Abstract

A two-dimensional laser Raman technique was developed and applied to directly probe the population number of selected rotational and vibrational energy levels of hydrogen and nitrogen. Using three cameras simultaneously, temperature and mole fraction images could be detected. Three different combinations of rotational and vibrational Raman signals of hydrogen and nitrogen were analyzed to identify the combination that is most suitable for future mixture analysis in hydrogen internal combustion engines. Here the experiments were conducted in an injection chamber where hot hydrogen was injected into room temperature nitrogen at 1.1 MPa.

© 2008 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems,” Prog. Energy Combust. Sci. 31, 75-121 (2005).
    [CrossRef]
  2. M. C. Weikl, F. Beyrau, and A. Leipertz, “ Simultaneous temperature and exhaust-gas recirculation-measurements in a homogeneous charge-compression ignition engine by use of pure rotational coherent anti-Stokes Raman spectroscopy,” Appl. Opt. 45, 3646-3651 (2006).
    [CrossRef]
  3. P. C. Miles, “Raman line imaging for spatially and temporally resolved mole fraction measurements in internal combustion engines,” Appl. Opt. 38, 1714-1732 (1999).
    [CrossRef]
  4. H. Zhao and N. Ladommmatos, “Optical diagnostics for in-cylinder mixture formation measurements in IC engines,” Prog. Energy Combust. Sci. 24, 297-336 (1998).
  5. S. Einecke, C. Schulz, and V. Sick, “Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combustion,” Appl. Phys. B 71, 717-723(2000).
  6. H. Kronemayer, K. Omerbegovic, and C. Schulz, “Quantification of the evaporative cooling in an ethanol spray created by a gasoline direct-injection system measured by multiline NO-LIF gas-temperature imaging,” Appl. Opt. 46, 8322-8327(2007).
    [CrossRef]
  7. M. Schütte, G. Grünefeld, P. Andresen, W. Hentschel, A. Homburg, and D. Nassif-Pugsley, “Fuel/air-ratio measurements in direct injection gasoline sprays using 1D Raman scattering,” SAE-paper 2000-01-0244 (Society for Automotive Engineering, 2000).
  8. M. Schütte, H. Finke, G. Grünefeld, S. Krüger, P. Andresen, B. Stiebels, B. Block, H. Meyer, and W. Hentschel, “Spatially resolved air-fuel ratio and residual gas measurements by spontaneous Raman scattering in a firing direct injection gasoline engine,” SAE-paper 2000-01-1795 (Society for Automotive Engineering, 2000).
  9. J. D. Koch and R. K. Hanson, “Temperature and excitation wavelength dependencies of 3-pentanone absorption and fluorescence for PLIF applications,” Appl. Phys. B 76, 319-324(2003).
  10. M. C. Thurber, F. Grisch, B. J. Kirby, M. Votsmeier, and R. K. Hanson, “Measurements and modeling of acetone laser-induced fluorescence with implications for temperature-imaging diagnostics,” Appl. Opt. 37, 4963-4978 (1998).
    [CrossRef]
  11. P. Wieske, S. Wissel, G. Grünefeld, and S. Pischinger, “Improvement of LIEF by wavelength-resolved acquisition of multiple images using a single CCD detector- Simultaneous 2D measurement of air/fuel ratio, temperature distribution of the liquid phase and qualitative distribution of the liquid phase with the multi-2D technique,” Appl. Phys. B. 83, 323-329 (2006).
  12. A. Braeuer, F. Beyrau, and A. Leipertz, “Laser-induced fluorescence of ketones at elevated temperatures for pressures up to 20 bars by using a 248 nm excitation laser wavelength: experiments and model improvements,” Appl. Opt. 45, 4982-4989 (2006).
    [CrossRef]
  13. J. Scholz, T. Wiersbinski, and V. Beushausen, “Planar fuel-air-ratio-LIF with gasoline for dynamic mixture-formation investigations,” SAE Paper 2007-01-0644 (Society for Automotive Engineering, 2007).
  14. J. Egermann, W. Koebcke, W. Ipp, and A. Leipertz, “Investigation of the mixture formation inside a gasoline direct injection engine by means of linear Raman spectroscopy,” Proc. Combust. Inst. 28, 1145-1152 (2000).
  15. D. L. Hartley, in “Laser Raman gas diagnostics,” M.Lapp and C.M.Penney, eds. (Plenum, 1974), pp. 1151-1157
  16. M. B. Long, P. S. Levin, and D. C. Fourguette, “Simultaneous two-dimensional mapping of species concentration and temperature in turbulent flames,” Opt. Lett. 10, 267-269 (1985).
  17. A. R. Masri, R. W. Dibble, and R. S. Barlow, “Raman-Rayleigh scattering measurements in reacting and non-reacting dilute two-phase flows,” J. Raman Spectrosc. 24, 83-89 (1993).
    [CrossRef]
  18. D. F. Marran, J. H. Frank, M. B. Long, S. H. Starner, and R. W. Bilger, “Intracavity technique for improved Raman/Rayleigh imaging in flames,” Opt. Lett. 20, 791-793 (1995).
  19. T. J. Anderson, “Oxygen concentration measurements in a high pressure environment using Raman imaging,” AIAA 95-01040 (American Institute of Aeronautics and Astronautics, 1995).
  20. R. D. Woodward and D. G. Talley, “Raman imaging of transcritical cryogenic propellants,” AIAA 96-0468 (American Institute of Aeronautics and Astronautics, 1996).
  21. M. Decker, A. Schik, U. E. Meier, and W. Stricker, “Quantitative Raman imaging investigations of mixing phenomena in high-pressure cryogenic jets,” Appl. Opt. 37, 5620-5627(1998).
    [CrossRef]
  22. D. C. Kyritsis, P. G. Felton, Y. Huang, and F. V. Bracco, “Quantitative two-dimensional instantaneous Raman concentration measurements in a laminar methane jet,” Appl. Opt. 39, 6771-6780 (2000).
    [CrossRef]
  23. W. Mayer, J. Telaar, R. Branam, G. Schneider, and J. Hussong, “Raman measurements of cryogenic injection at supercritical pressure,” Heat Mass Transfer 39, 709-719 (2003).
  24. D. C. Kyritsis, P. G. Felton, and F. V. Bracco, “Instantaneous, two-dimensional, spontaneous Raman measurements of hydrogen number density in a laminar jet using an intra-cavity configuration,” Int. J. Altern. Propul. 1, 174-189 (2007).
  25. F. Meier, G. Wiltafsky, J. Köhler, and Wolfgang Stolz, “Quantitative time resolved 2-D Fuel-air ratio measurements in a hydrogen direct injection SI engine using spontaneous Raman scattering,” SAE-paper 961101 (Society for Automotive Engineering, 1996).
  26. K. Kohse-Höinghaus and J. B. Jeffries, Applied Combustion Diagnostics (Taylor & Francis, 2002).
  27. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species ( Gordon & Breach, 1996).
  28. M. Taschek, J. Egermann, S. Schwarz, and A. Leipertz, “Quantitative analysis of the near-wall mixture formation process in a passenger car direct-injection Diesel engine by using linear Raman spectroscopy,” Appl. Opt. 44, 6606-6615 (2005).
    [CrossRef]
  29. A. Leipertz and M. Fiebig, “Using Raman intensity dependence on laser polarization for low gas concentration measurements with giant pulse lasers,” Appl. Opt. 19, 2272-2274(1980).
  30. J. Kojima and Q. V. Nguyen, “Laser pulse-stretching with multiple optical ring cavities,” Appl. Opt. 41, 6360-6370(2002).
    [CrossRef]
  31. A. Braeuer, F. Beyrau, M. C. Weikl, T. Seeger, J. Kiefer, A. Leipertz, A. Holzwarth, and A. Soika, “Investigation of the combustion process in an auxiliary heating system using dual-pump CARS,” J. Raman Spectrosc. 37, 633-640(2006).
    [CrossRef]
  32. S. Pfadler, F. Beyrau, M. Löffler, and A. Leipertz, “Application of a beam homogenizer to planar laser diagnostics,” Opt. Express 14, 10171-10180 (2006).
    [CrossRef]

