Abstract

In the present work, a picosecond lidar system aiming at single-ended combustion diagnostics in full-scale combustion devices with limited optical access, such as power plants, is described. The highest overall range resolution of the system was found to be <0.5cm. A demonstration has been made in a nonsooty and sooty Bunsen burner flame. A well-characterized ethylene flame on a McKenna burner was evaluated for different equivalence ratios using Rayleigh thermometry. The results indicate both that picosecond lidar might be applicable for single-shot Rayleigh thermometry, even two-dimensional, and that there is a possibility to qualitatively map soot occurrence. Furthermore, differential absorption lidar has been investigated in acetone vapor jets for fuel visualization purposes.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Kohse-Höinghaus and J. B. Jeffries, eds., Applied Combustion Diagnostics (Taylor & Francis, 2002).
  2. A. Sappey, J. Howell, P. Masterson, H. Hofvander, J. B. Jeffries, X. Zhou, and R. K. Hanson, “Determination of O2, CO, H2O Concentrations and gas temperature in a coal-fired utility boiler using a wavelength-multiplexed tunable diode laser sensor,” in Abstracts of Work-In-Progress Posters of the 30th International Symposium on Combustion (The Combustion Institute, 2004).
  3. V. Ebert and J. W. Fleming, “Optical oxygen sensors using tunable diode laser spectroscopy: application to harsh reactive processes,” in Proceedings of IEEE Conference on Sensors (IEEE, 2007), pp. 616-619.
  4. R. M. Measures, Laser Remote Sensing: Fundamentals and Applications (Wiley, 1984).
  5. V. A. Kovalev and W. E. Eichinger, Elastic Lidar (Wiley, 2004).
    [CrossRef]
  6. P. S. Argall and R. J. Sica, “Lidar,” in Encyclopedia of Imaging Science and Technology, J. P. Hornak, ed. (Wiley, 2002), pp. 869-889.
  7. P. Geiser, U. Willer, D. Walter, and W. Schade, “A subnanosecond pulsed laser-source for mid-infrared lidar,” Appl. Phys. B 83, 175-179 (2006).
    [CrossRef]
  8. G. Cavalcabo, L. Fiorina, M. Monguzzi, P. Nice, and E. Zanzottera, “Development of a lidar system for the diagnostics of combustion and emissions in a power plant,” Proc. SPIE 1717, 142-148 (1993).
    [CrossRef]
  9. M. Gai, M. Gurioli, P. Bruscaglioni, A. Ismaelli, and G. Zaccanti, “Laboratory simulations of lidar returns from clouds,” Appl. Opt. 35, 5435-5442 (1996).
    [CrossRef] [PubMed]
  10. F. Vestin, M. Afzelius, C. Brackmann, and P-E. Bengtsson, “Dual-broadband rotational CARS thermometry in the product gas of hydrocarbon flames,” Proc. Combust. Inst. 30, 1673-1680 (2005).
  11. J. A. Sutton and J. F. Driscoll, “Rayleigh scattering cross sections of combustion species at 266, 355, and 532 nm for thermometry applications,” Opt. Lett. 29, 2620-2622 (2004).
    [CrossRef] [PubMed]
  12. S. Svanberg, Atomic and Molecular Spectroscopy: Basic Aspects and Practical Applications (Springer-Verlag, 2001), p. 419.
  13. M. C. Thurber, “Acetone laser-induced fluorescence for temperature and multiparameter imaging in gaseous flows,” Topical Report TSD-120 (Stanford University, 1999).
  14. S. Ohe, “Distillation, vapor pressure, vapor-liquid equilibria,” http://www.s-ohe.com.
  15. M. J. T. Milton, P. T. Woods, B. W. Jolliffe, N. R. W. Swann, and T. J. McIlveen, “Measurements of toluene and other aromatic hydrocarbons by differential-absorption lidar in the near-ultraviolet,” Appl. Phys. B 55, 41-45 (1992).
    [CrossRef]

2006

P. Geiser, U. Willer, D. Walter, and W. Schade, “A subnanosecond pulsed laser-source for mid-infrared lidar,” Appl. Phys. B 83, 175-179 (2006).
[CrossRef]

2005

F. Vestin, M. Afzelius, C. Brackmann, and P-E. Bengtsson, “Dual-broadband rotational CARS thermometry in the product gas of hydrocarbon flames,” Proc. Combust. Inst. 30, 1673-1680 (2005).

