Abstract

A two-dimensional laser Raman technique was developed and applied to directly probe the population number of selected rotational and vibrational energy levels of hydrogen and nitrogen. Using three cameras simultaneously, temperature and mole fraction images could be detected. Three different combinations of rotational and vibrational Raman signals of hydrogen and nitrogen were analyzed to identify the combination that is most suitable for future mixture analysis in hydrogen internal combustion engines. Here the experiments were conducted in an injection chamber where hot hydrogen was injected into room temperature nitrogen at 1.1MPa.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems,” Prog. Energy Combust. Sci. 31, 75-121 (2005).
    [CrossRef]
  2. M. C. Weikl, F. Beyrau, and A. Leipertz, “ Simultaneous temperature and exhaust-gas recirculation-measurements in a homogeneous charge-compression ignition engine by use of pure rotational coherent anti-Stokes Raman spectroscopy,” Appl. Opt. 45, 3646-3651 (2006).
    [CrossRef] [PubMed]
  3. P. C. Miles, “Raman line imaging for spatially and temporally resolved mole fraction measurements in internal combustion engines,” Appl. Opt. 38, 1714-1732 (1999).
    [CrossRef]
  4. H. Zhao and N. Ladommmatos, “Optical diagnostics for in-cylinder mixture formation measurements in IC engines,” Prog. Energy Combust. Sci. 24, 297-336 (1998).
    [CrossRef]
  5. S. Einecke, C. Schulz, and V. Sick, “Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combustion,” Appl. Phys. B 71, 717-723(2000).
    [CrossRef]
  6. H. Kronemayer, K. Omerbegovic, and C. Schulz, “Quantification of the evaporative cooling in an ethanol spray created by a gasoline direct-injection system measured by multiline NO-LIF gas-temperature imaging,” Appl. Opt. 46, 8322-8327(2007).
    [CrossRef] [PubMed]
  7. M. Schütte, G. Grünefeld, P. Andresen, W. Hentschel, A. Homburg, and D. Nassif-Pugsley, “Fuel/air-ratio measurements in direct injection gasoline sprays using 1D Raman scattering,” SAE-paper 2000-01-0244 (Society for Automotive Engineering, 2000).
  8. M. Schütte, H. Finke, G. Grünefeld, S. Krüger, P. Andresen, B. Stiebels, B. Block, H. Meyer, and W. Hentschel, “Spatially resolved air-fuel ratio and residual gas measurements by spontaneous Raman scattering in a firing direct injection gasoline engine,” SAE-paper 2000-01-1795 (Society for Automotive Engineering, 2000).
  9. J. D. Koch and R. K. Hanson, “Temperature and excitation wavelength dependencies of 3-pentanone absorption and fluorescence for PLIF applications,” Appl. Phys. B 76, 319-324(2003).
    [CrossRef]
  10. M. C. Thurber, F. Grisch, B. J. Kirby, M. Votsmeier, and R. K. Hanson, “Measurements and modeling of acetone laser-induced fluorescence with implications for temperature-imaging diagnostics,” Appl. Opt. 37, 4963-4978 (1998).
    [CrossRef]
  11. P. Wieske, S. Wissel, G. Grünefeld, and S. Pischinger, “Improvement of LIEF by wavelength-resolved acquisition of multiple images using a single CCD detector- Simultaneous 2D measurement of air/fuel ratio, temperature distribution of the liquid phase and qualitative distribution of the liquid phase with the multi-2D technique,” Appl. Phys. B. 83, 323-329 (2006).
    [CrossRef]
  12. A. Braeuer, F. Beyrau, and A. Leipertz, “Laser-induced fluorescence of ketones at elevated temperatures for pressures up to 20 bars by using a 248 nm excitation laser wavelength: experiments and model improvements,” Appl. Opt. 45, 4982-4989 (2006).
    [CrossRef] [PubMed]
  13. J. Scholz, T. Wiersbinski, and V. Beushausen, “Planar fuel-air-ratio-LIF with gasoline for dynamic mixture-formation investigations,” SAE Paper 2007-01-0644 (Society for Automotive Engineering, 2007).
  14. J. Egermann, W. Koebcke, W. Ipp, and A. Leipertz, “Investigation of the mixture formation inside a gasoline direct injection engine by means of linear Raman spectroscopy,” Proc. Combust. Inst. 28, 1145-1152 (2000).
  15. D. L. Hartley, in “Laser Raman gas diagnostics,” M.Lapp and C.M.Penney, eds. (Plenum, 1974), pp. 1151-1157
  16. M. B. Long, P. S. Levin, and D. C. Fourguette, “Simultaneous two-dimensional mapping of species concentration and temperature in turbulent flames,” Opt. Lett. 10, 267-269 (1985).
    [CrossRef] [PubMed]
  17. A. R. Masri, R. W. Dibble, and R. S. Barlow, “Raman-Rayleigh scattering measurements in reacting and non-reacting dilute two-phase flows,” J. Raman Spectrosc. 24, 83-89 (1993).
    [CrossRef]
  18. D. F. Marran, J. H. Frank, M. B. Long, S. H. Starner, and R. W. Bilger, “Intracavity technique for improved Raman/Rayleigh imaging in flames,” Opt. Lett. 20, 791-793 (1995).
    [CrossRef] [PubMed]
  19. T. J. Anderson, “Oxygen concentration measurements in a high pressure environment using Raman imaging,” AIAA 95-01040 (American Institute of Aeronautics and Astronautics, 1995).
  20. R. D. Woodward and D. G. Talley, “Raman imaging of transcritical cryogenic propellants,” AIAA 96-0468 (American Institute of Aeronautics and Astronautics, 1996).
  21. M. Decker, A. Schik, U. E. Meier, and W. Stricker, “Quantitative Raman imaging investigations of mixing phenomena in high-pressure cryogenic jets,” Appl. Opt. 37, 5620-5627(1998).
    [CrossRef]
  22. D. C. Kyritsis, P. G. Felton, Y. Huang, and F. V. Bracco, “Quantitative two-dimensional instantaneous Raman concentration measurements in a laminar methane jet,” Appl. Opt. 39, 6771-6780 (2000).
    [CrossRef]
  23. W. Mayer, J. Telaar, R. Branam, G. Schneider, and J. Hussong, “Raman measurements of cryogenic injection at supercritical pressure,” Heat Mass Transfer 39, 709-719 (2003).
    [CrossRef]
  24. D. C. Kyritsis, P. G. Felton, and F. V. Bracco, “Instantaneous, two-dimensional, spontaneous Raman measurements of hydrogen number density in a laminar jet using an intra-cavity configuration,” Int. J. Altern. Propul. 1, 174-189 (2007).
    [CrossRef]
  25. F. Meier, G. Wiltafsky, J. Köhler, and Wolfgang Stolz, “Quantitative time resolved 2-D Fuel-air ratio measurements in a hydrogen direct injection SI engine using spontaneous Raman scattering,” SAE-paper 961101 (Society for Automotive Engineering, 1996).
  26. K. Kohse-Höinghaus and J. B. Jeffries, Applied Combustion Diagnostics (Taylor & Francis, 2002).
  27. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species ( Gordon & Breach, 1996).
  28. M. Taschek, J. Egermann, S. Schwarz, and A. Leipertz, “Quantitative analysis of the near-wall mixture formation process in a passenger car direct-injection Diesel engine by using linear Raman spectroscopy,” Appl. Opt. 44, 6606-6615 (2005).
    [CrossRef] [PubMed]
  29. A. Leipertz and M. Fiebig, “Using Raman intensity dependence on laser polarization for low gas concentration measurements with giant pulse lasers,” Appl. Opt. 19, 2272-2274(1980).
    [CrossRef] [PubMed]
  30. J. Kojima and Q. V. Nguyen, “Laser pulse-stretching with multiple optical ring cavities,” Appl. Opt. 41, 6360-6370(2002).
    [CrossRef] [PubMed]
  31. A. Braeuer, F. Beyrau, M. C. Weikl, T. Seeger, J. Kiefer, A. Leipertz, A. Holzwarth, and A. Soika, “Investigation of the combustion process in an auxiliary heating system using dual-pump CARS,” J. Raman Spectrosc. 37, 633-640(2006).
    [CrossRef]
  32. S. Pfadler, F. Beyrau, M. Löffler, and A. Leipertz, “Application of a beam homogenizer to planar laser diagnostics,” Opt. Express 14, 10171-10180 (2006).
    [CrossRef] [PubMed]