2007 (2)

D. C. Kyritsis, P. G. Felton, and F. V. Bracco, “Instantaneous, two-dimensional, spontaneous Raman measurements of hydrogen number density in a laminar jet using an intra-cavity configuration,” Int. J. Altern. Propul. 1, 174-189 (2007).

H. Kronemayer, K. Omerbegovic, and C. Schulz, “Quantification of the evaporative cooling in an ethanol spray created by a gasoline direct-injection system measured by multiline NO-LIF gas-temperature imaging,” Appl. Opt. 46, 8322-8327(2007).
[CrossRef]

2006 (5)

M. C. Weikl, F. Beyrau, and A. Leipertz, “ Simultaneous temperature and exhaust-gas recirculation-measurements in a homogeneous charge-compression ignition engine by use of pure rotational coherent anti-Stokes Raman spectroscopy,” Appl. Opt. 45, 3646-3651 (2006).
[CrossRef]

A. Braeuer, F. Beyrau, and A. Leipertz, “Laser-induced fluorescence of ketones at elevated temperatures for pressures up to 20 bars by using a 248 nm excitation laser wavelength: experiments and model improvements,” Appl. Opt. 45, 4982-4989 (2006).
[CrossRef]

S. Pfadler, F. Beyrau, M. Löffler, and A. Leipertz, “Application of a beam homogenizer to planar laser diagnostics,” Opt. Express 14, 10171-10180 (2006).
[CrossRef]

P. Wieske, S. Wissel, G. Grünefeld, and S. Pischinger, “Improvement of LIEF by wavelength-resolved acquisition of multiple images using a single CCD detector- Simultaneous 2D measurement of air/fuel ratio, temperature distribution of the liquid phase and qualitative distribution of the liquid phase with the multi-2D technique,” Appl. Phys. B. 83, 323-329 (2006).