2004

1996

1993

G. Cavalcabo, L. Fiorina, M. Monguzzi, P. Nice, and E. Zanzottera, “Development of a lidar system for the diagnostics of combustion and emissions in a power plant,” Proc. SPIE 1717, 142-148 (1993).
[CrossRef]

1992

M. J. T. Milton, P. T. Woods, B. W. Jolliffe, N. R. W. Swann, and T. J. McIlveen, “Measurements of toluene and other aromatic hydrocarbons by differential-absorption lidar in the near-ultraviolet,” Appl. Phys. B 55, 41-45 (1992).
[CrossRef]

Afzelius, M.

F. Vestin, M. Afzelius, C. Brackmann, and P-E. Bengtsson, “Dual-broadband rotational CARS thermometry in the product gas of hydrocarbon flames,” Proc. Combust. Inst. 30, 1673-1680 (2005).

Argall, P. S.

P. S. Argall and R. J. Sica, “Lidar,” in Encyclopedia of Imaging Science and Technology, J. P. Hornak, ed. (Wiley, 2002), pp. 869-889.

Bengtsson, P-E.

F. Vestin, M. Afzelius, C. Brackmann, and P-E. Bengtsson, “Dual-broadband rotational CARS thermometry in the product gas of hydrocarbon flames,” Proc. Combust. Inst. 30, 1673-1680 (2005).

Brackmann, C.

F. Vestin, M. Afzelius, C. Brackmann, and P-E. Bengtsson, “Dual-broadband rotational CARS thermometry in the product gas of hydrocarbon flames,” Proc. Combust. Inst. 30, 1673-1680 (2005).

Bruscaglioni, P.

Cavalcabo, G.

G. Cavalcabo, L. Fiorina, M. Monguzzi, P. Nice, and E. Zanzottera, “Development of a lidar system for the diagnostics of combustion and emissions in a power plant,” Proc. SPIE 1717, 142-148 (1993).
[CrossRef]

Driscoll, J. F.

Ebert, V.

V. Ebert and J. W. Fleming, “Optical oxygen sensors using tunable diode laser spectroscopy: application to harsh reactive processes,” in Proceedings of IEEE Conference on Sensors (IEEE, 2007), pp. 616-619.

Eichinger, W. E.

V. A. Kovalev and W. E. Eichinger, Elastic Lidar (Wiley, 2004).
[CrossRef]

Fiorina, L.

G. Cavalcabo, L. Fiorina, M. Monguzzi, P. Nice, and E. Zanzottera, “Development of a lidar system for the diagnostics of combustion and emissions in a power plant,” Proc. SPIE 1717, 142-148 (1993).
[CrossRef]

Fleming, J. W.

V. Ebert and J. W. Fleming, “Optical oxygen sensors using tunable diode laser spectroscopy: application to harsh reactive processes,” in Proceedings of IEEE Conference on Sensors (IEEE, 2007), pp. 616-619.

Gai, M.

Geiser, P.

P. Geiser, U. Willer, D. Walter, and W. Schade, “A subnanosecond pulsed laser-source for mid-infrared lidar,” Appl. Phys. B 83, 175-179 (2006).
[CrossRef]

Gurioli, M.

Hanson, R. K.

A. Sappey, J. Howell, P. Masterson, H. Hofvander, J. B. Jeffries, X. Zhou, and R. K. Hanson, “Determination of O2, CO, H2O Concentrations and gas temperature in a coal-fired utility boiler using a wavelength-multiplexed tunable diode laser sensor,” in Abstracts of Work-In-Progress Posters of the 30th International Symposium on Combustion (The Combustion Institute, 2004).

Hofvander, H.