2007 (2)

H. Kronemayer, K. Omerbegovic, and C. Schulz, “Quantification of the evaporative cooling in an ethanol spray created by a gasoline direct-injection system measured by multiline NO-LIF gas-temperature imaging,” Appl. Opt. 46, 8322-8327(2007).
[CrossRef] [PubMed]

D. C. Kyritsis, P. G. Felton, and F. V. Bracco, “Instantaneous, two-dimensional, spontaneous Raman measurements of hydrogen number density in a laminar jet using an intra-cavity configuration,” Int. J. Altern. Propul. 1, 174-189 (2007).
[CrossRef]

2006 (5)

M. C. Weikl, F. Beyrau, and A. Leipertz, “ Simultaneous temperature and exhaust-gas recirculation-measurements in a homogeneous charge-compression ignition engine by use of pure rotational coherent anti-Stokes Raman spectroscopy,” Appl. Opt. 45, 3646-3651 (2006).
[CrossRef] [PubMed]

P. Wieske, S. Wissel, G. Grünefeld, and S. Pischinger, “Improvement of LIEF by wavelength-resolved acquisition of multiple images using a single CCD detector- Simultaneous 2D measurement of air/fuel ratio, temperature distribution of the liquid phase and qualitative distribution of the liquid phase with the multi-2D technique,” Appl. Phys. B. 83, 323-329 (2006).
[CrossRef]

A. Braeuer, F. Beyrau, and A. Leipertz, “Laser-induced fluorescence of ketones at elevated temperatures for pressures up to 20 bars by using a 248 nm excitation laser wavelength: experiments and model improvements,” Appl. Opt. 45, 4982-4989 (2006).
[CrossRef] [PubMed]

A. Braeuer, F. Beyrau, M. C. Weikl, T. Seeger, J. Kiefer, A. Leipertz, A. Holzwarth, and A. Soika, “Investigation of the combustion process in an auxiliary heating system using dual-pump CARS,” J. Raman Spectrosc. 37, 633-640(2006).
[CrossRef]

S. Pfadler, F. Beyrau, M. Löffler, and A. Leipertz, “Application of a beam homogenizer to planar laser diagnostics,” Opt. Express 14, 10171-10180 (2006).
[CrossRef] [PubMed]

2005 (2)

C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems,” Prog. Energy Combust. Sci. 31, 75-121 (2005).
[CrossRef]

M. Taschek, J. Egermann, S. Schwarz, and A. Leipertz, “Quantitative analysis of the near-wall mixture formation process in a passenger car direct-injection Diesel engine by using linear Raman spectroscopy,” Appl. Opt. 44, 6606-6615 (2005).
[CrossRef] [PubMed]

2003 (2)

J. D. Koch and R. K. Hanson, “Temperature and excitation wavelength dependencies of 3-pentanone absorption and fluorescence for PLIF applications,” Appl. Phys. B 76, 319-324(2003).
[CrossRef]

W. Mayer, J. Telaar, R. Branam, G. Schneider, and J. Hussong, “Raman measurements of cryogenic injection at supercritical pressure,” Heat Mass Transfer 39, 709-719 (2003).
[CrossRef]

2002 (1)

2000 (3)

D. C. Kyritsis, P. G. Felton, Y. Huang, and F. V. Bracco, “Quantitative two-dimensional instantaneous Raman concentration measurements in a laminar methane jet,” Appl. Opt. 39, 6771-6780 (2000).
[CrossRef]

S. Einecke, C. Schulz, and V. Sick, “Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combustion,” Appl. Phys. B 71, 717-723(2000).
[CrossRef]

J. Egermann, W. Koebcke, W. Ipp, and A. Leipertz, “Investigation of the mixture formation inside a gasoline direct injection engine by means of linear Raman spectroscopy,” Proc. Combust. Inst. 28, 1145-1152 (2000).