A. Braeuer, F. Beyrau, M. C. Weikl, T. Seeger, J. Kiefer, A. Leipertz, A. Holzwarth, and A. Soika, “Investigation of the combustion process in an auxiliary heating system using dual-pump CARS,” J. Raman Spectrosc. 37, 633-640(2006).
[CrossRef]

2005 (2)

C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems,” Prog. Energy Combust. Sci. 31, 75-121 (2005).
[CrossRef]

M. Taschek, J. Egermann, S. Schwarz, and A. Leipertz, “Quantitative analysis of the near-wall mixture formation process in a passenger car direct-injection Diesel engine by using linear Raman spectroscopy,” Appl. Opt. 44, 6606-6615 (2005).
[CrossRef]

2003 (2)

J. D. Koch and R. K. Hanson, “Temperature and excitation wavelength dependencies of 3-pentanone absorption and fluorescence for PLIF applications,” Appl. Phys. B 76, 319-324(2003).

W. Mayer, J. Telaar, R. Branam, G. Schneider, and J. Hussong, “Raman measurements of cryogenic injection at supercritical pressure,” Heat Mass Transfer 39, 709-719 (2003).

2002 (1)

2000 (3)

D. C. Kyritsis, P. G. Felton, Y. Huang, and F. V. Bracco, “Quantitative two-dimensional instantaneous Raman concentration measurements in a laminar methane jet,” Appl. Opt. 39, 6771-6780 (2000).
[CrossRef]

S. Einecke, C. Schulz, and V. Sick, “Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combustion,” Appl. Phys. B 71, 717-723(2000).

J. Egermann, W. Koebcke, W. Ipp, and A. Leipertz, “Investigation of the mixture formation inside a gasoline direct injection engine by means of linear Raman spectroscopy,” Proc. Combust. Inst. 28, 1145-1152 (2000).

1999 (1)

1998 (3)

1995 (1)

1993 (1)

A. R. Masri, R. W. Dibble, and R. S. Barlow, “Raman-Rayleigh scattering measurements in reacting and non-reacting dilute two-phase flows,” J. Raman Spectrosc. 24, 83-89 (1993).
[CrossRef]

1985 (1)

1980 (1)

Anderson, T. J.

T. J. Anderson, “Oxygen concentration measurements in a high pressure environment using Raman imaging,” AIAA 95-01040 (American Institute of Aeronautics and Astronautics, 1995).

Andresen, P.

M. Schütte, H. Finke, G. Grünefeld, S. Krüger, P. Andresen, B. Stiebels, B. Block, H. Meyer, and W. Hentschel, “Spatially resolved air-fuel ratio and residual gas measurements by spontaneous Raman scattering in a firing direct injection gasoline engine,” SAE-paper 2000-01-1795 (Society for Automotive Engineering, 2000).

M. Schütte, G. Grünefeld, P. Andresen, W. Hentschel, A. Homburg, and D. Nassif-Pugsley, “Fuel/air-ratio measurements in direct injection gasoline sprays using 1D Raman scattering,” SAE-paper 2000-01-0244 (Society for Automotive Engineering, 2000).

Barlow, R. S.

A. R. Masri, R. W. Dibble, and R. S. Barlow, “Raman-Rayleigh scattering measurements in reacting and non-reacting dilute two-phase flows,” J. Raman Spectrosc. 24, 83-89 (1993).
[CrossRef]

Beushausen, V.

J. Scholz, T. Wiersbinski, and V. Beushausen, “Planar fuel-air-ratio-LIF with gasoline for dynamic mixture-formation investigations,” SAE Paper 2007-01-0644 (Society for Automotive Engineering, 2007).

Beyrau, F.

Bilger, R. W.

Block, B.

M. Schütte, H. Finke, G. Grünefeld, S. Krüger, P. Andresen, B. Stiebels, B. Block, H. Meyer, and W. Hentschel, “Spatially resolved air-fuel ratio and residual gas measurements by spontaneous Raman scattering in a firing direct injection gasoline engine,” SAE-paper 2000-01-1795 (Society for Automotive Engineering, 2000).

Bracco, F. V.

D. C. Kyritsis, P. G. Felton, and F. V. Bracco, “Instantaneous, two-dimensional, spontaneous Raman measurements of hydrogen number density in a laminar jet using an intra-cavity configuration,” Int. J. Altern. Propul. 1, 174-189 (2007).

D. C. Kyritsis, P. G. Felton, Y. Huang, and F. V. Bracco, “Quantitative two-dimensional instantaneous Raman concentration measurements in a laminar methane jet,” Appl. Opt. 39, 6771-6780 (2000).
[CrossRef]

Braeuer, A.

A. Braeuer, F. Beyrau, and A. Leipertz, “Laser-induced fluorescence of ketones at elevated temperatures for pressures up to 20 bars by using a 248 nm excitation laser wavelength: experiments and model improvements,” Appl. Opt. 45, 4982-4989 (2006).
[CrossRef]

A. Braeuer, F. Beyrau, M. C. Weikl, T. Seeger, J. Kiefer, A. Leipertz, A. Holzwarth, and A. Soika, “Investigation of the combustion process in an auxiliary heating system using dual-pump CARS,” J. Raman Spectrosc. 37, 633-640(2006).
[CrossRef]

Branam, R.

W. Mayer, J. Telaar, R. Branam, G. Schneider, and J. Hussong, “Raman measurements of cryogenic injection at supercritical pressure,” Heat Mass Transfer 39, 709-719 (2003).

Decker, M.

Dibble, R. W.