A. Sappey, J. Howell, P. Masterson, H. Hofvander, J. B. Jeffries, X. Zhou, and R. K. Hanson, “Determination of O2, CO, H2O Concentrations and gas temperature in a coal-fired utility boiler using a wavelength-multiplexed tunable diode laser sensor,” in Abstracts of Work-In-Progress Posters of the 30th International Symposium on Combustion (The Combustion Institute, 2004).

Howell, J.

A. Sappey, J. Howell, P. Masterson, H. Hofvander, J. B. Jeffries, X. Zhou, and R. K. Hanson, “Determination of O2, CO, H2O Concentrations and gas temperature in a coal-fired utility boiler using a wavelength-multiplexed tunable diode laser sensor,” in Abstracts of Work-In-Progress Posters of the 30th International Symposium on Combustion (The Combustion Institute, 2004).

Ismaelli, A.

Jeffries, J. B.

K. Kohse-Höinghaus and J. B. Jeffries, eds., Applied Combustion Diagnostics (Taylor & Francis, 2002).

A. Sappey, J. Howell, P. Masterson, H. Hofvander, J. B. Jeffries, X. Zhou, and R. K. Hanson, “Determination of O2, CO, H2O Concentrations and gas temperature in a coal-fired utility boiler using a wavelength-multiplexed tunable diode laser sensor,” in Abstracts of Work-In-Progress Posters of the 30th International Symposium on Combustion (The Combustion Institute, 2004).

Jolliffe, B. W.

M. J. T. Milton, P. T. Woods, B. W. Jolliffe, N. R. W. Swann, and T. J. McIlveen, “Measurements of toluene and other aromatic hydrocarbons by differential-absorption lidar in the near-ultraviolet,” Appl. Phys. B 55, 41-45 (1992).
[CrossRef]

Kohse-Höinghaus, K.

K. Kohse-Höinghaus and J. B. Jeffries, eds., Applied Combustion Diagnostics (Taylor & Francis, 2002).

Kovalev, V. A.

V. A. Kovalev and W. E. Eichinger, Elastic Lidar (Wiley, 2004).
[CrossRef]

Masterson, P.

A. Sappey, J. Howell, P. Masterson, H. Hofvander, J. B. Jeffries, X. Zhou, and R. K. Hanson, “Determination of O2, CO, H2O Concentrations and gas temperature in a coal-fired utility boiler using a wavelength-multiplexed tunable diode laser sensor,” in Abstracts of Work-In-Progress Posters of the 30th International Symposium on Combustion (The Combustion Institute, 2004).

McIlveen, T. J.

M. J. T. Milton, P. T. Woods, B. W. Jolliffe, N. R. W. Swann, and T. J. McIlveen, “Measurements of toluene and other aromatic hydrocarbons by differential-absorption lidar in the near-ultraviolet,” Appl. Phys. B 55, 41-45 (1992).
[CrossRef]

Measures, R. M.

R. M. Measures, Laser Remote Sensing: Fundamentals and Applications (Wiley, 1984).

Milton, M. J. T.

M. J. T. Milton, P. T. Woods, B. W. Jolliffe, N. R. W. Swann, and T. J. McIlveen, “Measurements of toluene and other aromatic hydrocarbons by differential-absorption lidar in the near-ultraviolet,” Appl. Phys. B 55, 41-45 (1992).
[CrossRef]

Monguzzi, M.

G. Cavalcabo, L. Fiorina, M. Monguzzi, P. Nice, and E. Zanzottera, “Development of a lidar system for the diagnostics of combustion and emissions in a power plant,” Proc. SPIE 1717, 142-148 (1993).
[CrossRef]

Nice, P.

G. Cavalcabo, L. Fiorina, M. Monguzzi, P. Nice, and E. Zanzottera, “Development of a lidar system for the diagnostics of combustion and emissions in a power plant,” Proc. SPIE 1717, 142-148 (1993).
[CrossRef]

Ohe, S.

S. Ohe, “Distillation, vapor pressure, vapor-liquid equilibria,” http://www.s-ohe.com.

Sappey, A.

A. Sappey, J. Howell, P. Masterson, H. Hofvander, J. B. Jeffries, X. Zhou, and R. K. Hanson, “Determination of O2, CO, H2O Concentrations and gas temperature in a coal-fired utility boiler using a wavelength-multiplexed tunable diode laser sensor,” in Abstracts of Work-In-Progress Posters of the 30th International Symposium on Combustion (The Combustion Institute, 2004).