1999 (1)

1998 (3)

1995 (1)

1993 (1)

A. R. Masri, R. W. Dibble, and R. S. Barlow, “Raman-Rayleigh scattering measurements in reacting and non-reacting dilute two-phase flows,” J. Raman Spectrosc. 24, 83-89 (1993).
[CrossRef]

1985 (1)

1980 (1)

Anderson, T. J.

T. J. Anderson, “Oxygen concentration measurements in a high pressure environment using Raman imaging,” AIAA 95-01040 (American Institute of Aeronautics and Astronautics, 1995).

Andresen, P.

M. Schütte, G. Grünefeld, P. Andresen, W. Hentschel, A. Homburg, and D. Nassif-Pugsley, “Fuel/air-ratio measurements in direct injection gasoline sprays using 1D Raman scattering,” SAE-paper 2000-01-0244 (Society for Automotive Engineering, 2000).

M. Schütte, H. Finke, G. Grünefeld, S. Krüger, P. Andresen, B. Stiebels, B. Block, H. Meyer, and W. Hentschel, “Spatially resolved air-fuel ratio and residual gas measurements by spontaneous Raman scattering in a firing direct injection gasoline engine,” SAE-paper 2000-01-1795 (Society for Automotive Engineering, 2000).

Barlow, R. S.

A. R. Masri, R. W. Dibble, and R. S. Barlow, “Raman-Rayleigh scattering measurements in reacting and non-reacting dilute two-phase flows,” J. Raman Spectrosc. 24, 83-89 (1993).
[CrossRef]

Beushausen, V.

J. Scholz, T. Wiersbinski, and V. Beushausen, “Planar fuel-air-ratio-LIF with gasoline for dynamic mixture-formation investigations,” SAE Paper 2007-01-0644 (Society for Automotive Engineering, 2007).

Beyrau, F.

Bilger, R. W.

Block, B.

M. Schütte, H. Finke, G. Grünefeld, S. Krüger, P. Andresen, B. Stiebels, B. Block, H. Meyer, and W. Hentschel, “Spatially resolved air-fuel ratio and residual gas measurements by spontaneous Raman scattering in a firing direct injection gasoline engine,” SAE-paper 2000-01-1795 (Society for Automotive Engineering, 2000).

Bracco, F. V.

D. C. Kyritsis, P. G. Felton, and F. V. Bracco, “Instantaneous, two-dimensional, spontaneous Raman measurements of hydrogen number density in a laminar jet using an intra-cavity configuration,” Int. J. Altern. Propul. 1, 174-189 (2007).
[CrossRef]

D. C. Kyritsis, P. G. Felton, Y. Huang, and F. V. Bracco, “Quantitative two-dimensional instantaneous Raman concentration measurements in a laminar methane jet,” Appl. Opt. 39, 6771-6780 (2000).
[CrossRef]

Braeuer, A.

A. Braeuer, F. Beyrau, M. C. Weikl, T. Seeger, J. Kiefer, A. Leipertz, A. Holzwarth, and A. Soika, “Investigation of the combustion process in an auxiliary heating system using dual-pump CARS,” J. Raman Spectrosc. 37, 633-640(2006).
[CrossRef]

A. Braeuer, F. Beyrau, and A. Leipertz, “Laser-induced fluorescence of ketones at elevated temperatures for pressures up to 20 bars by using a 248 nm excitation laser wavelength: experiments and model improvements,” Appl. Opt. 45, 4982-4989 (2006).
[CrossRef] [PubMed]

Branam, R.

W. Mayer, J. Telaar, R. Branam, G. Schneider, and J. Hussong, “Raman measurements of cryogenic injection at supercritical pressure,” Heat Mass Transfer 39, 709-719 (2003).
[CrossRef]

Decker, M.

Dibble, R. W.

A. R. Masri, R. W. Dibble, and R. S. Barlow, “Raman-Rayleigh scattering measurements in reacting and non-reacting dilute two-phase flows,” J. Raman Spectrosc. 24, 83-89 (1993).
[CrossRef]

Eckbreth, A. C.

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species ( Gordon & Breach, 1996).

Egermann, J.

M. Taschek, J. Egermann, S. Schwarz, and A. Leipertz, “Quantitative analysis of the near-wall mixture formation process in a passenger car direct-injection Diesel engine by using linear Raman spectroscopy,” Appl. Opt. 44, 6606-6615 (2005).
[CrossRef] [PubMed]

J. Egermann, W. Koebcke, W. Ipp, and A. Leipertz, “Investigation of the mixture formation inside a gasoline direct injection engine by means of linear Raman spectroscopy,” Proc. Combust. Inst. 28, 1145-1152 (2000).

Einecke, S.

S. Einecke, C. Schulz, and V. Sick, “Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combustion,” Appl. Phys. B 71, 717-723(2000).
[CrossRef]

Felton, P. G.