A. R. Masri, R. W. Dibble, and R. S. Barlow, “Raman-Rayleigh scattering measurements in reacting and non-reacting dilute two-phase flows,” J. Raman Spectrosc. 24, 83-89 (1993).
[CrossRef]

Eckbreth, A. C.

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species ( Gordon & Breach, 1996).

Egermann, J.

M. Taschek, J. Egermann, S. Schwarz, and A. Leipertz, “Quantitative analysis of the near-wall mixture formation process in a passenger car direct-injection Diesel engine by using linear Raman spectroscopy,” Appl. Opt. 44, 6606-6615 (2005).
[CrossRef]

J. Egermann, W. Koebcke, W. Ipp, and A. Leipertz, “Investigation of the mixture formation inside a gasoline direct injection engine by means of linear Raman spectroscopy,” Proc. Combust. Inst. 28, 1145-1152 (2000).

Einecke, S.

S. Einecke, C. Schulz, and V. Sick, “Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combustion,” Appl. Phys. B 71, 717-723(2000).

Felton, P. G.

D. C. Kyritsis, P. G. Felton, and F. V. Bracco, “Instantaneous, two-dimensional, spontaneous Raman measurements of hydrogen number density in a laminar jet using an intra-cavity configuration,” Int. J. Altern. Propul. 1, 174-189 (2007).

D. C. Kyritsis, P. G. Felton, Y. Huang, and F. V. Bracco, “Quantitative two-dimensional instantaneous Raman concentration measurements in a laminar methane jet,” Appl. Opt. 39, 6771-6780 (2000).
[CrossRef]

Fiebig, M.

Finke, H.

M. Schütte, H. Finke, G. Grünefeld, S. Krüger, P. Andresen, B. Stiebels, B. Block, H. Meyer, and W. Hentschel, “Spatially resolved air-fuel ratio and residual gas measurements by spontaneous Raman scattering in a firing direct injection gasoline engine,” SAE-paper 2000-01-1795 (Society for Automotive Engineering, 2000).

Fourguette, D. C.

Frank, J. H.

Grisch, F.

Grünefeld, G.

P. Wieske, S. Wissel, G. Grünefeld, and S. Pischinger, “Improvement of LIEF by wavelength-resolved acquisition of multiple images using a single CCD detector- Simultaneous 2D measurement of air/fuel ratio, temperature distribution of the liquid phase and qualitative distribution of the liquid phase with the multi-2D technique,” Appl. Phys. B. 83, 323-329 (2006).

M. Schütte, G. Grünefeld, P. Andresen, W. Hentschel, A. Homburg, and D. Nassif-Pugsley, “Fuel/air-ratio measurements in direct injection gasoline sprays using 1D Raman scattering,” SAE-paper 2000-01-0244 (Society for Automotive Engineering, 2000).

M. Schütte, H. Finke, G. Grünefeld, S. Krüger, P. Andresen, B. Stiebels, B. Block, H. Meyer, and W. Hentschel, “Spatially resolved air-fuel ratio and residual gas measurements by spontaneous Raman scattering in a firing direct injection gasoline engine,” SAE-paper 2000-01-1795 (Society for Automotive Engineering, 2000).

Hanson, R. K.

J. D. Koch and R. K. Hanson, “Temperature and excitation wavelength dependencies of 3-pentanone absorption and fluorescence for PLIF applications,” Appl. Phys. B 76, 319-324(2003).

M. C. Thurber, F. Grisch, B. J. Kirby, M. Votsmeier, and R. K. Hanson, “Measurements and modeling of acetone laser-induced fluorescence with implications for temperature-imaging diagnostics,” Appl. Opt. 37, 4963-4978 (1998).
[CrossRef]

Hartley, D. L.

D. L. Hartley, in “Laser Raman gas diagnostics,” M.Lapp and C.M.Penney, eds. (Plenum, 1974), pp. 1151-1157

Hentschel, W.

M. Schütte, H. Finke, G. Grünefeld, S. Krüger, P. Andresen, B. Stiebels, B. Block, H. Meyer, and W. Hentschel, “Spatially resolved air-fuel ratio and residual gas measurements by spontaneous Raman scattering in a firing direct injection gasoline engine,” SAE-paper 2000-01-1795 (Society for Automotive Engineering, 2000).

M. Schütte, G. Grünefeld, P. Andresen, W. Hentschel, A. Homburg, and D. Nassif-Pugsley, “Fuel/air-ratio measurements in direct injection gasoline sprays using 1D Raman scattering,” SAE-paper 2000-01-0244 (Society for Automotive Engineering, 2000).

Holzwarth, A.

A. Braeuer, F. Beyrau, M. C. Weikl, T. Seeger, J. Kiefer, A. Leipertz, A. Holzwarth, and A. Soika, “Investigation of the combustion process in an auxiliary heating system using dual-pump CARS,” J. Raman Spectrosc. 37, 633-640(2006).
[CrossRef]

Homburg, A.

M. Schütte, G. Grünefeld, P. Andresen, W. Hentschel, A. Homburg, and D. Nassif-Pugsley, “Fuel/air-ratio measurements in direct injection gasoline sprays using 1D Raman scattering,” SAE-paper 2000-01-0244 (Society for Automotive Engineering, 2000).

