dust particles,” J. Geophys. Res. 108(D23), 8652 (2003).,
    [CrossRef]
  33. F. G. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23, 652-653 (1984).
    [CrossRef] [PubMed]
  34. J. E. Hansen and L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527-610 (1974).
    [CrossRef]
  35. C. Fröhlich and G. E. Shaw, “New determination of Rayleigh scattering in the terrestrial atmosphere,” Appl. Opt. 19, 1773-1775 (1980).
    [CrossRef] [PubMed]
  36. B. A. Bodhaine, N. B. Wood, E. G. Dutton, and J. R. Slusser, “On Rayleigh optical depth calculations,” J. Atmos. Ocean. Technol. 16, 1854-1861 (1999).
    [CrossRef]
  37. E. J. Welton, “Measurements of aerosol opical properties over the ocean using sunphotmetry and lidar,” Ph.D. dissertation (University of Miami, Coral Gables, Florida, 1998).
  38. G. Karasiński, A. E. Kardaś, K. Markowicz, S. P. Malinowski, T. Stacewicz, K. Stelmaszczyk, S. Chudzyński, W. Skubiszak, M. Posyniak, A. K. Jagodnicka, C. Hochhertz, and L. Woeste, “LIDAR investigation of properties of atmospheric aerosol,” Eur. J. Phys. 144, 129-138 (2007).
    [CrossRef]
  39. M. Pahlow, D. Müller, M. Tesche, H. Eichler, G. Feingold, W. L. Eberhard, and Y-F. Cheng, “Retrieval of aerosol properties from combined multiwavelength lidar and sunphotometer measurements,” Appl. Opt. 45, 7429-7442(2006).
    [CrossRef] [PubMed]
  40. R. M. Measures, Laser Remote Sensing: Fundamentals and Applications, (Wiley, 1984).
  41. B. R. Herman, B. Gross, F. Moshary, and S. Ahmed, “Bayesian assessment of uncertainty in aerosol size distributions and index of refraction retrieved from multiwavelength lidar measurements,” Appl. Opt. 47, 1617-1627 (2008).
    [CrossRef] [PubMed]
  42. K. Ernst, G. Karasiński, A. Pietruczuk, and T. Stacewicz, “Retrieving The Atmospheric Aerosol Size Distribution By Means Of Multiwavelength Lidar,” Proc. SPIE 5258, 156159(2003).
  43. R. Jaenicke, “Tropospheric aerosols,” in Aerosol-Cloud-Climate Interactions, P. V. Hobbs, ed. (Academic,1993).
  44. M. Hess, P. Koepke, and I. Schult, “Optical properties of aerosols and clouds: the software package OPAC,” Bull. Am. Meteorol. Soc. 79, 831-844 (1998).
    [CrossRef]
  45. J. Piskozub, “Analiza Możliwości Zastosowania Lidaru Wieloczęstościowego Do Badania Aerozolu Morskiego--Rozwiązanie Problemu Odwrotnego,” Fizyka Morza 4, 5-24 (1985).
  46. D. J. Segelstein, “The complex refractive index of water,” M.S. thesis (University of Missouri, Kansas City, Missouri, 1981).
  47. F. E. Volz, “Infrared refractive index of atmospheric aerosol substances,” Appl. Opt. 11, 755-759 (1972).
    [CrossRef] [PubMed]
  48. H. W. Ott, Noise Reduction Techniques in Electronic Systems, (Wiley-Interscience, 1988)
  49. K. Ernst, S. Chudzyński, G. Karasiński, A. Pietruczuk, and T. Stacewicz, “Multiwavelenth lidar for determination of the atmospheric aerosol size distribution,” Proc. SPIE 5229, 4550 (2003).
  50. S. Chudzyński, G. Karasiński, W. Skubiszak, and T. Stacewicz, “Investigation of atmospheric aerosol with multiwavelength lidar,” Opt. Appl. 36, 621-628 (2006).
  51. “Particle Measurement Systems,” Technical documentation of CSASP-100-HV, Boulder, Colo., USA.
  52. A. K. Jagodnicka, T. Stacewicz, G. Karasiński, and M. Posyniak, “Simple method of aerosol particle size distribution retrieving from multiwavelength lidar signals,” presented at the 15th International Conference on Clouds and Precipitation ICCP-2008, Cancun, Mexico (7-11 July 2008).

2008

2007

T. Nishizawa, H. Okamoto, N. Sugimoto, I. Matsui, A. Shimizu, and K. Aoki, “An algorithm that retrieves aerosol properties from dual-wavelength polarization lidar measurements,” J. Geophys. Res. 112, D06212 (2007).
[CrossRef]

G. Karasiński, A. E. Kardaś, K. Markowicz, S. P. Malinowski, T. Stacewicz, K. Stelmaszczyk, S. Chudzyński, W. Skubiszak, M. Posyniak, A. K. Jagodnicka, C. Hochhertz, and L. Woeste, “LIDAR investigation of properties of atmospheric aerosol,” Eur. J. Phys. 144, 129-138 (2007).
[CrossRef]

2006

S. Chudzyński, G. Karasiński, W. Skubiszak, and T. Stacewicz, “Investigation of atmospheric aerosol with multiwavelength lidar,” Opt. Appl. 36, 621-628 (2006).

M. Pahlow, D. Müller, M. Tesche, H. Eichler, G. Feingold, W. L. Eberhard, and Y-F. Cheng, “Retrieval of aerosol properties from combined multiwavelength lidar and sunphotometer measurements,” Appl. Opt. 45, 7429-7442(2006).
[CrossRef] [PubMed]

2005

I. Veselovskii, A. Kolgotin, D. Müller, and D. N. Whiteman, “Information content of multiwavelength lidar data with respect to microphysical particle properties derived from eigenvalue analysis,” Appl. Opt. 44, 5292-5303 (2005).
[CrossRef] [PubMed]

C. Böckmann, I. Mironova, D. Müller, L. Schneidenbach, and R. Nessler, “Microphysical aerosol parameters from multiwavelength lidar,” J. Opt. Soc. Am. A 22, 518-528 (2005).
[CrossRef]

G. Pappalardo, “Aerosol lidar ratio measurement in the framework of EARLINET,” Geophys. Res. Abstr. 7, 08329 (2005).

2004

2003

K. Ernst, G. Karasiński, A. Pietruczuk, and T. Stacewicz, “Retrieving The Atmospheric Aerosol Size Distribution By Means Of Multiwavelength Lidar,” Proc. SPIE 5258, 156159(2003).