D. C. Kyritsis, P. G. Felton, and F. V. Bracco, “Instantaneous, two-dimensional, spontaneous Raman measurements of hydrogen number density in a laminar jet using an intra-cavity configuration,” Int. J. Altern. Propul. 1, 174-189 (2007).
[CrossRef]

D. C. Kyritsis, P. G. Felton, Y. Huang, and F. V. Bracco, “Quantitative two-dimensional instantaneous Raman concentration measurements in a laminar methane jet,” Appl. Opt. 39, 6771-6780 (2000).
[CrossRef]

Fiebig, M.

Finke, H.

M. Schütte, H. Finke, G. Grünefeld, S. Krüger, P. Andresen, B. Stiebels, B. Block, H. Meyer, and W. Hentschel, “Spatially resolved air-fuel ratio and residual gas measurements by spontaneous Raman scattering in a firing direct injection gasoline engine,” SAE-paper 2000-01-1795 (Society for Automotive Engineering, 2000).

Fourguette, D. C.

Frank, J. H.

Grisch, F.

Grünefeld, G.

P. Wieske, S. Wissel, G. Grünefeld, and S. Pischinger, “Improvement of LIEF by wavelength-resolved acquisition of multiple images using a single CCD detector- Simultaneous 2D measurement of air/fuel ratio, temperature distribution of the liquid phase and qualitative distribution of the liquid phase with the multi-2D technique,” Appl. Phys. B. 83, 323-329 (2006).
[CrossRef]

M. Schütte, H. Finke, G. Grünefeld, S. Krüger, P. Andresen, B. Stiebels, B. Block, H. Meyer, and W. Hentschel, “Spatially resolved air-fuel ratio and residual gas measurements by spontaneous Raman scattering in a firing direct injection gasoline engine,” SAE-paper 2000-01-1795 (Society for Automotive Engineering, 2000).

M. Schütte, G. Grünefeld, P. Andresen, W. Hentschel, A. Homburg, and D. Nassif-Pugsley, “Fuel/air-ratio measurements in direct injection gasoline sprays using 1D Raman scattering,” SAE-paper 2000-01-0244 (Society for Automotive Engineering, 2000).

Hanson, R. K.

J. D. Koch and R. K. Hanson, “Temperature and excitation wavelength dependencies of 3-pentanone absorption and fluorescence for PLIF applications,” Appl. Phys. B 76, 319-324(2003).
[CrossRef]

M. C. Thurber, F. Grisch, B. J. Kirby, M. Votsmeier, and R. K. Hanson, “Measurements and modeling of acetone laser-induced fluorescence with implications for temperature-imaging diagnostics,” Appl. Opt. 37, 4963-4978 (1998).
[CrossRef]

Hartley, D. L.

D. L. Hartley, in “Laser Raman gas diagnostics,” M.Lapp and C.M.Penney, eds. (Plenum, 1974), pp. 1151-1157

Hentschel, W.

M. Schütte, H. Finke, G. Grünefeld, S. Krüger, P. Andresen, B. Stiebels, B. Block, H. Meyer, and W. Hentschel, “Spatially resolved air-fuel ratio and residual gas measurements by spontaneous Raman scattering in a firing direct injection gasoline engine,” SAE-paper 2000-01-1795 (Society for Automotive Engineering, 2000).

M. Schütte, G. Grünefeld, P. Andresen, W. Hentschel, A. Homburg, and D. Nassif-Pugsley, “Fuel/air-ratio measurements in direct injection gasoline sprays using 1D Raman scattering,” SAE-paper 2000-01-0244 (Society for Automotive Engineering, 2000).

Holzwarth, A.

A. Braeuer, F. Beyrau, M. C. Weikl, T. Seeger, J. Kiefer, A. Leipertz, A. Holzwarth, and A. Soika, “Investigation of the combustion process in an auxiliary heating system using dual-pump CARS,” J. Raman Spectrosc. 37, 633-640(2006).
[CrossRef]

Homburg, A.

M. Schütte, G. Grünefeld, P. Andresen, W. Hentschel, A. Homburg, and D. Nassif-Pugsley, “Fuel/air-ratio measurements in direct injection gasoline sprays using 1D Raman scattering,” SAE-paper 2000-01-0244 (Society for Automotive Engineering, 2000).

Huang, Y.

Hussong, J.

W. Mayer, J. Telaar, R. Branam, G. Schneider, and J. Hussong, “Raman measurements of cryogenic injection at supercritical pressure,” Heat Mass Transfer 39, 709-719 (2003).
[CrossRef]

Ipp, W.

J. Egermann, W. Koebcke, W. Ipp, and A. Leipertz, “Investigation of the mixture formation inside a gasoline direct injection engine by means of linear Raman spectroscopy,” Proc. Combust. Inst. 28, 1145-1152 (2000).

Jeffries, J. B.

K. Kohse-Höinghaus and J. B. Jeffries, Applied Combustion Diagnostics (Taylor & Francis, 2002).

Kiefer, J.

A. Braeuer, F. Beyrau, M. C. Weikl, T. Seeger, J. Kiefer, A. Leipertz, A. Holzwarth, and A. Soika, “Investigation of the combustion process in an auxiliary heating system using dual-pump CARS,” J. Raman Spectrosc. 37, 633-640(2006).
[CrossRef]

Kirby, B. J.

Koch, J. D.

J. D. Koch and R. K. Hanson, “Temperature and excitation wavelength dependencies of 3-pentanone absorption and fluorescence for PLIF applications,” Appl. Phys. B 76, 319-324(2003).
[CrossRef]

Koebcke, W.

J. Egermann, W. Koebcke, W. Ipp, and A. Leipertz, “Investigation of the mixture formation inside a gasoline direct injection engine by means of linear Raman spectroscopy,” Proc. Combust. Inst. 28, 1145-1152 (2000).

Köhler, J.

F. Meier, G. Wiltafsky, J. Köhler, and Wolfgang Stolz, “Quantitative time resolved 2-D Fuel-air ratio measurements in a hydrogen direct injection SI engine using spontaneous Raman scattering,” SAE-paper 961101 (Society for Automotive Engineering, 1996).