Huang, Y.

Hussong, J.

W. Mayer, J. Telaar, R. Branam, G. Schneider, and J. Hussong, “Raman measurements of cryogenic injection at supercritical pressure,” Heat Mass Transfer 39, 709-719 (2003).

Ipp, W.

J. Egermann, W. Koebcke, W. Ipp, and A. Leipertz, “Investigation of the mixture formation inside a gasoline direct injection engine by means of linear Raman spectroscopy,” Proc. Combust. Inst. 28, 1145-1152 (2000).

Jeffries, J. B.

K. Kohse-Höinghaus and J. B. Jeffries, Applied Combustion Diagnostics (Taylor & Francis, 2002).

Kiefer, J.

A. Braeuer, F. Beyrau, M. C. Weikl, T. Seeger, J. Kiefer, A. Leipertz, A. Holzwarth, and A. Soika, “Investigation of the combustion process in an auxiliary heating system using dual-pump CARS,” J. Raman Spectrosc. 37, 633-640(2006).
[CrossRef]

Kirby, B. J.

Koch, J. D.

J. D. Koch and R. K. Hanson, “Temperature and excitation wavelength dependencies of 3-pentanone absorption and fluorescence for PLIF applications,” Appl. Phys. B 76, 319-324(2003).

Koebcke, W.

J. Egermann, W. Koebcke, W. Ipp, and A. Leipertz, “Investigation of the mixture formation inside a gasoline direct injection engine by means of linear Raman spectroscopy,” Proc. Combust. Inst. 28, 1145-1152 (2000).

Köhler, J.

F. Meier, G. Wiltafsky, J. Köhler, and Wolfgang Stolz, “Quantitative time resolved 2-D Fuel-air ratio measurements in a hydrogen direct injection SI engine using spontaneous Raman scattering,” SAE-paper 961101 (Society for Automotive Engineering, 1996).

Kohse-Höinghaus, K.

K. Kohse-Höinghaus and J. B. Jeffries, Applied Combustion Diagnostics (Taylor & Francis, 2002).

Kojima, J.

Kronemayer, H.

Krüger, S.

M. Schütte, H. Finke, G. Grünefeld, S. Krüger, P. Andresen, B. Stiebels, B. Block, H. Meyer, and W. Hentschel, “Spatially resolved air-fuel ratio and residual gas measurements by spontaneous Raman scattering in a firing direct injection gasoline engine,” SAE-paper 2000-01-1795 (Society for Automotive Engineering, 2000).

Kyritsis, D. C.

D. C. Kyritsis, P. G. Felton, and F. V. Bracco, “Instantaneous, two-dimensional, spontaneous Raman measurements of hydrogen number density in a laminar jet using an intra-cavity configuration,” Int. J. Altern. Propul. 1, 174-189 (2007).

D. C. Kyritsis, P. G. Felton, Y. Huang, and F. V. Bracco, “Quantitative two-dimensional instantaneous Raman concentration measurements in a laminar methane jet,” Appl. Opt. 39, 6771-6780 (2000).
[CrossRef]

Ladommmatos, N.

H. Zhao and N. Ladommmatos, “Optical diagnostics for in-cylinder mixture formation measurements in IC engines,” Prog. Energy Combust. Sci. 24, 297-336 (1998).

Leipertz, A.

A. Braeuer, F. Beyrau, and A. Leipertz, “Laser-induced fluorescence of ketones at elevated temperatures for pressures up to 20 bars by using a 248 nm excitation laser wavelength: experiments and model improvements,” Appl. Opt. 45, 4982-4989 (2006).
[CrossRef]

S. Pfadler, F. Beyrau, M. Löffler, and A. Leipertz, “Application of a beam homogenizer to planar laser diagnostics,” Opt. Express 14, 10171-10180 (2006).
[CrossRef]

A. Braeuer, F. Beyrau, M. C. Weikl, T. Seeger, J. Kiefer, A. Leipertz, A. Holzwarth, and A. Soika, “Investigation of the combustion process in an auxiliary heating system using dual-pump CARS,” J. Raman Spectrosc. 37, 633-640(2006).
[CrossRef]

M. C. Weikl, F. Beyrau, and A. Leipertz, “ Simultaneous temperature and exhaust-gas recirculation-measurements in a homogeneous charge-compression ignition engine by use of pure rotational coherent anti-Stokes Raman spectroscopy,” Appl. Opt. 45, 3646-3651 (2006).
[CrossRef]

M. Taschek, J. Egermann, S. Schwarz, and A. Leipertz, “Quantitative analysis of the near-wall mixture formation process in a passenger car direct-injection Diesel engine by using linear Raman spectroscopy,” Appl. Opt. 44, 6606-6615 (2005).
[CrossRef]

J. Egermann, W. Koebcke, W. Ipp, and A. Leipertz, “Investigation of the mixture formation inside a gasoline direct injection engine by means of linear Raman spectroscopy,” Proc. Combust. Inst. 28, 1145-1152 (2000).

A. Leipertz and M. Fiebig, “Using Raman intensity dependence on laser polarization for low gas concentration measurements with giant pulse lasers,” Appl. Opt. 19, 2272-2274(1980).

Levin, P. S.

Löffler, M.