Schade, W.

P. Geiser, U. Willer, D. Walter, and W. Schade, “A subnanosecond pulsed laser-source for mid-infrared lidar,” Appl. Phys. B 83, 175-179 (2006).
[CrossRef]

Sica, R. J.

P. S. Argall and R. J. Sica, “Lidar,” in Encyclopedia of Imaging Science and Technology, J. P. Hornak, ed. (Wiley, 2002), pp. 869-889.

Sutton, J. A.

Svanberg, S.

S. Svanberg, Atomic and Molecular Spectroscopy: Basic Aspects and Practical Applications (Springer-Verlag, 2001), p. 419.

Swann, N. R. W.

M. J. T. Milton, P. T. Woods, B. W. Jolliffe, N. R. W. Swann, and T. J. McIlveen, “Measurements of toluene and other aromatic hydrocarbons by differential-absorption lidar in the near-ultraviolet,” Appl. Phys. B 55, 41-45 (1992).
[CrossRef]

Thurber, M. C.

M. C. Thurber, “Acetone laser-induced fluorescence for temperature and multiparameter imaging in gaseous flows,” Topical Report TSD-120 (Stanford University, 1999).

Vestin, F.

F. Vestin, M. Afzelius, C. Brackmann, and P-E. Bengtsson, “Dual-broadband rotational CARS thermometry in the product gas of hydrocarbon flames,” Proc. Combust. Inst. 30, 1673-1680 (2005).

Walter, D.

P. Geiser, U. Willer, D. Walter, and W. Schade, “A subnanosecond pulsed laser-source for mid-infrared lidar,” Appl. Phys. B 83, 175-179 (2006).
[CrossRef]

Willer, U.

P. Geiser, U. Willer, D. Walter, and W. Schade, “A subnanosecond pulsed laser-source for mid-infrared lidar,” Appl. Phys. B 83, 175-179 (2006).
[CrossRef]

Woods, P. T.

M. J. T. Milton, P. T. Woods, B. W. Jolliffe, N. R. W. Swann, and T. J. McIlveen, “Measurements of toluene and other aromatic hydrocarbons by differential-absorption lidar in the near-ultraviolet,” Appl. Phys. B 55, 41-45 (1992).
[CrossRef]

Zaccanti, G.

Zanzottera, E.

G. Cavalcabo, L. Fiorina, M. Monguzzi, P. Nice, and E. Zanzottera, “Development of a lidar system for the diagnostics of combustion and emissions in a power plant,” Proc. SPIE 1717, 142-148 (1993).
[CrossRef]

Zhou, X.

A. Sappey, J. Howell, P. Masterson, H. Hofvander, J. B. Jeffries, X. Zhou, and R. K. Hanson, “Determination of O2, CO, H2O Concentrations and gas temperature in a coal-fired utility boiler using a wavelength-multiplexed tunable diode laser sensor,” in Abstracts of Work-In-Progress Posters of the 30th International Symposium on Combustion (The Combustion Institute, 2004).

Appl. Opt.

Appl. Phys. B

P. Geiser, U. Willer, D. Walter, and W. Schade, “A subnanosecond pulsed laser-source for mid-infrared lidar,” Appl. Phys. B 83, 175-179 (2006).
[CrossRef]

M. J. T. Milton, P. T. Woods, B. W. Jolliffe, N. R. W. Swann, and T. J. McIlveen, “Measurements of toluene and other aromatic hydrocarbons by differential-absorption lidar in the near-ultraviolet,” Appl. Phys. B 55, 41-45 (1992).
[CrossRef]

Opt. Lett.

Proc. SPIE

G. Cavalcabo, L. Fiorina, M. Monguzzi, P. Nice, and E. Zanzottera, “Development of a lidar system for the diagnostics of combustion and emissions in a power plant,” Proc. SPIE 1717, 142-148 (1993).
[CrossRef]

Other

F. Vestin, M. Afzelius, C. Brackmann, and P-E. Bengtsson, “Dual-broadband rotational CARS thermometry in the product gas of hydrocarbon flames,” Proc. Combust. Inst. 30, 1673-1680 (2005).

K. Kohse-Höinghaus and J. B. Jeffries, eds., Applied Combustion Diagnostics (Taylor & Francis, 2002).

A. Sappey, J. Howell, P. Masterson, H. Hofvander, J. B. Jeffries, X. Zhou, and R. K. Hanson, “Determination of O2, CO, H2O Concentrations and gas temperature in a coal-fired utility boiler using a wavelength-multiplexed tunable diode laser sensor,” in Abstracts of Work-In-Progress Posters of the 30th International Symposium on Combustion (The Combustion Institute, 2004).

V. Ebert and J. W. Fleming, “Optical oxygen sensors using tunable diode laser spectroscopy: application to harsh reactive processes,” in Proceedings of IEEE Conference on Sensors (IEEE, 2007), pp. 616-619.

R. M. Measures, Laser Remote Sensing: Fundamentals and Applications (Wiley, 1984).

V. A. Kovalev and W. E. Eichinger, Elastic Lidar (Wiley, 2004).
[CrossRef]

P. S. Argall and R. J. Sica, “Lidar,” in Encyclopedia of Imaging Science and Technology, J. P. Hornak, ed. (Wiley, 2002), pp. 869-889.

S. Svanberg, Atomic and Molecular Spectroscopy: Basic Aspects and Practical Applications (Springer-Verlag, 2001), p. 419.

M. C. Thurber, “Acetone laser-induced fluorescence for temperature and multiparameter imaging in gaseous flows,” Topical Report TSD-120 (Stanford University, 1999).

S. Ohe, “Distillation, vapor pressure, vapor-liquid equilibria,” http://www.s-ohe.com.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic setup for the ps-lidar system. M1–M4 designate mirrors and the x y coordinate system aims to describe how the measurement objects are placed.

Fig. 2
Fig. 2

Results from range-resolution measurements using a streak rate of 25 ps / mm . (a) Streak camera image of elastic backscattering from two metallic wires located 7.5 mm apart along the x axis. (b) Summed up pixel values from each column of the image in (a) versus the x position. (c) Resolution parameter versus distance between the metallic wires. It is indicated where the two peaks are considered to be resolved, i.e., the resolution parameter 2 .

Fig. 3
Fig. 3

Minimum resolvable distance versus streak rate.

Fig. 4
Fig. 4

Lidar curves recorded in ambient air with a Bunsen flame located 3.0 m from the receiver lens. The black curve was recorded with a sooty flame on the burner, while the gray curve was obtained with a nonsooty flame.

Fig. 5
Fig. 5

Lidar measurements in a Bunsen flame located 2.52 m from the receiver lens. (a) Two-dimensional single shot lidar image of the Rayleigh scattering intensity. (b) Corresponding horizontal intensity profile (sum of 20 pixels along the vertical axis) around the vertical center position ( 0 cm ). (c) Temperature profile extracted from the curve shown in b.

Fig. 6
Fig. 6

(a) Two-dimensional lidar image (100 accumulations) of a stoichiometric ethylene/air flame. (b) Temperature map extracted from the image shown in (a) and a corresponding Rayleigh scattering image recorded in air at room temperature.

Fig. 7
Fig. 7

Measured Rayleigh temperatures (circles) and temperatures measured with CARS (stars) [10].

Fig. 8
Fig. 8

DIAL measurements of two acetone jets placed at 340 and 380 cm , respectively. (a) LIDAR curves for laser wavelengths of 266 and 532 nm , respectively. (b) Ratio between the two lidar curves in (a). (c) Corresponding acetone number density extracted from Eq. (2).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P λ 1 ( R ) P λ 2 ( R ) = e 2 [ σ ( λ 1 ) σ ( λ 2 ) ] 0 R N ( r ) d r ,
N ( R ) = 1 2 ( σ ( λ 1 ) σ ( λ 2 ) ) d d R [ ln P λ 1 ( R ) P λ 2 ( R ) ] .

Metrics