Kohse-Höinghaus, K.

K. Kohse-Höinghaus and J. B. Jeffries, Applied Combustion Diagnostics (Taylor & Francis, 2002).

Kojima, J.

Kronemayer, H.

Krüger, S.

M. Schütte, H. Finke, G. Grünefeld, S. Krüger, P. Andresen, B. Stiebels, B. Block, H. Meyer, and W. Hentschel, “Spatially resolved air-fuel ratio and residual gas measurements by spontaneous Raman scattering in a firing direct injection gasoline engine,” SAE-paper 2000-01-1795 (Society for Automotive Engineering, 2000).

Kyritsis, D. C.

D. C. Kyritsis, P. G. Felton, and F. V. Bracco, “Instantaneous, two-dimensional, spontaneous Raman measurements of hydrogen number density in a laminar jet using an intra-cavity configuration,” Int. J. Altern. Propul. 1, 174-189 (2007).
[CrossRef]

D. C. Kyritsis, P. G. Felton, Y. Huang, and F. V. Bracco, “Quantitative two-dimensional instantaneous Raman concentration measurements in a laminar methane jet,” Appl. Opt. 39, 6771-6780 (2000).
[CrossRef]

Ladommmatos, N.

H. Zhao and N. Ladommmatos, “Optical diagnostics for in-cylinder mixture formation measurements in IC engines,” Prog. Energy Combust. Sci. 24, 297-336 (1998).
[CrossRef]

Leipertz, A.

M. C. Weikl, F. Beyrau, and A. Leipertz, “ Simultaneous temperature and exhaust-gas recirculation-measurements in a homogeneous charge-compression ignition engine by use of pure rotational coherent anti-Stokes Raman spectroscopy,” Appl. Opt. 45, 3646-3651 (2006).
[CrossRef] [PubMed]

A. Braeuer, F. Beyrau, and A. Leipertz, “Laser-induced fluorescence of ketones at elevated temperatures for pressures up to 20 bars by using a 248 nm excitation laser wavelength: experiments and model improvements,” Appl. Opt. 45, 4982-4989 (2006).
[CrossRef] [PubMed]

A. Braeuer, F. Beyrau, M. C. Weikl, T. Seeger, J. Kiefer, A. Leipertz, A. Holzwarth, and A. Soika, “Investigation of the combustion process in an auxiliary heating system using dual-pump CARS,” J. Raman Spectrosc. 37, 633-640(2006).
[CrossRef]

S. Pfadler, F. Beyrau, M. Löffler, and A. Leipertz, “Application of a beam homogenizer to planar laser diagnostics,” Opt. Express 14, 10171-10180 (2006).
[CrossRef] [PubMed]

M. Taschek, J. Egermann, S. Schwarz, and A. Leipertz, “Quantitative analysis of the near-wall mixture formation process in a passenger car direct-injection Diesel engine by using linear Raman spectroscopy,” Appl. Opt. 44, 6606-6615 (2005).
[CrossRef] [PubMed]

J. Egermann, W. Koebcke, W. Ipp, and A. Leipertz, “Investigation of the mixture formation inside a gasoline direct injection engine by means of linear Raman spectroscopy,” Proc. Combust. Inst. 28, 1145-1152 (2000).

A. Leipertz and M. Fiebig, “Using Raman intensity dependence on laser polarization for low gas concentration measurements with giant pulse lasers,” Appl. Opt. 19, 2272-2274(1980).
[CrossRef] [PubMed]

Levin, P. S.

Löffler, M.

Long, M. B.

Marran, D. F.

Masri, A. R.

A. R. Masri, R. W. Dibble, and R. S. Barlow, “Raman-Rayleigh scattering measurements in reacting and non-reacting dilute two-phase flows,” J. Raman Spectrosc. 24, 83-89 (1993).
[CrossRef]

Mayer, W.

W. Mayer, J. Telaar, R. Branam, G. Schneider, and J. Hussong, “Raman measurements of cryogenic injection at supercritical pressure,” Heat Mass Transfer 39, 709-719 (2003).
[CrossRef]

Meier, F.

F. Meier, G. Wiltafsky, J. Köhler, and Wolfgang Stolz, “Quantitative time resolved 2-D Fuel-air ratio measurements in a hydrogen direct injection SI engine using spontaneous Raman scattering,” SAE-paper 961101 (Society for Automotive Engineering, 1996).

Meier, U. E.

Meyer, H.

M. Schütte, H. Finke, G. Grünefeld, S. Krüger, P. Andresen, B. Stiebels, B. Block, H. Meyer, and W. Hentschel, “Spatially resolved air-fuel ratio and residual gas measurements by spontaneous Raman scattering in a firing direct injection gasoline engine,” SAE-paper 2000-01-1795 (Society for Automotive Engineering, 2000).

Miles, P. C.

Nassif-Pugsley, D.

M. Schütte, G. Grünefeld, P. Andresen, W. Hentschel, A. Homburg, and D. Nassif-Pugsley, “Fuel/air-ratio measurements in direct injection gasoline sprays using 1D Raman scattering,” SAE-paper 2000-01-0244 (Society for Automotive Engineering, 2000).

Nguyen, Q. V.

Omerbegovic, K.

Pfadler, S.

Pischinger, S.

P. Wieske, S. Wissel, G. Grünefeld, and S. Pischinger, “Improvement of LIEF by wavelength-resolved acquisition of multiple images using a single CCD detector- Simultaneous 2D measurement of air/fuel ratio, temperature distribution of the liquid phase and qualitative distribution of the liquid phase with the multi-2D technique,” Appl. Phys. B. 83, 323-329 (2006).
[CrossRef]

Schik, A.

Schneider, G.

W. Mayer, J. Telaar, R. Branam, G. Schneider, and J. Hussong, “Raman measurements of cryogenic injection at supercritical pressure,” Heat Mass Transfer 39, 709-719 (2003).
[CrossRef]

Scholz, J.

J. Scholz, T. Wiersbinski, and V. Beushausen, “Planar fuel-air-ratio-LIF with gasoline for dynamic mixture-formation investigations,” SAE Paper 2007-01-0644 (Society for Automotive Engineering, 2007).

Schulz, C.

H. Kronemayer, K. Omerbegovic, and C. Schulz, “Quantification of the evaporative cooling in an ethanol spray created by a gasoline direct-injection system measured by multiline NO-LIF gas-temperature imaging,” Appl. Opt. 46, 8322-8327(2007).
[CrossRef] [PubMed]

C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems,” Prog. Energy Combust. Sci. 31, 75-121 (2005).
[CrossRef]

S. Einecke, C. Schulz, and V. Sick, “Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combustion,” Appl. Phys. B 71, 717-723(2000).
[CrossRef]

Schütte, M.

M. Schütte, G. Grünefeld, P. Andresen, W. Hentschel, A. Homburg, and D. Nassif-Pugsley, “Fuel/air-ratio measurements in direct injection gasoline sprays using 1D Raman scattering,” SAE-paper 2000-01-0244 (Society for Automotive Engineering, 2000).

M. Schütte, H. Finke, G. Grünefeld, S. Krüger, P. Andresen, B. Stiebels, B. Block, H. Meyer, and W. Hentschel, “Spatially resolved air-fuel ratio and residual gas measurements by spontaneous Raman scattering in a firing direct injection gasoline engine,” SAE-paper 2000-01-1795 (Society for Automotive Engineering, 2000).

Schwarz, S.

Seeger, T.

A. Braeuer, F. Beyrau, M. C. Weikl, T. Seeger, J. Kiefer, A. Leipertz, A. Holzwarth, and A. Soika, “Investigation of the combustion process in an auxiliary heating system using dual-pump CARS,” J. Raman Spectrosc. 37, 633-640(2006).
[CrossRef]

Sick, V.

C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems,” Prog. Energy Combust. Sci. 31, 75-121 (2005).
[CrossRef]

S. Einecke, C. Schulz, and V. Sick, “Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combustion,” Appl. Phys. B 71, 717-723(2000).
[CrossRef]

Soika, A.

A. Braeuer, F. Beyrau, M. C. Weikl, T. Seeger, J. Kiefer, A. Leipertz, A. Holzwarth, and A. Soika, “Investigation of the combustion process in an auxiliary heating system using dual-pump CARS,” J. Raman Spectrosc. 37, 633-640(2006).
[CrossRef]

Starner, S. H.

Stiebels, B.

M. Schütte, H. Finke, G. Grünefeld, S. Krüger, P. Andresen, B. Stiebels, B. Block, H. Meyer, and W. Hentschel, “Spatially resolved air-fuel ratio and residual gas measurements by spontaneous Raman scattering in a firing direct injection gasoline engine,” SAE-paper 2000-01-1795 (Society for Automotive Engineering, 2000).

Stolz, Wolfgang

F. Meier, G. Wiltafsky, J. Köhler, and Wolfgang Stolz, “Quantitative time resolved 2-D Fuel-air ratio measurements in a hydrogen direct injection SI engine using spontaneous Raman scattering,” SAE-paper 961101 (Society for Automotive Engineering, 1996).

Stricker, W.

Talley, D. G.

R. D. Woodward and D. G. Talley, “Raman imaging of transcritical cryogenic propellants,” AIAA 96-0468 (American Institute of Aeronautics and Astronautics, 1996).

Taschek, M.

Telaar, J.

W. Mayer, J. Telaar, R. Branam, G. Schneider, and J. Hussong, “Raman measurements of cryogenic injection at supercritical pressure,” Heat Mass Transfer 39, 709-719 (2003).
[CrossRef]

Thurber, M. C.

Votsmeier, M.

Weikl, M. C.

M. C. Weikl, F. Beyrau, and A. Leipertz, “ Simultaneous temperature and exhaust-gas recirculation-measurements in a homogeneous charge-compression ignition engine by use of pure rotational coherent anti-Stokes Raman spectroscopy,” Appl. Opt. 45, 3646-3651 (2006).
[CrossRef] [PubMed]

A. Braeuer, F. Beyrau, M. C. Weikl, T. Seeger, J. Kiefer, A. Leipertz, A. Holzwarth, and A. Soika, “Investigation of the combustion process in an auxiliary heating system using dual-pump CARS,” J. Raman Spectrosc. 37, 633-640(2006).
[CrossRef]

Wiersbinski, T.

J. Scholz, T. Wiersbinski, and V. Beushausen, “Planar fuel-air-ratio-LIF with gasoline for dynamic mixture-formation investigations,” SAE Paper 2007-01-0644 (Society for Automotive Engineering, 2007).

Wieske, P.

P. Wieske, S. Wissel, G. Grünefeld, and S. Pischinger, “Improvement of LIEF by wavelength-resolved acquisition of multiple images using a single CCD detector- Simultaneous 2D measurement of air/fuel ratio, temperature distribution of the liquid phase and qualitative distribution of the liquid phase with the multi-2D technique,” Appl. Phys. B. 83, 323-329 (2006).
[CrossRef]

Wiltafsky, G.

F. Meier, G. Wiltafsky, J. Köhler, and Wolfgang Stolz, “Quantitative time resolved 2-D Fuel-air ratio measurements in a hydrogen direct injection SI engine using spontaneous Raman scattering,” SAE-paper 961101 (Society for Automotive Engineering, 1996).

Wissel, S.

P. Wieske, S. Wissel, G. Grünefeld, and S. Pischinger, “Improvement of LIEF by wavelength-resolved acquisition of multiple images using a single CCD detector- Simultaneous 2D measurement of air/fuel ratio, temperature distribution of the liquid phase and qualitative distribution of the liquid phase with the multi-2D technique,” Appl. Phys. B. 83, 323-329 (2006).
[CrossRef]

Woodward, R. D.

R. D. Woodward and D. G. Talley, “Raman imaging of transcritical cryogenic propellants,” AIAA 96-0468 (American Institute of Aeronautics and Astronautics, 1996).

Zhao, H.

H. Zhao and N. Ladommmatos, “Optical diagnostics for in-cylinder mixture formation measurements in IC engines,” Prog. Energy Combust. Sci. 24, 297-336 (1998).
[CrossRef]

Appl. Opt. (10)

M. C. Weikl, F. Beyrau, and A. Leipertz, “ Simultaneous temperature and exhaust-gas recirculation-measurements in a homogeneous charge-compression ignition engine by use of pure rotational coherent anti-Stokes Raman spectroscopy,” Appl. Opt. 45, 3646-3651 (2006).
[CrossRef] [PubMed]

P. C. Miles, “Raman line imaging for spatially and temporally resolved mole fraction measurements in internal combustion engines,” Appl. Opt. 38, 1714-1732 (1999).
[CrossRef]

H. Kronemayer, K. Omerbegovic, and C. Schulz, “Quantification of the evaporative cooling in an ethanol spray created by a gasoline direct-injection system measured by multiline NO-LIF gas-temperature imaging,” Appl. Opt. 46, 8322-8327(2007).
[CrossRef] [PubMed]

M. C. Thurber, F. Grisch, B. J. Kirby, M. Votsmeier, and R. K. Hanson, “Measurements and modeling of acetone laser-induced fluorescence with implications for temperature-imaging diagnostics,” Appl. Opt. 37, 4963-4978 (1998).
[CrossRef]

A. Braeuer, F. Beyrau, and A. Leipertz, “Laser-induced fluorescence of ketones at elevated temperatures for pressures up to 20 bars by using a 248 nm excitation laser wavelength: experiments and model improvements,” Appl. Opt. 45, 4982-4989 (2006).
[CrossRef] [PubMed]

M. Decker, A. Schik, U. E. Meier, and W. Stricker, “Quantitative Raman imaging investigations of mixing phenomena in high-pressure cryogenic jets,” Appl. Opt. 37, 5620-5627(1998).
[CrossRef]

D. C. Kyritsis, P. G. Felton, Y. Huang, and F. V. Bracco, “Quantitative two-dimensional instantaneous Raman concentration measurements in a laminar methane jet,” Appl. Opt. 39, 6771-6780 (2000).
[CrossRef]

M. Taschek, J. Egermann, S. Schwarz, and A. Leipertz, “Quantitative analysis of the near-wall mixture formation process in a passenger car direct-injection Diesel engine by using linear Raman spectroscopy,” Appl. Opt. 44, 6606-6615 (2005).
[CrossRef] [PubMed]

A. Leipertz and M. Fiebig, “Using Raman intensity dependence on laser polarization for low gas concentration measurements with giant pulse lasers,” Appl. Opt. 19, 2272-2274(1980).
[CrossRef] [PubMed]

J. Kojima and Q. V. Nguyen, “Laser pulse-stretching with multiple optical ring cavities,” Appl. Opt. 41, 6360-6370(2002).
[CrossRef] [PubMed]

Appl. Phys. B (2)

J. D. Koch and R. K. Hanson, “Temperature and excitation wavelength dependencies of 3-pentanone absorption and fluorescence for PLIF applications,” Appl. Phys. B 76, 319-324(2003).
[CrossRef]

S. Einecke, C. Schulz, and V. Sick, “Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combustion,” Appl. Phys. B 71, 717-723(2000).
[CrossRef]

Appl. Phys. B. (1)

P. Wieske, S. Wissel, G. Grünefeld, and S. Pischinger, “Improvement of LIEF by wavelength-resolved acquisition of multiple images using a single CCD detector- Simultaneous 2D measurement of air/fuel ratio, temperature distribution of the liquid phase and qualitative distribution of the liquid phase with the multi-2D technique,” Appl. Phys. B. 83, 323-329 (2006).
[CrossRef]

Heat Mass Transfer (1)

W. Mayer, J. Telaar, R. Branam, G. Schneider, and J. Hussong, “Raman measurements of cryogenic injection at supercritical pressure,” Heat Mass Transfer 39, 709-719 (2003).
[CrossRef]

Int. J. Altern. Propul. (1)

D. C. Kyritsis, P. G. Felton, and F. V. Bracco, “Instantaneous, two-dimensional, spontaneous Raman measurements of hydrogen number density in a laminar jet using an intra-cavity configuration,” Int. J. Altern. Propul. 1, 174-189 (2007).
[CrossRef]

J. Raman Spectrosc. (2)

A. Braeuer, F. Beyrau, M. C. Weikl, T. Seeger, J. Kiefer, A. Leipertz, A. Holzwarth, and A. Soika, “Investigation of the combustion process in an auxiliary heating system using dual-pump CARS,” J. Raman Spectrosc. 37, 633-640(2006).
[CrossRef]

A. R. Masri, R. W. Dibble, and R. S. Barlow, “Raman-Rayleigh scattering measurements in reacting and non-reacting dilute two-phase flows,” J. Raman Spectrosc. 24, 83-89 (1993).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Prog. Energy Combust. Sci. (2)

C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems,” Prog. Energy Combust. Sci. 31, 75-121 (2005).
[CrossRef]

H. Zhao and N. Ladommmatos, “Optical diagnostics for in-cylinder mixture formation measurements in IC engines,” Prog. Energy Combust. Sci. 24, 297-336 (1998).
[CrossRef]

Other (10)

M. Schütte, G. Grünefeld, P. Andresen, W. Hentschel, A. Homburg, and D. Nassif-Pugsley, “Fuel/air-ratio measurements in direct injection gasoline sprays using 1D Raman scattering,” SAE-paper 2000-01-0244 (Society for Automotive Engineering, 2000).

M. Schütte, H. Finke, G. Grünefeld, S. Krüger, P. Andresen, B. Stiebels, B. Block, H. Meyer, and W. Hentschel, “Spatially resolved air-fuel ratio and residual gas measurements by spontaneous Raman scattering in a firing direct injection gasoline engine,” SAE-paper 2000-01-1795 (Society for Automotive Engineering, 2000).

T. J. Anderson, “Oxygen concentration measurements in a high pressure environment using Raman imaging,” AIAA 95-01040 (American Institute of Aeronautics and Astronautics, 1995).

R. D. Woodward and D. G. Talley, “Raman imaging of transcritical cryogenic propellants,” AIAA 96-0468 (American Institute of Aeronautics and Astronautics, 1996).

J. Scholz, T. Wiersbinski, and V. Beushausen, “Planar fuel-air-ratio-LIF with gasoline for dynamic mixture-formation investigations,” SAE Paper 2007-01-0644 (Society for Automotive Engineering, 2007).

J. Egermann, W. Koebcke, W. Ipp, and A. Leipertz, “Investigation of the mixture formation inside a gasoline direct injection engine by means of linear Raman spectroscopy,” Proc. Combust. Inst. 28, 1145-1152 (2000).

D. L. Hartley, in “Laser Raman gas diagnostics,” M.Lapp and C.M.Penney, eds. (Plenum, 1974), pp. 1151-1157

F. Meier, G. Wiltafsky, J. Köhler, and Wolfgang Stolz, “Quantitative time resolved 2-D Fuel-air ratio measurements in a hydrogen direct injection SI engine using spontaneous Raman scattering,” SAE-paper 961101 (Society for Automotive Engineering, 1996).

K. Kohse-Höinghaus and J. B. Jeffries, Applied Combustion Diagnostics (Taylor & Francis, 2002).

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species ( Gordon & Breach, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Population distribution of a noncondensed sample of hydrogen and nitrogen molecules for rotational energy levels and the vibrational ground state energy level v = 0 for three different temperatures.

Fig. 2
Fig. 2

Population behavior of two hydrogen rotational energy levels J and their ratio as a function of temperature.

Fig. 3
Fig. 3

Sketch of the experimental Raman setup used for the simultaneous 2-D detection of hydrogen mole fraction x ( H 2 ) and hydrogen temperature T ( H 2 ) . C1–C3, EMCCD cameras; IC, injection chamber.

Fig. 4
Fig. 4

Sketch of the injection flow sheet with illustration of the evaluated regimes inside the injection chamber. The jet image and its complement give the vibrational ground state v = 0 Raman signal intensities of hydrogen I ( H 2 ) v = 0 and nitrogen I ( N 2 ) v = 0 , respectively. The intensity distribution inside the laser excitation light sheet is qualitatively illustrated.

Fig. 5
Fig. 5

Precision and accuracy of the temperature measurement strategy probing the population of the rotational levels J = 1 and J = 3 as a function of the H 2 mole fraction x ( H 2 ) at 1.1 MPa and at room temperature.

Fig. 6
Fig. 6

Relative populations of the H 2 rotational energy levels J = 1 and J = 3 in the vibrational ground state and the population of the temperature insensitive virtual H 2 energy level as a function of temperature.

Fig. 7
Fig. 7

Hydrogen mole fraction x ( H 2 ) as a function of the Raman signal intensity ratio I R X as inverse function of Eq. (7).

Fig. 8
Fig. 8

Mean and single-shot hydrogen mole fraction x ( H 2 ) and hydrogen temperature T ( H 2 ) images of a hot ( 473 K ) hydrogen jet that is injected into room temperature ( 297 K ) nitrogen at an absolute pressure of 1.1 MPa .

Tables (2)

Tables Icon

Table 1 List of the Raman Signals that Could be Detected with Four Narrow Bandpass Filters ( FWHM = 2 nm ) Having Their Center Wavelength at the Signal Wavelength

Tables Icon

Table 2 Combination of the Three Investigated Temperature Measuring Strategies for Pure H 2 at 1.1 MPa

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

I ( i ) = I Laser h υ Laser · ( d σ d Ω ) · Ω · N ( i ) ν , J · K ,
N ( i ) v = 0 = N ( i ) total ,
I R T = I ( i ) I ( i ) N ( i ) ν , J N ( i ) ν , J · K T = f ( T ) ,
x ( i ) = N ( i ) total Σ i N ( i ) total ,
x ( H ) 2 = N ( H 2 ) total N ( H 2 ) total + N ( N 2 ) total .
I R X = I ( H 2 ) I ( H 2 ) + I ( N 2 ) N ( H 2 ) total N ( H 2 ) total + N ( N 2 ) total · K X = f ( X ( H 2 ) ) ,
I R X = I ( H 2 ) virtual I ( H 2 ) virtual + I ( N 2 ) v = 0 N ( H 2 ) virtual N ( H 2 ) virtual + N ( N 2 ) v = 0 · K X N ( H 2 ) total N ( H 2 ) total + N ( N 2 ) total · K X = f ( x ( H 2 ) ) .
N ( H 2 ) virtual = N ( H 2 ) 0 , J = 1 + const · N ( H 2 ) 0 , J = 3 ,
I ( H 2 ) virtual = I ( H 2 ) 0 , J = 1 + const · I ( H 2 ) 0 , J = 3 ,
I ( H 2 ) virtual N ( H 2 ) total ,

Metrics