Long, M. B.

Marran, D. F.

Masri, A. R.

A. R. Masri, R. W. Dibble, and R. S. Barlow, “Raman-Rayleigh scattering measurements in reacting and non-reacting dilute two-phase flows,” J. Raman Spectrosc. 24, 83-89 (1993).
[CrossRef]

Mayer, W.

W. Mayer, J. Telaar, R. Branam, G. Schneider, and J. Hussong, “Raman measurements of cryogenic injection at supercritical pressure,” Heat Mass Transfer 39, 709-719 (2003).

Meier, F.

F. Meier, G. Wiltafsky, J. Köhler, and Wolfgang Stolz, “Quantitative time resolved 2-D Fuel-air ratio measurements in a hydrogen direct injection SI engine using spontaneous Raman scattering,” SAE-paper 961101 (Society for Automotive Engineering, 1996).

Meier, U. E.

Meyer, H.

M. Schütte, H. Finke, G. Grünefeld, S. Krüger, P. Andresen, B. Stiebels, B. Block, H. Meyer, and W. Hentschel, “Spatially resolved air-fuel ratio and residual gas measurements by spontaneous Raman scattering in a firing direct injection gasoline engine,” SAE-paper 2000-01-1795 (Society for Automotive Engineering, 2000).

Miles, P. C.

Nassif-Pugsley, D.

M. Schütte, G. Grünefeld, P. Andresen, W. Hentschel, A. Homburg, and D. Nassif-Pugsley, “Fuel/air-ratio measurements in direct injection gasoline sprays using 1D Raman scattering,” SAE-paper 2000-01-0244 (Society for Automotive Engineering, 2000).

Nguyen, Q. V.

Omerbegovic, K.

Pfadler, S.

Pischinger, S.

P. Wieske, S. Wissel, G. Grünefeld, and S. Pischinger, “Improvement of LIEF by wavelength-resolved acquisition of multiple images using a single CCD detector- Simultaneous 2D measurement of air/fuel ratio, temperature distribution of the liquid phase and qualitative distribution of the liquid phase with the multi-2D technique,” Appl. Phys. B. 83, 323-329 (2006).

Schik, A.

Schneider, G.

W. Mayer, J. Telaar, R. Branam, G. Schneider, and J. Hussong, “Raman measurements of cryogenic injection at supercritical pressure,” Heat Mass Transfer 39, 709-719 (2003).

Scholz, J.

J. Scholz, T. Wiersbinski, and V. Beushausen, “Planar fuel-air-ratio-LIF with gasoline for dynamic mixture-formation investigations,” SAE Paper 2007-01-0644 (Society for Automotive Engineering, 2007).

Schulz, C.

H. Kronemayer, K. Omerbegovic, and C. Schulz, “Quantification of the evaporative cooling in an ethanol spray created by a gasoline direct-injection system measured by multiline NO-LIF gas-temperature imaging,” Appl. Opt. 46, 8322-8327(2007).
[CrossRef]

C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems,” Prog. Energy Combust. Sci. 31, 75-121 (2005).
[CrossRef]

S. Einecke, C. Schulz, and V. Sick, “Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combustion,” Appl. Phys. B 71, 717-723(2000).

Schütte, M.

M. Schütte, G. Grünefeld, P. Andresen, W. Hentschel, A. Homburg, and D. Nassif-Pugsley, “Fuel/air-ratio measurements in direct injection gasoline sprays using 1D Raman scattering,” SAE-paper 2000-01-0244 (Society for Automotive Engineering, 2000).

M. Schütte, H. Finke, G. Grünefeld, S. Krüger, P. Andresen, B. Stiebels, B. Block, H. Meyer, and W. Hentschel, “Spatially resolved air-fuel ratio and residual gas measurements by spontaneous Raman scattering in a firing direct injection gasoline engine,” SAE-paper 2000-01-1795 (Society for Automotive Engineering, 2000).

Schwarz, S.

Seeger, T.

A. Braeuer, F. Beyrau, M. C. Weikl, T. Seeger, J. Kiefer, A. Leipertz, A. Holzwarth, and A. Soika, “Investigation of the combustion process in an auxiliary heating system using dual-pump CARS,” J. Raman Spectrosc. 37, 633-640(2006).
[CrossRef]

Sick, V.

C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems,” Prog. Energy Combust. Sci. 31, 75-121 (2005).
[CrossRef]

S. Einecke, C. Schulz, and V. Sick, “Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combustion,” Appl. Phys. B 71, 717-723(2000).

Soika, A.

A. Braeuer, F. Beyrau, M. C. Weikl, T. Seeger, J. Kiefer, A. Leipertz, A. Holzwarth, and A. Soika, “Investigation of the combustion process in an auxiliary heating system using dual-pump CARS,” J. Raman Spectrosc. 37, 633-640(2006).
[CrossRef]

Starner, S. H.

Stiebels, B.

M. Schütte, H. Finke, G. Grünefeld, S. Krüger, P. Andresen, B. Stiebels, B. Block, H. Meyer, and W. Hentschel, “Spatially resolved air-fuel ratio and residual gas measurements by spontaneous Raman scattering in a firing direct injection gasoline engine,” SAE-paper 2000-01-1795 (Society for Automotive Engineering, 2000).