E. Landulfo, A. Papayannis, P. Artaxo, A. D. A. Castanho, A. Z. de Freitas, R. F. Souza, N. D. Vieira, Jr., M. P. Jorge, O. R. Sanchez-Coyllo, and D. S. Moreira, “Synergetic measurements of aerosols over São Paulo, Brazil using LIDAR, sunphotometer and satellite data during the dry season,” Atmos. Chem. Phys. 3, 1523-1539 (2003).
[CrossRef]

Y. Iwasaka, T. Shibata, T. Nagatani, G. Y. Shi, Y. S. Kim, A. Matsuki, D. Trochkine, D. Zhang, M. Yamada, M. Nagatani, H. Nakata, Z. Shen, G. Li, B. Chen, and K. Kawahira, “Large depolarization ratio of free tropospheric aerosols over the Taklamakan Desert revealed by lidar measurements: possible diffusion and transport of dust particles,” J. Geophys. Res. 108(D23), 8652 (2003).,
[CrossRef]

S. K. Shifrin and I. Zolotov, “The Use of Direct Observations over the Aerosol Particle Size Distribution for Inverting Lidar Data,” J. Atmos. Ocean. Technol. 20, 1411-1420 (2003).
[CrossRef]

Y. J. Kaufman, D. Tanre, J.-F. Leon, and J. Pelon, “Retrievals of profiles of fine and coarse aerosols using lidar and radiometric space measurements,” IEEE Trans. Geosci. Remote Sens. 41, 1743-1754 (2003).
[CrossRef]

K. Ernst, S. Chudzyński, G. Karasiński, A. Pietruczuk, and T. Stacewicz, “Multiwavelenth lidar for determination of the atmospheric aerosol size distribution,” Proc. SPIE 5229, 4550 (2003).

2002

2001

2000

1999

1998

M. Hess, P. Koepke, and I. Schult, “Optical properties of aerosols and clouds: the software package OPAC,” Bull. Am. Meteorol. Soc. 79, 831-844 (1998).
[CrossRef]

K. Rajeev and K. Parameswaran, “Iterative method for the inversion of multiwavelength lidar signals to determine aerosol size distribution,” Appl. Opt. 37, 4690-4700 (1998).
[CrossRef]

1997

1996

1985

1984

1981

1980

1974

J. E. Hansen and L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527-610 (1974).
[CrossRef]

1972

1971

B. M. Herman, S. R. Browning, and J. A. Reagan, “Determination of aerosol size distributions from lidar measurements,” J. Atmos. Sci. 28, 763-771 (1971).
[CrossRef]

1965

1960

O. D. Barteneva, “Scattering functions of light in the atmospheric boundary,” Bull. Acad. Sci. USSR 12, 1237-1244(1960).

1958

Ahmed, S.

Ansmann, A.

Aoki, K.

T. Nishizawa, H. Okamoto, N. Sugimoto, I. Matsui, A. Shimizu, and K. Aoki, “An algorithm that retrieves aerosol properties from dual-wavelength polarization lidar measurements,” J. Geophys. Res. 112, D06212 (2007).
[CrossRef]

Artaxo, P.

E. Landulfo, A. Papayannis, P. Artaxo, A. D. A. Castanho, A. Z. de Freitas, R. F. Souza, N. D. Vieira, Jr., M. P. Jorge, O. R. Sanchez-Coyllo, and D. S. Moreira, “Synergetic measurements of aerosols over São Paulo, Brazil using LIDAR, sunphotometer and satellite data during the dry season,” Atmos. Chem. Phys. 3, 1523-1539 (2003).
[CrossRef]

Barteneva, O. D.

O. D. Barteneva, “Scattering functions of light in the atmospheric boundary,” Bull. Acad. Sci. USSR 12, 1237-1244(1960).

Böckmann, C.

C. Böckmann, I. Mironova, D. Müller, L. Schneidenbach, and R. Nessler, “Microphysical aerosol parameters from multiwavelength lidar,” J. Opt. Soc. Am. A 22, 518-528 (2005).
[CrossRef]

C. Böckmann, “Hybrid regularization method for the ill-posed inversion of multiwavelength lidar data in the retrieval of aerosol size distributions,” Appl. Opt. 40, 1329-1342 (2001).
[CrossRef]

Bodhaine, B. A.

B. A. Bodhaine, N. B. Wood, E. G. Dutton, and J. R. Slusser, “On Rayleigh optical depth calculations,” J. Atmos. Ocean. Technol. 16, 1854-1861 (1999).
[CrossRef]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1999).

Browell, E. V.

Browning, S. R.

B. M. Herman, S. R. Browning, and J. A. Reagan, “Determination of aerosol size distributions from lidar measurements,” J. Atmos. Sci. 28, 763-771 (1971).
[CrossRef]

Castanho, A. D. A.

E. Landulfo, A. Papayannis, P. Artaxo, A. D. A. Castanho, A. Z. de Freitas, R. F. Souza, N. D. Vieira, Jr., M. P. Jorge, O. R. Sanchez-Coyllo, and D. S. Moreira, “Synergetic measurements of aerosols over São Paulo, Brazil using LIDAR, sunphotometer and satellite data during the dry season,” Atmos. Chem. Phys. 3, 1523-1539 (2003).
[CrossRef]

Chen, B.

Y. Iwasaka, T. Shibata, T. Nagatani, G. Y. Shi, Y. S. Kim, A. Matsuki, D. Trochkine, D. Zhang, M. Yamada, M. Nagatani, H. Nakata, Z. Shen, G. Li, B. Chen, and K. Kawahira, “Large depolarization ratio of free tropospheric aerosols over the Taklamakan Desert revealed by lidar measurements: possible diffusion and transport of dust particles,” J. Geophys. Res. 108(D23), 8652 (2003).,
[CrossRef]

Chen, T. W.

Cheng, Y-F.

Chudzynski, S.

G. Karasiński, A. E. Kardaś, K. Markowicz, S. P. Malinowski, T. Stacewicz, K. Stelmaszczyk, S. Chudzyński, W. Skubiszak, M. Posyniak, A. K. Jagodnicka, C. Hochhertz, and L. Woeste, “LIDAR investigation of properties of atmospheric aerosol,” Eur. J. Phys. 144, 129-138 (2007).
[CrossRef]

S. Chudzyński, G. Karasiński, W. Skubiszak, and T. Stacewicz, “Investigation of atmospheric aerosol with multiwavelength lidar,” Opt. Appl. 36, 621-628 (2006).

K. Ernst, S. Chudzyński, G. Karasiński, A. Pietruczuk, and T. Stacewicz, “Multiwavelenth lidar for determination of the atmospheric aerosol size distribution,” Proc. SPIE 5229, 4550 (2003).

Curcio, J. A.

de Freitas, A. Z.

E. Landulfo, A. Papayannis, P. Artaxo, A. D. A. Castanho, A. Z. de Freitas, R. F. Souza, N. D. Vieira, Jr., M. P. Jorge, O. R. Sanchez-Coyllo, and D. S. Moreira, “Synergetic measurements of aerosols over São Paulo, Brazil using LIDAR, sunphotometer and satellite data during the dry season,” Atmos. Chem. Phys. 3, 1523-1539 (2003).
[CrossRef]

Dutton, E. G.

B. A. Bodhaine, N. B. Wood, E. G. Dutton, and J. R. Slusser, “On Rayleigh optical depth calculations,” J. Atmos. Ocean. Technol. 16, 1854-1861 (1999).
[CrossRef]

Eberhard, W. L.

Eichler, H.

Ernst, K.

K. Ernst, S. Chudzyński, G. Karasiński, A. Pietruczuk, and T. Stacewicz, “Multiwavelenth lidar for determination of the atmospheric aerosol size distribution,” Proc. SPIE 5229, 4550 (2003).

K. Ernst, G. Karasiński, A. Pietruczuk, and T. Stacewicz, “Retrieving The Atmospheric Aerosol Size Distribution By Means Of Multiwavelength Lidar,” Proc. SPIE 5258, 156159(2003).

Feingold, G.

Fernald, F. G.

Franke, K.

Fröhlich, C.

Gillespie, J. B.

Griaznov, V.

Groetsch, C. E.

C. E. Groetsch Inverse Problems in the Mathematical Sciences (Vieweg, 1993).

Gross, B.

Hansen, J. E.

J. E. Hansen and L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527-610 (1974).
[CrossRef]

Heintzenberg, J.

Herman, B. M.

B. M. Herman, S. R. Browning, and J. A. Reagan, “Determination of aerosol size distributions from lidar measurements,” J. Atmos. Sci. 28, 763-771 (1971).
[CrossRef]

Herman, B. R.

Hess, M.

M. Hess, P. Koepke, and I. Schult, “Optical properties of aerosols and clouds: the software package OPAC,” Bull. Am. Meteorol. Soc. 79, 831-844 (1998).
[CrossRef]

Hochhertz, C.

G. Karasiński, A. E. Kardaś, K. Markowicz, S. P. Malinowski, T. Stacewicz, K. Stelmaszczyk, S. Chudzyński, W. Skubiszak, M. Posyniak, A. K. Jagodnicka, C. Hochhertz, and L. Woeste, “LIDAR investigation of properties of atmospheric aerosol,” Eur. J. Phys. 144, 129-138 (2007).
[CrossRef]

Hogan, R. J.

E. J. O'Connor, A. J. Illingworth, and R. J. Hogan, “A technique for autocalibration of cloud lidar,” J. Atmos. Ocean. Technol. 21, 777-786 (2004).
[CrossRef]

Howell, H. B.

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1999).

Illingworth, A. J.

E. J. O'Connor, A. J. Illingworth, and R. J. Hogan, “A technique for autocalibration of cloud lidar,” J. Atmos. Ocean. Technol. 21, 777-786 (2004).
[CrossRef]

Ismail, S.

Iwasaka, Y.

Y. Iwasaka, T. Shibata, T. Nagatani, G. Y. Shi, Y. S. Kim, A. Matsuki, D. Trochkine, D. Zhang, M. Yamada, M. Nagatani, H. Nakata, Z. Shen, G. Li, B. Chen, and K. Kawahira, “Large depolarization ratio of free tropospheric aerosols over the Taklamakan Desert revealed by lidar measurements: possible diffusion and transport of dust particles,” J. Geophys. Res. 108(D23), 8652 (2003).,
[CrossRef]

Jaenicke, R.

R. Jaenicke, “Tropospheric aerosols,” in Aerosol-Cloud-Climate Interactions, P. V. Hobbs, ed. (Academic,1993).

Jagodnicka, A. K.

G. Karasiński, A. E. Kardaś, K. Markowicz, S. P. Malinowski, T. Stacewicz, K. Stelmaszczyk, S. Chudzyński, W. Skubiszak, M. Posyniak, A. K. Jagodnicka, C. Hochhertz, and L. Woeste, “LIDAR investigation of properties of atmospheric aerosol,” Eur. J. Phys. 144, 129-138 (2007).
[CrossRef]

A. K. Jagodnicka, T. Stacewicz, G. Karasiński, and M. Posyniak, “Simple method of aerosol particle size distribution retrieving from multiwavelength lidar signals,” presented at the 15th International Conference on Clouds and Precipitation ICCP-2008, Cancun, Mexico (7-11 July 2008).

Jorge, M. P.

E. Landulfo, A. Papayannis, P. Artaxo, A. D. A. Castanho, A. Z. de Freitas, R. F. Souza, N. D. Vieira, Jr., M. P. Jorge, O. R. Sanchez-Coyllo, and D. S. Moreira, “Synergetic measurements of aerosols over São Paulo, Brazil using LIDAR, sunphotometer and satellite data during the dry season,” Atmos. Chem. Phys. 3, 1523-1539 (2003).
[CrossRef]

Karasinski, G.

G. Karasiński, A. E. Kardaś, K. Markowicz, S. P. Malinowski, T. Stacewicz, K. Stelmaszczyk, S. Chudzyński, W. Skubiszak, M. Posyniak, A. K. Jagodnicka, C. Hochhertz, and L. Woeste, “LIDAR investigation of properties of atmospheric aerosol,” Eur. J. Phys. 144, 129-138 (2007).
[CrossRef]

S. Chudzyński, G. Karasiński, W. Skubiszak, and T. Stacewicz, “Investigation of atmospheric aerosol with multiwavelength lidar,” Opt. Appl. 36, 621-628 (2006).

K. Ernst, S. Chudzyński, G. Karasiński, A. Pietruczuk, and T. Stacewicz, “Multiwavelenth lidar for determination of the atmospheric aerosol size distribution,” Proc. SPIE 5229, 4550 (2003).

K. Ernst, G. Karasiński, A. Pietruczuk, and T. Stacewicz, “Retrieving The Atmospheric Aerosol Size Distribution By Means Of Multiwavelength Lidar,” Proc. SPIE 5258, 156159(2003).

A. K. Jagodnicka, T. Stacewicz, G. Karasiński, and M. Posyniak, “Simple method of aerosol particle size distribution retrieving from multiwavelength lidar signals,” presented at the 15th International Conference on Clouds and Precipitation ICCP-2008, Cancun, Mexico (7-11 July 2008).

Kardas, A. E.

G. Karasiński, A. E. Kardaś, K. Markowicz, S. P. Malinowski, T. Stacewicz, K. Stelmaszczyk, S. Chudzyński, W. Skubiszak, M. Posyniak, A. K. Jagodnicka, C. Hochhertz, and L. Woeste, “LIDAR investigation of properties of atmospheric aerosol,” Eur. J. Phys. 144, 129-138 (2007).
[CrossRef]

Kaufman, Y. J.

Y. J. Kaufman, D. Tanre, J.-F. Leon, and J. Pelon, “Retrievals of profiles of fine and coarse aerosols using lidar and radiometric space measurements,” IEEE Trans. Geosci. Remote Sens. 41, 1743-1754 (2003).
[CrossRef]

Kawahira, K.

Y. Iwasaka, T. Shibata, T. Nagatani, G. Y. Shi, Y. S. Kim, A. Matsuki, D. Trochkine, D. Zhang, M. Yamada, M. Nagatani, H. Nakata, Z. Shen, G. Li, B. Chen, and K. Kawahira, “Large depolarization ratio of free tropospheric aerosols over the Taklamakan Desert revealed by lidar measurements: possible diffusion and transport of dust particles,” J. Geophys. Res. 108(D23), 8652 (2003).,
[CrossRef]

Kim, Y. S.

Y. Iwasaka, T. Shibata, T. Nagatani, G. Y. Shi, Y. S. Kim, A. Matsuki, D. Trochkine, D. Zhang, M. Yamada, M. Nagatani, H. Nakata, Z. Shen, G. Li, B. Chen, and K. Kawahira, “Large depolarization ratio of free tropospheric aerosols over the Taklamakan Desert revealed by lidar measurements: possible diffusion and transport of dust particles,” J. Geophys. Res. 108(D23), 8652 (2003).,
[CrossRef]

Klett, J. D.

Knestrick, G. L.

Koepke, P.

M. Hess, P. Koepke, and I. Schult, “Optical properties of aerosols and clouds: the software package OPAC,” Bull. Am. Meteorol. Soc. 79, 831-844 (1998).
[CrossRef]

Kolgotin, A.

Landulfo, E.

E. Landulfo, A. Papayannis, P. Artaxo, A. D. A. Castanho, A. Z. de Freitas, R. F. Souza, N. D. Vieira, Jr., M. P. Jorge, O. R. Sanchez-Coyllo, and D. S. Moreira, “Synergetic measurements of aerosols over São Paulo, Brazil using LIDAR, sunphotometer and satellite data during the dry season,” Atmos. Chem. Phys. 3, 1523-1539 (2003).
[CrossRef]

Leon, J.-F.

Y. J. Kaufman, D. Tanre, J.-F. Leon, and J. Pelon, “Retrievals of profiles of fine and coarse aerosols using lidar and radiometric space measurements,” IEEE Trans. Geosci. Remote Sens. 41, 1743-1754 (2003).
[CrossRef]

Li, G.

Y. Iwasaka, T. Shibata, T. Nagatani, G. Y. Shi, Y. S. Kim, A. Matsuki, D. Trochkine, D. Zhang, M. Yamada, M. Nagatani, H. Nakata, Z. Shen, G. Li, B. Chen, and K. Kawahira, “Large depolarization ratio of free tropospheric aerosols over the Taklamakan Desert revealed by lidar measurements: possible diffusion and transport of dust particles,” J. Geophys. Res. 108(D23), 8652 (2003).,
[CrossRef]

Ligon, D. A.

Malinowski, S. P.

G. Karasiński, A. E. Kardaś, K. Markowicz, S. P. Malinowski, T. Stacewicz, K. Stelmaszczyk, S. Chudzyński, W. Skubiszak, M. Posyniak, A. K. Jagodnicka, C. Hochhertz, and L. Woeste, “LIDAR investigation of properties of atmospheric aerosol,” Eur. J. Phys. 144, 129-138 (2007).
[CrossRef]

Markowicz, K.

G. Karasiński, A. E. Kardaś, K. Markowicz, S. P. Malinowski, T. Stacewicz, K. Stelmaszczyk, S. Chudzyński, W. Skubiszak, M. Posyniak, A. K. Jagodnicka, C. Hochhertz, and L. Woeste, “LIDAR investigation of properties of atmospheric aerosol,” Eur. J. Phys. 144, 129-138 (2007).
[CrossRef]

Matsui, I.

T. Nishizawa, H. Okamoto, N. Sugimoto, I. Matsui, A. Shimizu, and K. Aoki, “An algorithm that retrieves aerosol properties from dual-wavelength polarization lidar measurements,” J. Geophys. Res. 112, D06212 (2007).
[CrossRef]

Matsuki, A.

Y. Iwasaka, T. Shibata, T. Nagatani, G. Y. Shi, Y. S. Kim, A. Matsuki, D. Trochkine, D. Zhang, M. Yamada, M. Nagatani, H. Nakata, Z. Shen, G. Li, B. Chen, and K. Kawahira, “Large depolarization ratio of free tropospheric aerosols over the Taklamakan Desert revealed by lidar measurements: possible diffusion and transport of dust particles,” J. Geophys. Res. 108(D23), 8652 (2003).,
[CrossRef]

Measures, R. M.

R. M. Measures, Laser Remote Sensing: Fundamentals and Applications, (Wiley, 1984).

Mironova, I.

C. Böckmann, I. Mironova, D. Müller, L. Schneidenbach, and R. Nessler, “Microphysical aerosol parameters from multiwavelength lidar,” J. Opt. Soc. Am. A 22, 518-528 (2005).
[CrossRef]

Moreira, D. S.

E. Landulfo, A. Papayannis, P. Artaxo, A. D. A. Castanho, A. Z. de Freitas, R. F. Souza, N. D. Vieira, Jr., M. P. Jorge, O. R. Sanchez-Coyllo, and D. S. Moreira, “Synergetic measurements of aerosols over São Paulo, Brazil using LIDAR, sunphotometer and satellite data during the dry season,” Atmos. Chem. Phys. 3, 1523-1539 (2003).
[CrossRef]

Moshary, F.

Muller, D.

Müller, D.

Müller, H.

Nagatani, M.

Y. Iwasaka, T. Shibata, T. Nagatani, G. Y. Shi, Y. S. Kim, A. Matsuki, D. Trochkine, D. Zhang, M. Yamada, M. Nagatani, H. Nakata, Z. Shen, G. Li, B. Chen, and K. Kawahira, “Large depolarization ratio of free tropospheric aerosols over the Taklamakan Desert revealed by lidar measurements: possible diffusion and transport of dust particles,” J. Geophys. Res. 108(D23), 8652 (2003).,
[CrossRef]

Nagatani, T.

Y. Iwasaka, T. Shibata, T. Nagatani, G. Y. Shi, Y. S. Kim, A. Matsuki, D. Trochkine, D. Zhang, M. Yamada, M. Nagatani, H. Nakata, Z. Shen, G. Li, B. Chen, and K. Kawahira, “Large depolarization ratio of free tropospheric aerosols over the Taklamakan Desert revealed by lidar measurements: possible diffusion and transport of dust particles,” J. Geophys. Res. 108(D23), 8652 (2003).,
[CrossRef]

Nakata, H.

Y. Iwasaka, T. Shibata, T. Nagatani, G. Y. Shi, Y. S. Kim, A. Matsuki, D. Trochkine, D. Zhang, M. Yamada, M. Nagatani, H. Nakata, Z. Shen, G. Li, B. Chen, and K. Kawahira, “Large depolarization ratio of free tropospheric aerosols over the Taklamakan Desert revealed by lidar measurements: possible diffusion and transport of dust particles,” J. Geophys. Res. 108(D23), 8652 (2003).,
[CrossRef]

Nessler, R.

C. Böckmann, I. Mironova, D. Müller, L. Schneidenbach, and R. Nessler, “Microphysical aerosol parameters from multiwavelength lidar,” J. Opt. Soc. Am. A 22, 518-528 (2005).
[CrossRef]

Nishizawa, T.

T. Nishizawa, H. Okamoto, N. Sugimoto, I. Matsui, A. Shimizu, and K. Aoki, “An algorithm that retrieves aerosol properties from dual-wavelength polarization lidar measurements,” J. Geophys. Res. 112, D06212 (2007).
[CrossRef]

O'Connor, E. J.

E. J. O'Connor, A. J. Illingworth, and R. J. Hogan, “A technique for autocalibration of cloud lidar,” J. Atmos. Ocean. Technol. 21, 777-786 (2004).
[CrossRef]

Ohi, A.

Ohta, K.

Okamoto, H.

T. Nishizawa, H. Okamoto, N. Sugimoto, I. Matsui, A. Shimizu, and K. Aoki, “An algorithm that retrieves aerosol properties from dual-wavelength polarization lidar measurements,” J. Geophys. Res. 112, D06212 (2007).
[CrossRef]

Ott, H. W.

H. W. Ott, Noise Reduction Techniques in Electronic Systems, (Wiley-Interscience, 1988)

Pahlow, M.

Pandis, S. N.

J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics (Wiley, 1997).

Papayannis, A.

E. Landulfo, A. Papayannis, P. Artaxo, A. D. A. Castanho, A. Z. de Freitas, R. F. Souza, N. D. Vieira, Jr., M. P. Jorge, O. R. Sanchez-Coyllo, and D. S. Moreira, “Synergetic measurements of aerosols over São Paulo, Brazil using LIDAR, sunphotometer and satellite data during the dry season,” Atmos. Chem. Phys. 3, 1523-1539 (2003).
[CrossRef]

Pappalardo, G.

G. Pappalardo, “Aerosol lidar ratio measurement in the framework of EARLINET,” Geophys. Res. Abstr. 7, 08329 (2005).

Parameswaran, K.

Pellegrino, P.

Pelon, J.

Y. J. Kaufman, D. Tanre, J.-F. Leon, and J. Pelon, “Retrievals of profiles of fine and coarse aerosols using lidar and radiometric space measurements,” IEEE Trans. Geosci. Remote Sens. 41, 1743-1754 (2003).
[CrossRef]

Pietruczuk, A.

K. Ernst, S. Chudzyński, G. Karasiński, A. Pietruczuk, and T. Stacewicz, “Multiwavelenth lidar for determination of the atmospheric aerosol size distribution,” Proc. SPIE 5229, 4550 (2003).

K. Ernst, G. Karasiński, A. Pietruczuk, and T. Stacewicz, “Retrieving The Atmospheric Aerosol Size Distribution By Means Of Multiwavelength Lidar,” Proc. SPIE 5258, 156159(2003).

Piskozub, J.

J. Piskozub, “Analiza Możliwości Zastosowania Lidaru Wieloczęstościowego Do Badania Aerozolu Morskiego--Rozwiązanie Problemu Odwrotnego,” Fizyka Morza 4, 5-24 (1985).

Posyniak, M.

G. Karasiński, A. E. Kardaś, K. Markowicz, S. P. Malinowski, T. Stacewicz, K. Stelmaszczyk, S. Chudzyński, W. Skubiszak, M. Posyniak, A. K. Jagodnicka, C. Hochhertz, and L. Woeste, “LIDAR investigation of properties of atmospheric aerosol,” Eur. J. Phys. 144, 129-138 (2007).
[CrossRef]

A. K. Jagodnicka, T. Stacewicz, G. Karasiński, and M. Posyniak, “Simple method of aerosol particle size distribution retrieving from multiwavelength lidar signals,” presented at the 15th International Conference on Clouds and Precipitation ICCP-2008, Cancun, Mexico (7-11 July 2008).

Quenzel, H.

Rajeev, K.

Reagan, J. A.

B. M. Herman, S. R. Browning, and J. A. Reagan, “Determination of aerosol size distributions from lidar measurements,” J. Atmos. Sci. 28, 763-771 (1971).
[CrossRef]

Sanchez-Coyllo, O. R.

E. Landulfo, A. Papayannis, P. Artaxo, A. D. A. Castanho, A. Z. de Freitas, R. F. Souza, N. D. Vieira, Jr., M. P. Jorge, O. R. Sanchez-Coyllo, and D. S. Moreira, “Synergetic measurements of aerosols over São Paulo, Brazil using LIDAR, sunphotometer and satellite data during the dry season,” Atmos. Chem. Phys. 3, 1523-1539 (2003).
[CrossRef]

Sasano, Y.

Schneidenbach, L.

C. Böckmann, I. Mironova, D. Müller, L. Schneidenbach, and R. Nessler, “Microphysical aerosol parameters from multiwavelength lidar,” J. Opt. Soc. Am. A 22, 518-528 (2005).
[CrossRef]

Schult, I.

M. Hess, P. Koepke, and I. Schult, “Optical properties of aerosols and clouds: the software package OPAC,” Bull. Am. Meteorol. Soc. 79, 831-844 (1998).
[CrossRef]

Segelstein, D. J.

D. J. Segelstein, “The complex refractive index of water,” M.S. thesis (University of Missouri, Kansas City, Missouri, 1981).

Seinfeld, J. H.

J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics (Wiley, 1997).

Shaw, G. E.

Shen, Z.

Y. Iwasaka, T. Shibata, T. Nagatani, G. Y. Shi, Y. S. Kim, A. Matsuki, D. Trochkine, D. Zhang, M. Yamada, M. Nagatani, H. Nakata, Z. Shen, G. Li, B. Chen, and K. Kawahira, “Large depolarization ratio of free tropospheric aerosols over the Taklamakan Desert revealed by lidar measurements: possible diffusion and transport of dust particles,” J. Geophys. Res. 108(D23), 8652 (2003).,
[CrossRef]

Shi, G. Y.

Y. Iwasaka, T. Shibata, T. Nagatani, G. Y. Shi, Y. S. Kim, A. Matsuki, D. Trochkine, D. Zhang, M. Yamada, M. Nagatani, H. Nakata, Z. Shen, G. Li, B. Chen, and K. Kawahira, “Large depolarization ratio of free tropospheric aerosols over the Taklamakan Desert revealed by lidar measurements: possible diffusion and transport of dust particles,” J. Geophys. Res. 108(D23), 8652 (2003).,
[CrossRef]

Shibata, T.

Y. Iwasaka, T. Shibata, T. Nagatani, G. Y. Shi, Y. S. Kim, A. Matsuki, D. Trochkine, D. Zhang, M. Yamada, M. Nagatani, H. Nakata, Z. Shen, G. Li, B. Chen, and K. Kawahira, “Large depolarization ratio of free tropospheric aerosols over the Taklamakan Desert revealed by lidar measurements: possible diffusion and transport of dust particles,” J. Geophys. Res. 108(D23), 8652 (2003).,
[CrossRef]

Shifrin, S. K.

S. K. Shifrin and I. Zolotov, “The Use of Direct Observations over the Aerosol Particle Size Distribution for Inverting Lidar Data,” J. Atmos. Ocean. Technol. 20, 1411-1420 (2003).
[CrossRef]

S. K. Shifrin and I. G. Zolotov, “Determination of the aerosol particle-size distribution from simultaneous data on spectral attenuation and the small-angle phase function,” Appl. Opt. 36, 6047-6056 (1997).
[CrossRef] [PubMed]

Shimizu, A.

T. Nishizawa, H. Okamoto, N. Sugimoto, I. Matsui, A. Shimizu, and K. Aoki, “An algorithm that retrieves aerosol properties from dual-wavelength polarization lidar measurements,” J. Geophys. Res. 112, D06212 (2007).
[CrossRef]

Skubiszak, W.

G. Karasiński, A. E. Kardaś, K. Markowicz, S. P. Malinowski, T. Stacewicz, K. Stelmaszczyk, S. Chudzyński, W. Skubiszak, M. Posyniak, A. K. Jagodnicka, C. Hochhertz, and L. Woeste, “LIDAR investigation of properties of atmospheric aerosol,” Eur. J. Phys. 144, 129-138 (2007).
[CrossRef]

S. Chudzyński, G. Karasiński, W. Skubiszak, and T. Stacewicz, “Investigation of atmospheric aerosol with multiwavelength lidar,” Opt. Appl. 36, 621-628 (2006).

Slusser, J. R.

B. A. Bodhaine, N. B. Wood, E. G. Dutton, and J. R. Slusser, “On Rayleigh optical depth calculations,” J. Atmos. Ocean. Technol. 16, 1854-1861 (1999).
[CrossRef]

Souza, R. F.

E. Landulfo, A. Papayannis, P. Artaxo, A. D. A. Castanho, A. Z. de Freitas, R. F. Souza, N. D. Vieira, Jr., M. P. Jorge, O. R. Sanchez-Coyllo, and D. S. Moreira, “Synergetic measurements of aerosols over São Paulo, Brazil using LIDAR, sunphotometer and satellite data during the dry season,” Atmos. Chem. Phys. 3, 1523-1539 (2003).
[CrossRef]

Stacewicz, T.

G. Karasiński, A. E. Kardaś, K. Markowicz, S. P. Malinowski, T. Stacewicz, K. Stelmaszczyk, S. Chudzyński, W. Skubiszak, M. Posyniak, A. K. Jagodnicka, C. Hochhertz, and L. Woeste, “LIDAR investigation of properties of atmospheric aerosol,” Eur. J. Phys. 144, 129-138 (2007).
[CrossRef]

S. Chudzyński, G. Karasiński, W. Skubiszak, and T. Stacewicz, “Investigation of atmospheric aerosol with multiwavelength lidar,” Opt. Appl. 36, 621-628 (2006).

K. Ernst, S. Chudzyński, G. Karasiński, A. Pietruczuk, and T. Stacewicz, “Multiwavelenth lidar for determination of the atmospheric aerosol size distribution,” Proc. SPIE 5229, 4550 (2003).

K. Ernst, G. Karasiński, A. Pietruczuk, and T. Stacewicz, “Retrieving The Atmospheric Aerosol Size Distribution By Means Of Multiwavelength Lidar,” Proc. SPIE 5258, 156159(2003).

A. K. Jagodnicka, T. Stacewicz, G. Karasiński, and M. Posyniak, “Simple method of aerosol particle size distribution retrieving from multiwavelength lidar signals,” presented at the 15th International Conference on Clouds and Precipitation ICCP-2008, Cancun, Mexico (7-11 July 2008).

Stelmaszczyk, K.

G. Karasiński, A. E. Kardaś, K. Markowicz, S. P. Malinowski, T. Stacewicz, K. Stelmaszczyk, S. Chudzyński, W. Skubiszak, M. Posyniak, A. K. Jagodnicka, C. Hochhertz, and L. Woeste, “LIDAR investigation of properties of atmospheric aerosol,” Eur. J. Phys. 144, 129-138 (2007).
[CrossRef]

Sugimoto, N.

T. Nishizawa, H. Okamoto, N. Sugimoto, I. Matsui, A. Shimizu, and K. Aoki, “An algorithm that retrieves aerosol properties from dual-wavelength polarization lidar measurements,” J. Geophys. Res. 112, D06212 (2007).
[CrossRef]

Tanre, D.

Y. J. Kaufman, D. Tanre, J.-F. Leon, and J. Pelon, “Retrievals of profiles of fine and coarse aerosols using lidar and radiometric space measurements,” IEEE Trans. Geosci. Remote Sens. 41, 1743-1754 (2003).
[CrossRef]

Tesche, M.

Thomalla, E.

Travis, L. D.

J. E. Hansen and L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527-610 (1974).
[CrossRef]

Trochkine, D.

Y. Iwasaka, T. Shibata, T. Nagatani, G. Y. Shi, Y. S. Kim, A. Matsuki, D. Trochkine, D. Zhang, M. Yamada, M. Nagatani, H. Nakata, Z. Shen, G. Li, B. Chen, and K. Kawahira, “Large depolarization ratio of free tropospheric aerosols over the Taklamakan Desert revealed by lidar measurements: possible diffusion and transport of dust particles,” J. Geophys. Res. 108(D23), 8652 (2003).,
[CrossRef]

Twomey, S.

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, 1957).

Veselovskii, I.

Vieira, N. D.

E. Landulfo, A. Papayannis, P. Artaxo, A. D. A. Castanho, A. Z. de Freitas, R. F. Souza, N. D. Vieira, Jr., M. P. Jorge, O. R. Sanchez-Coyllo, and D. S. Moreira, “Synergetic measurements of aerosols over São Paulo, Brazil using LIDAR, sunphotometer and satellite data during the dry season,” Atmos. Chem. Phys. 3, 1523-1539 (2003).
[CrossRef]

Volz, F. E.

Wandinger, U.

Welton, E. J.

E. J. Welton, “Measurements of aerosol opical properties over the ocean using sunphotmetry and lidar,” Ph.D. dissertation (University of Miami, Coral Gables, Florida, 1998).

Whiteman, D. N.

Wing , G. M.

G. M. Wing and J. D. Zahrt, Primer on Integral Equations of the First Kind (Society for Industrial and Applied Mathematics, 1991)
[CrossRef]

Woeste, L.

G. Karasiński, A. E. Kardaś, K. Markowicz, S. P. Malinowski, T. Stacewicz, K. Stelmaszczyk, S. Chudzyński, W. Skubiszak, M. Posyniak, A. K. Jagodnicka, C. Hochhertz, and L. Woeste, “LIDAR investigation of properties of atmospheric aerosol,” Eur. J. Phys. 144, 129-138 (2007).
[CrossRef]

Wood, N. B.

B. A. Bodhaine, N. B. Wood, E. G. Dutton, and J. R. Slusser, “On Rayleigh optical depth calculations,” J. Atmos. Ocean. Technol. 16, 1854-1861 (1999).
[CrossRef]

Yamada, M.

Y. Iwasaka, T. Shibata, T. Nagatani, G. Y. Shi, Y. S. Kim, A. Matsuki, D. Trochkine, D. Zhang, M. Yamada, M. Nagatani, H. Nakata, Z. Shen, G. Li, B. Chen, and K. Kawahira, “Large depolarization ratio of free tropospheric aerosols over the Taklamakan Desert revealed by lidar measurements: possible diffusion and transport of dust particles,” J. Geophys. Res. 108(D23), 8652 (2003).,
[CrossRef]

Yoshiyama, H.

Zahrt, J. D.

G. M. Wing and J. D. Zahrt, Primer on Integral Equations of the First Kind (Society for Industrial and Applied Mathematics, 1991)
[CrossRef]

Zhang, D.

Y. Iwasaka, T. Shibata, T. Nagatani, G. Y. Shi, Y. S. Kim, A. Matsuki, D. Trochkine, D. Zhang, M. Yamada, M. Nagatani, H. Nakata, Z. Shen, G. Li, B. Chen, and K. Kawahira, “Large depolarization ratio of free tropospheric aerosols over the Taklamakan Desert revealed by lidar measurements: possible diffusion and transport of dust particles,” J. Geophys. Res. 108(D23), 8652 (2003).,
[CrossRef]

Zolotov, I.

S. K. Shifrin and I. Zolotov, “The Use of Direct Observations over the Aerosol Particle Size Distribution for Inverting Lidar Data,” J. Atmos. Ocean. Technol. 20, 1411-1420 (2003).
[CrossRef]

Zolotov, I. G.

Fizyka Morza

J. Piskozub, “Analiza Możliwości Zastosowania Lidaru Wieloczęstościowego Do Badania Aerozolu Morskiego--Rozwiązanie Problemu Odwrotnego,” Fizyka Morza 4, 5-24 (1985).

Appl. Opt.

I. Veselovskii, A. Kolgotin, V. Griaznov, D. Muller, K. Franke, and D. N. Whiteman, “Inversion of multiwavelength Raman lidar data for retrieval of bimodal aerosol size distribution,” Appl. Opt. 43, 1180-1195 (2004).
[CrossRef] [PubMed]

I. Veselovskii, A. Kolgotin, D. Müller, and D. N. Whiteman, “Information content of multiwavelength lidar data with respect to microphysical particle properties derived from eigenvalue analysis,” Appl. Opt. 44, 5292-5303 (2005).
[CrossRef] [PubMed]

M. Pahlow, D. Müller, M. Tesche, H. Eichler, G. Feingold, W. L. Eberhard, and Y-F. Cheng, “Retrieval of aerosol properties from combined multiwavelength lidar and sunphotometer measurements,” Appl. Opt. 45, 7429-7442(2006).
[CrossRef] [PubMed]

B. R. Herman, B. Gross, F. Moshary, and S. Ahmed, “Bayesian assessment of uncertainty in aerosol size distributions and index of refraction retrieved from multiwavelength lidar measurements,” Appl. Opt. 47, 1617-1627 (2008).
[CrossRef] [PubMed]

S. Twomey and H. B. Howell, “The relative merit of white and monochromatic light for the determination of visibility by backscattering measurements,” Appl. Opt. 4, 501-506 (1965).
[CrossRef]

F. E. Volz, “Infrared refractive index of atmospheric aerosol substances,” Appl. Opt. 11, 755-759 (1972).
[CrossRef] [PubMed]

J. D. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20, 211-220 (1981).
[CrossRef] [PubMed]

J. Heintzenberg, H. Müller, H. Quenzel, and E. Thomalla, “Information content of optical data with respect to aerosol properties: numerical studies with a randomized minimization-search-technique inversion algorithm,” Appl. Opt. 20, 1308-1315 (1981).
[CrossRef] [PubMed]

F. G. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23, 652-653 (1984).
[CrossRef] [PubMed]

Y. Sasano, E. V. Browell, and S. Ismail, “Error caused by using a constant extinction/backscattering ratio in the lidar solution,” Appl. Opt. 24, 3929-3932 (1985).
[CrossRef] [PubMed]

S. K. Shifrin and I. G. Zolotov, “Determination of the aerosol particle-size distribution from simultaneous data on spectral attenuation and the small-angle phase function,” Appl. Opt. 36, 6047-6056 (1997).
[CrossRef] [PubMed]

K. Rajeev and K. Parameswaran, “Iterative method for the inversion of multiwavelength lidar signals to determine aerosol size distribution,” Appl. Opt. 37, 4690-4700 (1998).
[CrossRef]

D. Müller, U. Wandinger, and A. Ansmann, “Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: theory,” Appl. Opt. 38, 2346-2357 (1999)..
[CrossRef]

D. Müller, U. Wandinger, and A. Ansmann, “Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: simulation,” Appl. Opt. 38, 2358 -2368 (1999).
[CrossRef]

H. Yoshiyama, A. Ohi, and K. Ohta, “Derivation of the aerosol size distribution from a bistatic system of a multiwavelength laser with the singular value decomposition method,” Appl. Opt. 35, 2642-2648 (1996).
[CrossRef] [PubMed]

D. A. Ligon, T. W. Chen, and J. B. Gillespie, “Determination of aerosol parameters from light--scattering data using an inverse Monte Carlo technique,” Appl. Opt. 35, 4297-4303 (1996).
[CrossRef] [PubMed]

C. Fröhlich and G. E. Shaw, “New determination of Rayleigh scattering in the terrestrial atmosphere,” Appl. Opt. 19, 1773-1775 (1980).
[CrossRef] [PubMed]

H. Müller and H. Quenzel, “Information content of multispectral lidar measurements with respect to the aerosol size distribution,” Appl. Opt. 24, 648-654 (1985).
[CrossRef] [PubMed]

D. A. Ligon, J. B. Gillespie, and P. Pellegrino, “Aerosol properties from spectral extinction and backscatter estimated by an inverse Monte Carlo method,” Appl. Opt. 39, 4402-4410(2000).
[CrossRef]

C. Böckmann, “Hybrid regularization method for the ill-posed inversion of multiwavelength lidar data in the retrieval of aerosol size distributions,” Appl. Opt. 40, 1329-1342 (2001).
[CrossRef]

I. Veselovskii, A. Kolgotin, V. Griaznov, D. Müller, U. Wandinger, and D. N. Whiteman, “Inversion with regularization for the retrieval of tropospheric aerosol parameters from multiwavelength lidar sounding,” Appl. Opt. 41, 3685-3699 (2002).
[CrossRef] [PubMed]

Atmos. Chem. Phys.

E. Landulfo, A. Papayannis, P. Artaxo, A. D. A. Castanho, A. Z. de Freitas, R. F. Souza, N. D. Vieira, Jr., M. P. Jorge, O. R. Sanchez-Coyllo, and D. S. Moreira, “Synergetic measurements of aerosols over São Paulo, Brazil using LIDAR, sunphotometer and satellite data during the dry season,” Atmos. Chem. Phys. 3, 1523-1539 (2003).
[CrossRef]

Bull. Acad. Sci. USSR

O. D. Barteneva, “Scattering functions of light in the atmospheric boundary,” Bull. Acad. Sci. USSR 12, 1237-1244(1960).

Bull. Am. Meteorol. Soc.

M. Hess, P. Koepke, and I. Schult, “Optical properties of aerosols and clouds: the software package OPAC,” Bull. Am. Meteorol. Soc. 79, 831-844 (1998).
[CrossRef]

Eur. J. Phys.

G. Karasiński, A. E. Kardaś, K. Markowicz, S. P. Malinowski, T. Stacewicz, K. Stelmaszczyk, S. Chudzyński, W. Skubiszak, M. Posyniak, A. K. Jagodnicka, C. Hochhertz, and L. Woeste, “LIDAR investigation of properties of atmospheric aerosol,” Eur. J. Phys. 144, 129-138 (2007).
[CrossRef]

Geophys. Res. Abstr.

G. Pappalardo, “Aerosol lidar ratio measurement in the framework of EARLINET,” Geophys. Res. Abstr. 7, 08329 (2005).

IEEE Trans. Geosci. Remote Sens.

Y. J. Kaufman, D. Tanre, J.-F. Leon, and J. Pelon, “Retrievals of profiles of fine and coarse aerosols using lidar and radiometric space measurements,” IEEE Trans. Geosci. Remote Sens. 41, 1743-1754 (2003).
[CrossRef]

J. Atmos. Ocean. Technol.

E. J. O'Connor, A. J. Illingworth, and R. J. Hogan, “A technique for autocalibration of cloud lidar,” J. Atmos. Ocean. Technol. 21, 777-786 (2004).
[CrossRef]

B. A. Bodhaine, N. B. Wood, E. G. Dutton, and J. R. Slusser, “On Rayleigh optical depth calculations,” J. Atmos. Ocean. Technol. 16, 1854-1861 (1999).
[CrossRef]

S. K. Shifrin and I. Zolotov, “The Use of Direct Observations over the Aerosol Particle Size Distribution for Inverting Lidar Data,” J. Atmos. Ocean. Technol. 20, 1411-1420 (2003).
[CrossRef]

J. Atmos. Sci.

B. M. Herman, S. R. Browning, and J. A. Reagan, “Determination of aerosol size distributions from lidar measurements,” J. Atmos. Sci. 28, 763-771 (1971).
[CrossRef]

J. Geophys. Res.

T. Nishizawa, H. Okamoto, N. Sugimoto, I. Matsui, A. Shimizu, and K. Aoki, “An algorithm that retrieves aerosol properties from dual-wavelength polarization lidar measurements,” J. Geophys. Res. 112, D06212 (2007).
[CrossRef]

Y. Iwasaka, T. Shibata, T. Nagatani, G. Y. Shi, Y. S. Kim, A. Matsuki, D. Trochkine, D. Zhang, M. Yamada, M. Nagatani, H. Nakata, Z. Shen, G. Li, B. Chen, and K. Kawahira, “Large depolarization ratio of free tropospheric aerosols over the Taklamakan Desert revealed by lidar measurements: possible diffusion and transport of dust particles,” J. Geophys. Res. 108(D23), 8652 (2003).,
[CrossRef]

J. Opt. Soc. Am.

C. Böckmann, I. Mironova, D. Müller, L. Schneidenbach, and R. Nessler, “Microphysical aerosol parameters from multiwavelength lidar,” J. Opt. Soc. Am. A 22, 518-528 (2005).
[CrossRef]

J. A. Curcio and G. L. Knestrick, “Correlation of atmospheric transmission with backscattering,” J. Opt. Soc. Am. 48, 686-689 (1958).
[CrossRef]

Opt. Appl.

S. Chudzyński, G. Karasiński, W. Skubiszak, and T. Stacewicz, “Investigation of atmospheric aerosol with multiwavelength lidar,” Opt. Appl. 36, 621-628 (2006).

Proc. SPIE

K. Ernst, G. Karasiński, A. Pietruczuk, and T. Stacewicz, “Retrieving The Atmospheric Aerosol Size Distribution By Means Of Multiwavelength Lidar,” Proc. SPIE 5258, 156159(2003).

Proc. SPIE

K. Ernst, S. Chudzyński, G. Karasiński, A. Pietruczuk, and T. Stacewicz, “Multiwavelenth lidar for determination of the atmospheric aerosol size distribution,” Proc. SPIE 5229, 4550 (2003).

Space Sci. Rev.

J. E. Hansen and L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527-610 (1974).
[CrossRef]

Other

E. J. Welton, “Measurements of aerosol opical properties over the ocean using sunphotmetry and lidar,” Ph.D. dissertation (University of Miami, Coral Gables, Florida, 1998).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1999).

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, 1957).

J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics (Wiley, 1997).

G. M. Wing and J. D. Zahrt, Primer on Integral Equations of the First Kind (Society for Industrial and Applied Mathematics, 1991)
[CrossRef]

C. E. Groetsch Inverse Problems in the Mathematical Sciences (Vieweg, 1993).

D. J. Segelstein, “The complex refractive index of water,” M.S. thesis (University of Missouri, Kansas City, Missouri, 1981).

H. W. Ott, Noise Reduction Techniques in Electronic Systems, (Wiley-Interscience, 1988)

R. Jaenicke, “Tropospheric aerosols,” in Aerosol-Cloud-Climate Interactions, P. V. Hobbs, ed. (Academic,1993).

“Particle Measurement Systems,” Technical documentation of CSASP-100-HV, Boulder, Colo., USA.

A. K. Jagodnicka, T. Stacewicz, G. Karasiński, and M. Posyniak, “Simple method of aerosol particle size distribution retrieving from multiwavelength lidar signals,” presented at the 15th International Conference on Clouds and Precipitation ICCP-2008, Cancun, Mexico (7-11 July 2008).

R. M. Measures, Laser Remote Sensing: Fundamentals and Applications, (Wiley, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Reconstruction of the APSD with a single-mode lognormal function: solid curves, assumed APSD; dashed curves, approximated APSD.

Fig. 2
Fig. 2

Reconstruction of the APSD with a double-mode lognormal function: solid curves, assumed APSD; dashed curves, approximated APSD.

Fig. 3
Fig. 3

Reconstruction of the APSD with double-mode lognormal functions of σ 1 = σ 2 = 2 : solid curves, assumed APSD; dashed curves, approximated APSD.

Fig. 4
Fig. 4

Illustration of the method of the refractive coefficient evaluation (marine aerosol): solid curves, assumed APSD; dashed curves, double-mode approximation of APSD.

Fig. 5
Fig. 5

Changes in the APSD due to signal ratio errors that occur at all the wavelengths with a random sign. The error magnitude is listed in the inset.

Fig. 6
Fig. 6

Changes in the APSD due to signal ratio errors that occur at all the wavelengths with the same sign. The error magnitude is listed in the inset.

Fig. 7
Fig. 7

Comparison of the APSD of maritime aerosols: filled circles, registered with the CPC; solid curve, multiwavelength lidar (Andenes, Norway, 15 August 2007, 15.50 UTC); dashed curves, uncertainty of the distribution retrieved from the lidar signals.

Tables (1)

Tables Icon

Table 1 Types and Parameters of Aerosols Investigated with the Theory Test

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

S λ ( z ) = A λ ( z z 0 ) 2 β λ ( z ) exp ( 2 z 0 z α λ ( y ) d y ) ,
q λ = β λ α λ k .
α λ ( z ) = 0 Q λ E ( r ) π r 2 n ( z , r ) d r , β λ ( z ) = 0 Q λ B ( r ) π r 2 n ( z , r ) d r .
n j ( r , z ) = C j ( z ) 2 π log σ j ( z ) 1 r     exp { [ log r log R j ( z ) ] 2 2 · log 2 σ j ( z ) } .
L λ ( z ) = S λ ( z ) · ( z z 0 ) 2 = A λ β λ ( z ) exp [ 2 z 0 z α λ ( x ) d x ] .
L λ ( z l ) = A λ β λ ( z l ) exp { Δ z i = 2 l [ α λ ( z i 1 ) + α λ ( z i ) ] } .
L λ ( z l + 1 ) L λ ( z l ) = β λ ( z l + 1 ) β λ ( z l ) exp { Δ z [ α λ ( z l ) + α λ ( z l + 1 ) ] } .
L λ ( z l + 1 ) L λ ( z l ) = 0 Q λ B ( r ) π r 2 n ( z l + 1 , r ) d r 0 Q λ B ( r ) π r 2 n ( z l , r ) d r exp { Δ z [ 0 Q λ E ( r ) π r 2 n ( z l , r ) d r + 0 Q λ E ( r ) π r 2 n ( z l + 1 , r ) d r ] } .
χ 2 ( z l ) = λ = 1 Λ ( L λ ( z l + 1 ) L λ ( z l ) β λ ( z l + 1 ) β λ ( z l ) exp { Δ z [ α λ ( z l ) + α λ ( z l + 1 ) ] } ) 2 .
S λ off ( z ) = O λ + S λ ( z ) .
L λ off = S λ off ( z ) 2 = O λ ( z z 0 ) 2 + L λ ( z ) .

Metrics