Stolz, Wolfgang

F. Meier, G. Wiltafsky, J. Köhler, and Wolfgang Stolz, “Quantitative time resolved 2-D Fuel-air ratio measurements in a hydrogen direct injection SI engine using spontaneous Raman scattering,” SAE-paper 961101 (Society for Automotive Engineering, 1996).

Stricker, W.

Talley, D. G.

R. D. Woodward and D. G. Talley, “Raman imaging of transcritical cryogenic propellants,” AIAA 96-0468 (American Institute of Aeronautics and Astronautics, 1996).

Taschek, M.

Telaar, J.

W. Mayer, J. Telaar, R. Branam, G. Schneider, and J. Hussong, “Raman measurements of cryogenic injection at supercritical pressure,” Heat Mass Transfer 39, 709-719 (2003).

Thurber, M. C.

Votsmeier, M.

Weikl, M. C.

A. Braeuer, F. Beyrau, M. C. Weikl, T. Seeger, J. Kiefer, A. Leipertz, A. Holzwarth, and A. Soika, “Investigation of the combustion process in an auxiliary heating system using dual-pump CARS,” J. Raman Spectrosc. 37, 633-640(2006).
[CrossRef]

M. C. Weikl, F. Beyrau, and A. Leipertz, “ Simultaneous temperature and exhaust-gas recirculation-measurements in a homogeneous charge-compression ignition engine by use of pure rotational coherent anti-Stokes Raman spectroscopy,” Appl. Opt. 45, 3646-3651 (2006).
[CrossRef]

Wiersbinski, T.

J. Scholz, T. Wiersbinski, and V. Beushausen, “Planar fuel-air-ratio-LIF with gasoline for dynamic mixture-formation investigations,” SAE Paper 2007-01-0644 (Society for Automotive Engineering, 2007).

Wieske, P.

P. Wieske, S. Wissel, G. Grünefeld, and S. Pischinger, “Improvement of LIEF by wavelength-resolved acquisition of multiple images using a single CCD detector- Simultaneous 2D measurement of air/fuel ratio, temperature distribution of the liquid phase and qualitative distribution of the liquid phase with the multi-2D technique,” Appl. Phys. B. 83, 323-329 (2006).

Wiltafsky, G.

F. Meier, G. Wiltafsky, J. Köhler, and Wolfgang Stolz, “Quantitative time resolved 2-D Fuel-air ratio measurements in a hydrogen direct injection SI engine using spontaneous Raman scattering,” SAE-paper 961101 (Society for Automotive Engineering, 1996).

Wissel, S.

P. Wieske, S. Wissel, G. Grünefeld, and S. Pischinger, “Improvement of LIEF by wavelength-resolved acquisition of multiple images using a single CCD detector- Simultaneous 2D measurement of air/fuel ratio, temperature distribution of the liquid phase and qualitative distribution of the liquid phase with the multi-2D technique,” Appl. Phys. B. 83, 323-329 (2006).

Woodward, R. D.

R. D. Woodward and D. G. Talley, “Raman imaging of transcritical cryogenic propellants,” AIAA 96-0468 (American Institute of Aeronautics and Astronautics, 1996).

Zhao, H.

H. Zhao and N. Ladommmatos, “Optical diagnostics for in-cylinder mixture formation measurements in IC engines,” Prog. Energy Combust. Sci. 24, 297-336 (1998).

Appl. Opt. (10)

P. C. Miles, “Raman line imaging for spatially and temporally resolved mole fraction measurements in internal combustion engines,” Appl. Opt. 38, 1714-1732 (1999).
[CrossRef]

M. C. Thurber, F. Grisch, B. J. Kirby, M. Votsmeier, and R. K. Hanson, “Measurements and modeling of acetone laser-induced fluorescence with implications for temperature-imaging diagnostics,” Appl. Opt. 37, 4963-4978 (1998).
[CrossRef]

M. Decker, A. Schik, U. E. Meier, and W. Stricker, “Quantitative Raman imaging investigations of mixing phenomena in high-pressure cryogenic jets,” Appl. Opt. 37, 5620-5627(1998).
[CrossRef]

D. C. Kyritsis, P. G. Felton, Y. Huang, and F. V. Bracco, “Quantitative two-dimensional instantaneous Raman concentration measurements in a laminar methane jet,” Appl. Opt. 39, 6771-6780 (2000).
[CrossRef]

J. Kojima and Q. V. Nguyen, “Laser pulse-stretching with multiple optical ring cavities,” Appl. Opt. 41, 6360-6370(2002).
[CrossRef]

M. Taschek, J. Egermann, S. Schwarz, and A. Leipertz, “Quantitative analysis of the near-wall mixture formation process in a passenger car direct-injection Diesel engine by using linear Raman spectroscopy,” Appl. Opt. 44, 6606-6615 (2005).
[CrossRef]

M. C. Weikl, F. Beyrau, and A. Leipertz, “ Simultaneous temperature and exhaust-gas recirculation-measurements in a homogeneous charge-compression ignition engine by use of pure rotational coherent anti-Stokes Raman spectroscopy,” Appl. Opt. 45, 3646-3651 (2006).
[CrossRef]

A. Braeuer, F. Beyrau, and A. Leipertz, “Laser-induced fluorescence of ketones at elevated temperatures for pressures up to 20 bars by using a 248 nm excitation laser wavelength: experiments and model improvements,” Appl. Opt. 45, 4982-4989 (2006).
[CrossRef]

H. Kronemayer, K. Omerbegovic, and C. Schulz, “Quantification of the evaporative cooling in an ethanol spray created by a gasoline direct-injection system measured by multiline NO-LIF gas-temperature imaging,” Appl. Opt. 46, 8322-8327(2007).
[CrossRef]

A. Leipertz and M. Fiebig, “Using Raman intensity dependence on laser polarization for low gas concentration measurements with giant pulse lasers,” Appl. Opt. 19, 2272-2274(1980).

Appl. Phys. B (2)

S. Einecke, C. Schulz, and V. Sick, “Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combustion,” Appl. Phys. B 71, 717-723(2000).

J. D. Koch and R. K. Hanson, “Temperature and excitation wavelength dependencies of 3-pentanone absorption and fluorescence for PLIF applications,” Appl. Phys. B 76, 319-324(2003).

Appl. Phys. B. (1)

P. Wieske, S. Wissel, G. Grünefeld, and S. Pischinger, “Improvement of LIEF by wavelength-resolved acquisition of multiple images using a single CCD detector- Simultaneous 2D measurement of air/fuel ratio, temperature distribution of the liquid phase and qualitative distribution of the liquid phase with the multi-2D technique,” Appl. Phys. B. 83, 323-329 (2006).

Heat Mass Transfer (1)

W. Mayer, J. Telaar, R. Branam, G. Schneider, and J. Hussong, “Raman measurements of cryogenic injection at supercritical pressure,” Heat Mass Transfer 39, 709-719 (2003).

Int. J. Altern. Propul. (1)

D. C. Kyritsis, P. G. Felton, and F. V. Bracco, “Instantaneous, two-dimensional, spontaneous Raman measurements of hydrogen number density in a laminar jet using an intra-cavity configuration,” Int. J. Altern. Propul. 1, 174-189 (2007).

J. Raman Spectrosc. (2)

A. R. Masri, R. W. Dibble, and R. S. Barlow, “Raman-Rayleigh scattering measurements in reacting and non-reacting dilute two-phase flows,” J. Raman Spectrosc. 24, 83-89 (1993).
[CrossRef]

A. Braeuer, F. Beyrau, M. C. Weikl, T. Seeger, J. Kiefer, A. Leipertz, A. Holzwarth, and A. Soika, “Investigation of the combustion process in an auxiliary heating system using dual-pump CARS,” J. Raman Spectrosc. 37, 633-640(2006).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Prog. Energy Combust. Sci. (2)

C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems,” Prog. Energy Combust. Sci. 31, 75-121 (2005).
[CrossRef]

H. Zhao and N. Ladommmatos, “Optical diagnostics for in-cylinder mixture formation measurements in IC engines,” Prog. Energy Combust. Sci. 24, 297-336 (1998).

Other (10)

M. Schütte, G. Grünefeld, P. Andresen, W. Hentschel, A. Homburg, and D. Nassif-Pugsley, “Fuel/air-ratio measurements in direct injection gasoline sprays using 1D Raman scattering,” SAE-paper 2000-01-0244 (Society for Automotive Engineering, 2000).

M. Schütte, H. Finke, G. Grünefeld, S. Krüger, P. Andresen, B. Stiebels, B. Block, H. Meyer, and W. Hentschel, “Spatially resolved air-fuel ratio and residual gas measurements by spontaneous Raman scattering in a firing direct injection gasoline engine,” SAE-paper 2000-01-1795 (Society for Automotive Engineering, 2000).

J. Scholz, T. Wiersbinski, and V. Beushausen, “Planar fuel-air-ratio-LIF with gasoline for dynamic mixture-formation investigations,” SAE Paper 2007-01-0644 (Society for Automotive Engineering, 2007).

J. Egermann, W. Koebcke, W. Ipp, and A. Leipertz, “Investigation of the mixture formation inside a gasoline direct injection engine by means of linear Raman spectroscopy,” Proc. Combust. Inst. 28, 1145-1152 (2000).

D. L. Hartley, in “Laser Raman gas diagnostics,” M.Lapp and C.M.Penney, eds. (Plenum, 1974), pp. 1151-1157

T. J. Anderson, “Oxygen concentration measurements in a high pressure environment using Raman imaging,” AIAA 95-01040 (American Institute of Aeronautics and Astronautics, 1995).

R. D. Woodward and D. G. Talley, “Raman imaging of transcritical cryogenic propellants,” AIAA 96-0468 (American Institute of Aeronautics and Astronautics, 1996).

F. Meier, G. Wiltafsky, J. Köhler, and Wolfgang Stolz, “Quantitative time resolved 2-D Fuel-air ratio measurements in a hydrogen direct injection SI engine using spontaneous Raman scattering,” SAE-paper 961101 (Society for Automotive Engineering, 1996).

K. Kohse-Höinghaus and J. B. Jeffries, Applied Combustion Diagnostics (Taylor & Francis, 2002).

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species ( Gordon & Breach, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics