Abstract

The effects of collisional quenching on photofragment emission (PFE) detection of vapor-phase HgCl2 in combustion flue gas constituents are investigated. Exciting HgCl2 via the 1Πu11Σg+1 transition, time-resolved measurements of emission from the Hg(63P1) daughter in buffer-gas mixtures of N2, O2, and CO2 indicate that the fragmentation pathway passes through a long-lived intermediate species, which we assign to Hg(63P2). Total quenching rate coefficients of Hg(63P1) by N2, O2, and CO2 are consistent with values reported in the literature. In addition, total quenching rate coefficients for the intermediate Hg(63P2) state are determined to be 1.72(±0.08)×1010cm3molecule1s1 and 2.90(±0.37)×1010cm3molecule1s1 for N2 and O2, respectively. An analysis of the impact of the collisionally dependent energy-transfer process that precedes the formation of Hg(63P1) on the use of PFE to measure HgCl2 concentration is presented.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Simeonsson and R. C. Sausa, “A critical review of laser photofragmentation/fragment detection techniques for gas-phase chemical analysis,” Appl. Spectrosc. Rev. 31, 1-72(1996).
    [CrossRef]
  2. S. G. Buckley, C. S. McEnally, R. F. Sawyer, C. P. Koshland, and D. Lucas, “Metal emissions monitoring using excimer laser fragmentation fluorescence spectroscopy,” Combust. Sci. Technol. 118, 169-188 (1996).
    [CrossRef]
  3. B. L. Chadwick, G. Domazetis, and R. J. S. Morrison, “Multiwavelength monitoring of photofragment fluorescence after 193-nm photolysis of NaCl and NaOH--Application to measuring the sodium species released from coal at high-temperatures,” Anal. Chem. 67, 710-716 (1995).
    [CrossRef]
  4. P. G. Griffin, R. J. S. Morrison, A. Campisi, and B. L. Chadwick, “Apparatus for the detection and removal of vapor phase alkali species from coal-derived gases at high temperature and pressure,” Rev. Sci. Instrum. 69, 3674-3677(1998).
    [CrossRef]
  5. P. Monkhouse, “On-line diagnostic methods for metal species in industrial process gas,” Prog. Energy Combust. Sci. 28, 331-381 (2002).
    [CrossRef]
  6. R. C. Oldenborg and S. L. Baughcum, “Photofragment fluorescence as an analytical technique: Application to gas-phase alkali chlorides,” Anal. Chem. 58, 1430-1436 (1986).
    [CrossRef]
  7. S. F. Rice, M. D. Allendorf, M. Velez, and J. M. Almanza, “Detection of NaOH vapor in glass furnaces using excimer laser photofragmentation spectroscopy,” Glass Sci. Technol. 78, 45-53 (2005).
  8. T. Arusi-Parpar, D. Heflinger, and R. Lavi, “Photodissociation followed by laser-induced fluorescence at atmospheric pressure and 24 °C : a unique scheme for remote detection of explosives,” Appl. Opt. 40, 6677-6681 (2001).
    [CrossRef]
  9. C. Bauer, P. Geiser, J. Burgmeier, G. Holl, and W. Schade, “Pulsed laser surface fragmentation and mid-infrared laser spectroscopy for remote detection of explosives,” Appl. Phys. B 85, 251-256 (2006).
    [CrossRef]
  10. G. M. Boudreaux, T. S. Miller, A. J. Kunefke, J. P. Singh, F.-Y. Yueh, and D. L. Monts, “Development of a photofragmentation laser-induced-fluorescence laser sensor for detection of 2,4,6-trinitrotoluene in soil and groundwater,” Appl. Opt. 38, 1411-1417 (1999).
    [CrossRef]
  11. D. Heflinger, T. Arusi-Parpar, Y. Ron, and R. Lavi, “Application of a unique scheme for remote detection of explosives,” Opt. Commun. 204, 327-331 (2002).
    [CrossRef]
  12. J. Shu, I. Bar, and S. Rosenwaks, “NO and PO photofragments as trace analyte indicators of nitrocompounds and organophosphonates,” Appl. Phys. B 71, 665-672 (2000).
    [CrossRef]
  13. D. Wu, J. P. Singh, F. Y. Yueh, and D. L. Monts, “2,4,6-Trinitrotoluene detection by laser-photofragmentation--laser-induced fluorescence,” Appl. Opt. 35, 3998-4003 (1996).
    [CrossRef] [PubMed]
  14. S. R. Long, R. C. Sausa, and A. W. Miziolek, “LIF studies of PO produced in excimer laser photolysis of dimethyl methyl phosphonate,” Chem. Phys. Lett. 117, 505-510 (1985).
    [CrossRef]
  15. R. C. Sausa, A. W. Miziolek, and S. R. Long, “State distributions, quenching, and reaction of the PO radical generated in excimer laser photofragmentation of dimethyl methylphosphonate,” J. Chem. Phys. 90, 3994-3998 (1986).
    [CrossRef]
  16. M. O. Rodgers, K. Asai, and D. D. Davis, “Photofragmentation-laser induced fluorescence: a new method for detecting atmospheric trace gases,” Appl. Opt. 19, 3597-3605 (1980).
    [CrossRef] [PubMed]
  17. K. T. Hartinger, S. Nord, and P. B. Monkhouse, “Quenching of fluorescence from Na(32P) and K(42P) atoms following photodissociation of NaCl and KCl at 193 nm,” Appl. Phys. B 64, 363-367 (1997).
    [CrossRef]
  18. A. A. Hoops and T. A. Reichardt, “Pulsed laser photofragment emission for detection of mercuric chloride,” Appl. Opt. 45, 6180-6186 (2006).
    [PubMed]
  19. R. B. Barat and A. T. Poulos, “Detection of mercury compounds in the gas phase by laser photo-fragmentation/emission spectroscopy,” Appl. Spectrosc. 52, 1360-1363 (1998).
  20. T. A. Cool, J. A. McGarvey, Jr., and A. C. Erlandson, “Two-photon excitation of mercury atoms by photodissociation of mercury halides,” Chem. Phys. Lett. 58, 108-113(1978).
    [CrossRef]
  21. W. R. Wadt, “The electronic structure of HgCl and HgBr,” Appl. Phys. Lett. 34, 658-660 (1979).
    [CrossRef]
  22. W. R. Wadt, “The electronic structure of HgCl2 and HgBr2 and its relationship to photodissociation,” J. Chem. Phys. 72, 2469-2478 (1980).
    [CrossRef]
  23. C. Whitehurst and T. A. King, “Multiphoton excitation of mercury atoms by photodissociation of HgX2(X=Cl,Br,I),” J. Phys. B 20, 4053-4064 (1987).
    [CrossRef]
  24. C. Roxlo and A. Mandl, “Vacuum ultraviolet absorption cross sections for halogen containing molecules,” J. Appl. Phys. 51, 2969-2972 (1980).
    [CrossRef]
  25. D. Spence, R.-G. Wang, and M. A. Dillon, “Pseudo-optical absorption spectra in HgCl2 and HgBr2 from 4 to 14 eV,” Appl. Phys. Lett. 41, 1021-1023 (1982).
    [CrossRef]
  26. D. Spence, R.-G. Wang, and M. A. Dillon, “Excitation of Rydberg states of HgCl2 and HgBr2 by electron impact,” J. Chem. Phys. 82, 1883-1889 (1985).
    [CrossRef]
  27. P. Templet, J. R. McDonald, S. P. McGlynn, C. H. Kendrow, J. L. Roebber, and K. Weiss, “Ultraviolet absorption spectra of mercuric halides,” J. Chem. Phys. 56, 5746 (1972).
    [CrossRef]
  28. M. Wehrli, “Elektronenbandenspektren der linearen moleküle HgCl2, HgBr2, HgJ2, und TeCl2,” Helv. Phys. Acta 11, 339-356 (1938).
  29. K. Wieland, “Absorptions--und fluoreszenzspektren dampfförmiger quecksilberhalogenide II. HgBr2 und HgCl2,” Z. Phys. 77, 157-165 (1932).
    [CrossRef]
  30. A. A. Hoops, T. A. Reichardt, D. A. V. Kliner, J. P. Koplow, and S. W. Moore, “Detection of mercuric chloride by photofragment emission using a frequency-converted fiber amplifier,” Appl. Opt. 46, 4008-4014 (2007).
    [CrossRef] [PubMed]
  31. CRC Handbook of Chemistry and Physics, 67th ed., R. Weast, ed. (CRC Press, 1986).
  32. L. J. Curtis, R. E. Irving, M. Henderson, R. Matulioniene, C. Froese Fischer, and E. H. Pinnington, “Measurements and predictions of the 6 s 6 p1,3P1 lifetimes in the Hg isoelectronic sequence,” Phys. Rev. A 63, 042502 (2001).
    [CrossRef]
  33. J. P. Barrat, D. Casalta, J. L. Cojan, and J. Hamel, “Dépolarisation et ≪quenching≫ du niveau 63P1 du mercure lors de collisions avec des gaz étrangers,” J. Phys. (Paris) 27, 608-618 (1966).
    [CrossRef]
  34. J. G. Calvert and J. N. Pitts, Photochemistry (Wiley, 1966).
  35. J. S. Deech, J. Pitre, and L. Krause, “Quenching and depolarization of mercury resonance radiation,” Can. J. Phys. 49, 1976-1981 (1971).
    [CrossRef]
  36. H. Horiguchi and S. Tsuchiya, “Quenching of excited mercury atoms (63P1 and 63P0) in molecular collisions,” Bull. Chem. Soc. Jpn. 47, 2768-2774 (1974).
    [CrossRef]
  37. J. V. Michael and G. N. Suess, “Absolute quenching cross sections of Hg(3P1) with various molecules,” J. Phys. Chem. 78, 482-487 (1974).
    [CrossRef]
  38. J. Pitre, K. Hammond, and L. Krause, “63P1-63P0 excitation transfer in mercury, induced in collisions with N2 molecules,” Phys. Rev. A 6, 2101-2106 (1972).
    [CrossRef]
  39. A. Sibata, M. Takahasi, H. Mikuni, H. Horiguchi, and S. Tsuchiya, “Chemiionization of excited mercury atom with 253.7 nm irradiation in the presence of N2 and CH4,” Bull. Chem. Soc. Jpn. 52, 15-20 (1979).
    [CrossRef]
  40. A. J. Yarwood, O. P. Strausz, and H. E. Gunning, “Quenching of the 2537-Å resonance radiation of mercury,” J. Chem. Phys. 41, 1705-1713 (1964).
    [CrossRef]
  41. S. H. Linn, J. M. Brom, Jr., W.-B. Tzeng, and C. Y. Ng, “Molecular beam photoionization study of HgCl2,” J. Chem. Phys. 78, 37-45 (1983).
    [CrossRef]
  42. J. G. Eden, “VUV-pumped HgCl laser,” Appl. Phys. Lett. 33, 495-497 (1978).
    [CrossRef]
  43. C. Whitehurst and T. A. King, “Spectroscopy, kinetics and laser effects of photodissociated HgX(X=I,Br and Cl),” J. Phys. B 20, 4035-4051 (1987).
    [CrossRef]
  44. L. J. Curtis, “A predictive data-based exposition of nsnp 1,3P1 lifetimes in the Cd and Hg isoelectronic sequences,” J. Phys. B 26, L589-L594 (1993).
    [CrossRef]
  45. R. H. Garstang, “Magnetic quadrupole line intensities,” Astrophys. J. 148, 579-584 (1967).
    [CrossRef]
  46. H. F. Krause and S. Datz, “Crossed molecular beam study of electronic energy transfer: Hg(36P2)+NO(X2Π)-->NO(A2Σ)+Hg(61S0),” Chem. Phys. Lett. 41, 339-343(1976).
    [CrossRef]
  47. E. H. Pinnington, W. Ansbacher, J. A. Kernahan, T. Ahmad, and Z. Q. Ge, “Lifetime measurements for low-lying levels in Hg I and Hg II using the beam-foil technique,” Can. J. Phys. 66, 960-962 (1988).
    [CrossRef]
  48. R. Burnham and N. Djeu, “Absolute rates of collisional deactivation of Hg(6p3P2) by nitrogen and carbon monoxide,” J. Chem. Phys. 61, 5158-5161 (1974).
    [CrossRef]
  49. F. J. Van Itallie, L. J. Doemeny, and R. M. Martin, “Relative cross sections for the intramultiplet quenching of Hg(63P2) to Hg(63P1),” J. Chem. Phys. 56, 3689-3696(1972).
    [CrossRef]
  50. F. M. Zhang, D. Oba, and D. W. Setser, “A flowing-afterglow study of the quenching reactions of Hg(3P2) and Hg(3P0) atoms by halogens, interhalogens, and polyatomic halide molecules,” J. Phys. Chem. 91, 1099-1114 (1987).
    [CrossRef]

2007 (1)

2006 (2)

A. A. Hoops and T. A. Reichardt, “Pulsed laser photofragment emission for detection of mercuric chloride,” Appl. Opt. 45, 6180-6186 (2006).
[PubMed]

C. Bauer, P. Geiser, J. Burgmeier, G. Holl, and W. Schade, “Pulsed laser surface fragmentation and mid-infrared laser spectroscopy for remote detection of explosives,” Appl. Phys. B 85, 251-256 (2006).
[CrossRef]

2005 (1)

S. F. Rice, M. D. Allendorf, M. Velez, and J. M. Almanza, “Detection of NaOH vapor in glass furnaces using excimer laser photofragmentation spectroscopy,” Glass Sci. Technol. 78, 45-53 (2005).

2002 (2)

P. Monkhouse, “On-line diagnostic methods for metal species in industrial process gas,” Prog. Energy Combust. Sci. 28, 331-381 (2002).
[CrossRef]

D. Heflinger, T. Arusi-Parpar, Y. Ron, and R. Lavi, “Application of a unique scheme for remote detection of explosives,” Opt. Commun. 204, 327-331 (2002).
[CrossRef]

2001 (2)

T. Arusi-Parpar, D. Heflinger, and R. Lavi, “Photodissociation followed by laser-induced fluorescence at atmospheric pressure and 24 °C : a unique scheme for remote detection of explosives,” Appl. Opt. 40, 6677-6681 (2001).
[CrossRef]

L. J. Curtis, R. E. Irving, M. Henderson, R. Matulioniene, C. Froese Fischer, and E. H. Pinnington, “Measurements and predictions of the 6 s 6 p1,3P1 lifetimes in the Hg isoelectronic sequence,” Phys. Rev. A 63, 042502 (2001).
[CrossRef]

2000 (1)

J. Shu, I. Bar, and S. Rosenwaks, “NO and PO photofragments as trace analyte indicators of nitrocompounds and organophosphonates,” Appl. Phys. B 71, 665-672 (2000).
[CrossRef]

1999 (1)

1998 (2)

P. G. Griffin, R. J. S. Morrison, A. Campisi, and B. L. Chadwick, “Apparatus for the detection and removal of vapor phase alkali species from coal-derived gases at high temperature and pressure,” Rev. Sci. Instrum. 69, 3674-3677(1998).
[CrossRef]

R. B. Barat and A. T. Poulos, “Detection of mercury compounds in the gas phase by laser photo-fragmentation/emission spectroscopy,” Appl. Spectrosc. 52, 1360-1363 (1998).

1997 (1)

K. T. Hartinger, S. Nord, and P. B. Monkhouse, “Quenching of fluorescence from Na(32P) and K(42P) atoms following photodissociation of NaCl and KCl at 193 nm,” Appl. Phys. B 64, 363-367 (1997).
[CrossRef]

1996 (3)

D. Wu, J. P. Singh, F. Y. Yueh, and D. L. Monts, “2,4,6-Trinitrotoluene detection by laser-photofragmentation--laser-induced fluorescence,” Appl. Opt. 35, 3998-4003 (1996).
[CrossRef] [PubMed]

J. B. Simeonsson and R. C. Sausa, “A critical review of laser photofragmentation/fragment detection techniques for gas-phase chemical analysis,” Appl. Spectrosc. Rev. 31, 1-72(1996).
[CrossRef]

S. G. Buckley, C. S. McEnally, R. F. Sawyer, C. P. Koshland, and D. Lucas, “Metal emissions monitoring using excimer laser fragmentation fluorescence spectroscopy,” Combust. Sci. Technol. 118, 169-188 (1996).
[CrossRef]

1995 (1)

B. L. Chadwick, G. Domazetis, and R. J. S. Morrison, “Multiwavelength monitoring of photofragment fluorescence after 193-nm photolysis of NaCl and NaOH--Application to measuring the sodium species released from coal at high-temperatures,” Anal. Chem. 67, 710-716 (1995).
[CrossRef]

1993 (1)

L. J. Curtis, “A predictive data-based exposition of nsnp 1,3P1 lifetimes in the Cd and Hg isoelectronic sequences,” J. Phys. B 26, L589-L594 (1993).
[CrossRef]

1988 (1)

E. H. Pinnington, W. Ansbacher, J. A. Kernahan, T. Ahmad, and Z. Q. Ge, “Lifetime measurements for low-lying levels in Hg I and Hg II using the beam-foil technique,” Can. J. Phys. 66, 960-962 (1988).
[CrossRef]

1987 (3)

F. M. Zhang, D. Oba, and D. W. Setser, “A flowing-afterglow study of the quenching reactions of Hg(3P2) and Hg(3P0) atoms by halogens, interhalogens, and polyatomic halide molecules,” J. Phys. Chem. 91, 1099-1114 (1987).
[CrossRef]

C. Whitehurst and T. A. King, “Spectroscopy, kinetics and laser effects of photodissociated HgX(X=I,Br and Cl),” J. Phys. B 20, 4035-4051 (1987).
[CrossRef]

C. Whitehurst and T. A. King, “Multiphoton excitation of mercury atoms by photodissociation of HgX2(X=Cl,Br,I),” J. Phys. B 20, 4053-4064 (1987).
[CrossRef]

1986 (2)

R. C. Oldenborg and S. L. Baughcum, “Photofragment fluorescence as an analytical technique: Application to gas-phase alkali chlorides,” Anal. Chem. 58, 1430-1436 (1986).
[CrossRef]

R. C. Sausa, A. W. Miziolek, and S. R. Long, “State distributions, quenching, and reaction of the PO radical generated in excimer laser photofragmentation of dimethyl methylphosphonate,” J. Chem. Phys. 90, 3994-3998 (1986).
[CrossRef]

1985 (2)

S. R. Long, R. C. Sausa, and A. W. Miziolek, “LIF studies of PO produced in excimer laser photolysis of dimethyl methyl phosphonate,” Chem. Phys. Lett. 117, 505-510 (1985).
[CrossRef]

D. Spence, R.-G. Wang, and M. A. Dillon, “Excitation of Rydberg states of HgCl2 and HgBr2 by electron impact,” J. Chem. Phys. 82, 1883-1889 (1985).
[CrossRef]

1983 (1)

S. H. Linn, J. M. Brom, Jr., W.-B. Tzeng, and C. Y. Ng, “Molecular beam photoionization study of HgCl2,” J. Chem. Phys. 78, 37-45 (1983).
[CrossRef]

1982 (1)

D. Spence, R.-G. Wang, and M. A. Dillon, “Pseudo-optical absorption spectra in HgCl2 and HgBr2 from 4 to 14 eV,” Appl. Phys. Lett. 41, 1021-1023 (1982).
[CrossRef]

1980 (3)

C. Roxlo and A. Mandl, “Vacuum ultraviolet absorption cross sections for halogen containing molecules,” J. Appl. Phys. 51, 2969-2972 (1980).
[CrossRef]

W. R. Wadt, “The electronic structure of HgCl2 and HgBr2 and its relationship to photodissociation,” J. Chem. Phys. 72, 2469-2478 (1980).
[CrossRef]

M. O. Rodgers, K. Asai, and D. D. Davis, “Photofragmentation-laser induced fluorescence: a new method for detecting atmospheric trace gases,” Appl. Opt. 19, 3597-3605 (1980).
[CrossRef] [PubMed]

1979 (2)

W. R. Wadt, “The electronic structure of HgCl and HgBr,” Appl. Phys. Lett. 34, 658-660 (1979).
[CrossRef]

A. Sibata, M. Takahasi, H. Mikuni, H. Horiguchi, and S. Tsuchiya, “Chemiionization of excited mercury atom with 253.7 nm irradiation in the presence of N2 and CH4,” Bull. Chem. Soc. Jpn. 52, 15-20 (1979).
[CrossRef]

1978 (2)

J. G. Eden, “VUV-pumped HgCl laser,” Appl. Phys. Lett. 33, 495-497 (1978).
[CrossRef]

T. A. Cool, J. A. McGarvey, Jr., and A. C. Erlandson, “Two-photon excitation of mercury atoms by photodissociation of mercury halides,” Chem. Phys. Lett. 58, 108-113(1978).
[CrossRef]

1976 (1)

H. F. Krause and S. Datz, “Crossed molecular beam study of electronic energy transfer: Hg(36P2)+NO(X2Π)-->NO(A2Σ)+Hg(61S0),” Chem. Phys. Lett. 41, 339-343(1976).
[CrossRef]

1974 (3)

R. Burnham and N. Djeu, “Absolute rates of collisional deactivation of Hg(6p3P2) by nitrogen and carbon monoxide,” J. Chem. Phys. 61, 5158-5161 (1974).
[CrossRef]

H. Horiguchi and S. Tsuchiya, “Quenching of excited mercury atoms (63P1 and 63P0) in molecular collisions,” Bull. Chem. Soc. Jpn. 47, 2768-2774 (1974).
[CrossRef]

J. V. Michael and G. N. Suess, “Absolute quenching cross sections of Hg(3P1) with various molecules,” J. Phys. Chem. 78, 482-487 (1974).
[CrossRef]

1972 (3)

J. Pitre, K. Hammond, and L. Krause, “63P1-63P0 excitation transfer in mercury, induced in collisions with N2 molecules,” Phys. Rev. A 6, 2101-2106 (1972).
[CrossRef]

P. Templet, J. R. McDonald, S. P. McGlynn, C. H. Kendrow, J. L. Roebber, and K. Weiss, “Ultraviolet absorption spectra of mercuric halides,” J. Chem. Phys. 56, 5746 (1972).
[CrossRef]

F. J. Van Itallie, L. J. Doemeny, and R. M. Martin, “Relative cross sections for the intramultiplet quenching of Hg(63P2) to Hg(63P1),” J. Chem. Phys. 56, 3689-3696(1972).
[CrossRef]

1971 (1)

J. S. Deech, J. Pitre, and L. Krause, “Quenching and depolarization of mercury resonance radiation,” Can. J. Phys. 49, 1976-1981 (1971).
[CrossRef]

1967 (1)

R. H. Garstang, “Magnetic quadrupole line intensities,” Astrophys. J. 148, 579-584 (1967).
[CrossRef]

1966 (1)

J. P. Barrat, D. Casalta, J. L. Cojan, and J. Hamel, “Dépolarisation et ≪quenching≫ du niveau 63P1 du mercure lors de collisions avec des gaz étrangers,” J. Phys. (Paris) 27, 608-618 (1966).
[CrossRef]

1964 (1)

A. J. Yarwood, O. P. Strausz, and H. E. Gunning, “Quenching of the 2537-Å resonance radiation of mercury,” J. Chem. Phys. 41, 1705-1713 (1964).
[CrossRef]

1938 (1)

M. Wehrli, “Elektronenbandenspektren der linearen moleküle HgCl2, HgBr2, HgJ2, und TeCl2,” Helv. Phys. Acta 11, 339-356 (1938).

1932 (1)

K. Wieland, “Absorptions--und fluoreszenzspektren dampfförmiger quecksilberhalogenide II. HgBr2 und HgCl2,” Z. Phys. 77, 157-165 (1932).
[CrossRef]

Ahmad, T.

E. H. Pinnington, W. Ansbacher, J. A. Kernahan, T. Ahmad, and Z. Q. Ge, “Lifetime measurements for low-lying levels in Hg I and Hg II using the beam-foil technique,” Can. J. Phys. 66, 960-962 (1988).
[CrossRef]

Allendorf, M. D.

S. F. Rice, M. D. Allendorf, M. Velez, and J. M. Almanza, “Detection of NaOH vapor in glass furnaces using excimer laser photofragmentation spectroscopy,” Glass Sci. Technol. 78, 45-53 (2005).

Almanza, J. M.

S. F. Rice, M. D. Allendorf, M. Velez, and J. M. Almanza, “Detection of NaOH vapor in glass furnaces using excimer laser photofragmentation spectroscopy,” Glass Sci. Technol. 78, 45-53 (2005).

Ansbacher, W.

E. H. Pinnington, W. Ansbacher, J. A. Kernahan, T. Ahmad, and Z. Q. Ge, “Lifetime measurements for low-lying levels in Hg I and Hg II using the beam-foil technique,” Can. J. Phys. 66, 960-962 (1988).
[CrossRef]

Arusi-Parpar, T.

Asai, K.

Bar, I.

J. Shu, I. Bar, and S. Rosenwaks, “NO and PO photofragments as trace analyte indicators of nitrocompounds and organophosphonates,” Appl. Phys. B 71, 665-672 (2000).
[CrossRef]

Barat, R. B.

R. B. Barat and A. T. Poulos, “Detection of mercury compounds in the gas phase by laser photo-fragmentation/emission spectroscopy,” Appl. Spectrosc. 52, 1360-1363 (1998).

Barrat, J. P.

J. P. Barrat, D. Casalta, J. L. Cojan, and J. Hamel, “Dépolarisation et ≪quenching≫ du niveau 63P1 du mercure lors de collisions avec des gaz étrangers,” J. Phys. (Paris) 27, 608-618 (1966).
[CrossRef]

Bauer, C.

C. Bauer, P. Geiser, J. Burgmeier, G. Holl, and W. Schade, “Pulsed laser surface fragmentation and mid-infrared laser spectroscopy for remote detection of explosives,” Appl. Phys. B 85, 251-256 (2006).
[CrossRef]

Baughcum, S. L.

R. C. Oldenborg and S. L. Baughcum, “Photofragment fluorescence as an analytical technique: Application to gas-phase alkali chlorides,” Anal. Chem. 58, 1430-1436 (1986).
[CrossRef]

Boudreaux, G. M.

Brom, J. M.

S. H. Linn, J. M. Brom, Jr., W.-B. Tzeng, and C. Y. Ng, “Molecular beam photoionization study of HgCl2,” J. Chem. Phys. 78, 37-45 (1983).
[CrossRef]

Buckley, S. G.

S. G. Buckley, C. S. McEnally, R. F. Sawyer, C. P. Koshland, and D. Lucas, “Metal emissions monitoring using excimer laser fragmentation fluorescence spectroscopy,” Combust. Sci. Technol. 118, 169-188 (1996).
[CrossRef]

Burgmeier, J.

C. Bauer, P. Geiser, J. Burgmeier, G. Holl, and W. Schade, “Pulsed laser surface fragmentation and mid-infrared laser spectroscopy for remote detection of explosives,” Appl. Phys. B 85, 251-256 (2006).
[CrossRef]

Burnham, R.

R. Burnham and N. Djeu, “Absolute rates of collisional deactivation of Hg(6p3P2) by nitrogen and carbon monoxide,” J. Chem. Phys. 61, 5158-5161 (1974).
[CrossRef]

Calvert, J. G.

J. G. Calvert and J. N. Pitts, Photochemistry (Wiley, 1966).

Campisi, A.

P. G. Griffin, R. J. S. Morrison, A. Campisi, and B. L. Chadwick, “Apparatus for the detection and removal of vapor phase alkali species from coal-derived gases at high temperature and pressure,” Rev. Sci. Instrum. 69, 3674-3677(1998).
[CrossRef]

Casalta, D.

J. P. Barrat, D. Casalta, J. L. Cojan, and J. Hamel, “Dépolarisation et ≪quenching≫ du niveau 63P1 du mercure lors de collisions avec des gaz étrangers,” J. Phys. (Paris) 27, 608-618 (1966).
[CrossRef]

Chadwick, B. L.

P. G. Griffin, R. J. S. Morrison, A. Campisi, and B. L. Chadwick, “Apparatus for the detection and removal of vapor phase alkali species from coal-derived gases at high temperature and pressure,” Rev. Sci. Instrum. 69, 3674-3677(1998).
[CrossRef]

B. L. Chadwick, G. Domazetis, and R. J. S. Morrison, “Multiwavelength monitoring of photofragment fluorescence after 193-nm photolysis of NaCl and NaOH--Application to measuring the sodium species released from coal at high-temperatures,” Anal. Chem. 67, 710-716 (1995).
[CrossRef]

Cojan, J. L.

J. P. Barrat, D. Casalta, J. L. Cojan, and J. Hamel, “Dépolarisation et ≪quenching≫ du niveau 63P1 du mercure lors de collisions avec des gaz étrangers,” J. Phys. (Paris) 27, 608-618 (1966).
[CrossRef]

Cool, T. A.

T. A. Cool, J. A. McGarvey, Jr., and A. C. Erlandson, “Two-photon excitation of mercury atoms by photodissociation of mercury halides,” Chem. Phys. Lett. 58, 108-113(1978).
[CrossRef]

Curtis, L. J.

L. J. Curtis, R. E. Irving, M. Henderson, R. Matulioniene, C. Froese Fischer, and E. H. Pinnington, “Measurements and predictions of the 6 s 6 p1,3P1 lifetimes in the Hg isoelectronic sequence,” Phys. Rev. A 63, 042502 (2001).
[CrossRef]

L. J. Curtis, “A predictive data-based exposition of nsnp 1,3P1 lifetimes in the Cd and Hg isoelectronic sequences,” J. Phys. B 26, L589-L594 (1993).
[CrossRef]

Datz, S.

H. F. Krause and S. Datz, “Crossed molecular beam study of electronic energy transfer: Hg(36P2)+NO(X2Π)-->NO(A2Σ)+Hg(61S0),” Chem. Phys. Lett. 41, 339-343(1976).
[CrossRef]

Davis, D. D.

Deech, J. S.

J. S. Deech, J. Pitre, and L. Krause, “Quenching and depolarization of mercury resonance radiation,” Can. J. Phys. 49, 1976-1981 (1971).
[CrossRef]

Dillon, M. A.

D. Spence, R.-G. Wang, and M. A. Dillon, “Excitation of Rydberg states of HgCl2 and HgBr2 by electron impact,” J. Chem. Phys. 82, 1883-1889 (1985).
[CrossRef]

D. Spence, R.-G. Wang, and M. A. Dillon, “Pseudo-optical absorption spectra in HgCl2 and HgBr2 from 4 to 14 eV,” Appl. Phys. Lett. 41, 1021-1023 (1982).
[CrossRef]

Djeu, N.

R. Burnham and N. Djeu, “Absolute rates of collisional deactivation of Hg(6p3P2) by nitrogen and carbon monoxide,” J. Chem. Phys. 61, 5158-5161 (1974).
[CrossRef]

Doemeny, L. J.

F. J. Van Itallie, L. J. Doemeny, and R. M. Martin, “Relative cross sections for the intramultiplet quenching of Hg(63P2) to Hg(63P1),” J. Chem. Phys. 56, 3689-3696(1972).
[CrossRef]

Domazetis, G.

B. L. Chadwick, G. Domazetis, and R. J. S. Morrison, “Multiwavelength monitoring of photofragment fluorescence after 193-nm photolysis of NaCl and NaOH--Application to measuring the sodium species released from coal at high-temperatures,” Anal. Chem. 67, 710-716 (1995).
[CrossRef]

Eden, J. G.

J. G. Eden, “VUV-pumped HgCl laser,” Appl. Phys. Lett. 33, 495-497 (1978).
[CrossRef]

Erlandson, A. C.

T. A. Cool, J. A. McGarvey, Jr., and A. C. Erlandson, “Two-photon excitation of mercury atoms by photodissociation of mercury halides,” Chem. Phys. Lett. 58, 108-113(1978).
[CrossRef]

Fischer, C. Froese

L. J. Curtis, R. E. Irving, M. Henderson, R. Matulioniene, C. Froese Fischer, and E. H. Pinnington, “Measurements and predictions of the 6 s 6 p1,3P1 lifetimes in the Hg isoelectronic sequence,” Phys. Rev. A 63, 042502 (2001).
[CrossRef]

Garstang, R. H.

R. H. Garstang, “Magnetic quadrupole line intensities,” Astrophys. J. 148, 579-584 (1967).
[CrossRef]

Ge, Z. Q.

E. H. Pinnington, W. Ansbacher, J. A. Kernahan, T. Ahmad, and Z. Q. Ge, “Lifetime measurements for low-lying levels in Hg I and Hg II using the beam-foil technique,” Can. J. Phys. 66, 960-962 (1988).
[CrossRef]

Geiser, P.

C. Bauer, P. Geiser, J. Burgmeier, G. Holl, and W. Schade, “Pulsed laser surface fragmentation and mid-infrared laser spectroscopy for remote detection of explosives,” Appl. Phys. B 85, 251-256 (2006).
[CrossRef]

Griffin, P. G.

P. G. Griffin, R. J. S. Morrison, A. Campisi, and B. L. Chadwick, “Apparatus for the detection and removal of vapor phase alkali species from coal-derived gases at high temperature and pressure,” Rev. Sci. Instrum. 69, 3674-3677(1998).
[CrossRef]

Gunning, H. E.

A. J. Yarwood, O. P. Strausz, and H. E. Gunning, “Quenching of the 2537-Å resonance radiation of mercury,” J. Chem. Phys. 41, 1705-1713 (1964).
[CrossRef]

Hamel, J.

J. P. Barrat, D. Casalta, J. L. Cojan, and J. Hamel, “Dépolarisation et ≪quenching≫ du niveau 63P1 du mercure lors de collisions avec des gaz étrangers,” J. Phys. (Paris) 27, 608-618 (1966).
[CrossRef]

Hammond, K.

J. Pitre, K. Hammond, and L. Krause, “63P1-63P0 excitation transfer in mercury, induced in collisions with N2 molecules,” Phys. Rev. A 6, 2101-2106 (1972).
[CrossRef]

Hartinger, K. T.

K. T. Hartinger, S. Nord, and P. B. Monkhouse, “Quenching of fluorescence from Na(32P) and K(42P) atoms following photodissociation of NaCl and KCl at 193 nm,” Appl. Phys. B 64, 363-367 (1997).
[CrossRef]

Heflinger, D.

Henderson, M.

L. J. Curtis, R. E. Irving, M. Henderson, R. Matulioniene, C. Froese Fischer, and E. H. Pinnington, “Measurements and predictions of the 6 s 6 p1,3P1 lifetimes in the Hg isoelectronic sequence,” Phys. Rev. A 63, 042502 (2001).
[CrossRef]

Holl, G.

C. Bauer, P. Geiser, J. Burgmeier, G. Holl, and W. Schade, “Pulsed laser surface fragmentation and mid-infrared laser spectroscopy for remote detection of explosives,” Appl. Phys. B 85, 251-256 (2006).
[CrossRef]

Hoops, A. A.

Horiguchi, H.

A. Sibata, M. Takahasi, H. Mikuni, H. Horiguchi, and S. Tsuchiya, “Chemiionization of excited mercury atom with 253.7 nm irradiation in the presence of N2 and CH4,” Bull. Chem. Soc. Jpn. 52, 15-20 (1979).
[CrossRef]

H. Horiguchi and S. Tsuchiya, “Quenching of excited mercury atoms (63P1 and 63P0) in molecular collisions,” Bull. Chem. Soc. Jpn. 47, 2768-2774 (1974).
[CrossRef]

Irving, R. E.

L. J. Curtis, R. E. Irving, M. Henderson, R. Matulioniene, C. Froese Fischer, and E. H. Pinnington, “Measurements and predictions of the 6 s 6 p1,3P1 lifetimes in the Hg isoelectronic sequence,” Phys. Rev. A 63, 042502 (2001).
[CrossRef]

Kendrow, C. H.

P. Templet, J. R. McDonald, S. P. McGlynn, C. H. Kendrow, J. L. Roebber, and K. Weiss, “Ultraviolet absorption spectra of mercuric halides,” J. Chem. Phys. 56, 5746 (1972).
[CrossRef]

Kernahan, J. A.

E. H. Pinnington, W. Ansbacher, J. A. Kernahan, T. Ahmad, and Z. Q. Ge, “Lifetime measurements for low-lying levels in Hg I and Hg II using the beam-foil technique,” Can. J. Phys. 66, 960-962 (1988).
[CrossRef]

King, T. A.

C. Whitehurst and T. A. King, “Multiphoton excitation of mercury atoms by photodissociation of HgX2(X=Cl,Br,I),” J. Phys. B 20, 4053-4064 (1987).
[CrossRef]

C. Whitehurst and T. A. King, “Spectroscopy, kinetics and laser effects of photodissociated HgX(X=I,Br and Cl),” J. Phys. B 20, 4035-4051 (1987).
[CrossRef]

Kliner, D. A. V.

Koplow, J. P.

Koshland, C. P.

S. G. Buckley, C. S. McEnally, R. F. Sawyer, C. P. Koshland, and D. Lucas, “Metal emissions monitoring using excimer laser fragmentation fluorescence spectroscopy,” Combust. Sci. Technol. 118, 169-188 (1996).
[CrossRef]

Krause, H. F.

H. F. Krause and S. Datz, “Crossed molecular beam study of electronic energy transfer: Hg(36P2)+NO(X2Π)-->NO(A2Σ)+Hg(61S0),” Chem. Phys. Lett. 41, 339-343(1976).
[CrossRef]

Krause, L.

J. Pitre, K. Hammond, and L. Krause, “63P1-63P0 excitation transfer in mercury, induced in collisions with N2 molecules,” Phys. Rev. A 6, 2101-2106 (1972).
[CrossRef]

J. S. Deech, J. Pitre, and L. Krause, “Quenching and depolarization of mercury resonance radiation,” Can. J. Phys. 49, 1976-1981 (1971).
[CrossRef]

Kunefke, A. J.

Lavi, R.

Linn, S. H.

S. H. Linn, J. M. Brom, Jr., W.-B. Tzeng, and C. Y. Ng, “Molecular beam photoionization study of HgCl2,” J. Chem. Phys. 78, 37-45 (1983).
[CrossRef]

Long, S. R.

R. C. Sausa, A. W. Miziolek, and S. R. Long, “State distributions, quenching, and reaction of the PO radical generated in excimer laser photofragmentation of dimethyl methylphosphonate,” J. Chem. Phys. 90, 3994-3998 (1986).
[CrossRef]

S. R. Long, R. C. Sausa, and A. W. Miziolek, “LIF studies of PO produced in excimer laser photolysis of dimethyl methyl phosphonate,” Chem. Phys. Lett. 117, 505-510 (1985).
[CrossRef]

Lucas, D.

S. G. Buckley, C. S. McEnally, R. F. Sawyer, C. P. Koshland, and D. Lucas, “Metal emissions monitoring using excimer laser fragmentation fluorescence spectroscopy,” Combust. Sci. Technol. 118, 169-188 (1996).
[CrossRef]

Mandl, A.

C. Roxlo and A. Mandl, “Vacuum ultraviolet absorption cross sections for halogen containing molecules,” J. Appl. Phys. 51, 2969-2972 (1980).
[CrossRef]

Martin, R. M.

F. J. Van Itallie, L. J. Doemeny, and R. M. Martin, “Relative cross sections for the intramultiplet quenching of Hg(63P2) to Hg(63P1),” J. Chem. Phys. 56, 3689-3696(1972).
[CrossRef]

Matulioniene, R.

L. J. Curtis, R. E. Irving, M. Henderson, R. Matulioniene, C. Froese Fischer, and E. H. Pinnington, “Measurements and predictions of the 6 s 6 p1,3P1 lifetimes in the Hg isoelectronic sequence,” Phys. Rev. A 63, 042502 (2001).
[CrossRef]

McDonald, J. R.

P. Templet, J. R. McDonald, S. P. McGlynn, C. H. Kendrow, J. L. Roebber, and K. Weiss, “Ultraviolet absorption spectra of mercuric halides,” J. Chem. Phys. 56, 5746 (1972).
[CrossRef]

McEnally, C. S.

S. G. Buckley, C. S. McEnally, R. F. Sawyer, C. P. Koshland, and D. Lucas, “Metal emissions monitoring using excimer laser fragmentation fluorescence spectroscopy,” Combust. Sci. Technol. 118, 169-188 (1996).
[CrossRef]

McGarvey, J. A.

T. A. Cool, J. A. McGarvey, Jr., and A. C. Erlandson, “Two-photon excitation of mercury atoms by photodissociation of mercury halides,” Chem. Phys. Lett. 58, 108-113(1978).
[CrossRef]

McGlynn, S. P.

P. Templet, J. R. McDonald, S. P. McGlynn, C. H. Kendrow, J. L. Roebber, and K. Weiss, “Ultraviolet absorption spectra of mercuric halides,” J. Chem. Phys. 56, 5746 (1972).
[CrossRef]

Michael, J. V.

J. V. Michael and G. N. Suess, “Absolute quenching cross sections of Hg(3P1) with various molecules,” J. Phys. Chem. 78, 482-487 (1974).
[CrossRef]

Mikuni, H.

A. Sibata, M. Takahasi, H. Mikuni, H. Horiguchi, and S. Tsuchiya, “Chemiionization of excited mercury atom with 253.7 nm irradiation in the presence of N2 and CH4,” Bull. Chem. Soc. Jpn. 52, 15-20 (1979).
[CrossRef]

Miller, T. S.

Miziolek, A. W.

R. C. Sausa, A. W. Miziolek, and S. R. Long, “State distributions, quenching, and reaction of the PO radical generated in excimer laser photofragmentation of dimethyl methylphosphonate,” J. Chem. Phys. 90, 3994-3998 (1986).
[CrossRef]

S. R. Long, R. C. Sausa, and A. W. Miziolek, “LIF studies of PO produced in excimer laser photolysis of dimethyl methyl phosphonate,” Chem. Phys. Lett. 117, 505-510 (1985).
[CrossRef]

Monkhouse, P.

P. Monkhouse, “On-line diagnostic methods for metal species in industrial process gas,” Prog. Energy Combust. Sci. 28, 331-381 (2002).
[CrossRef]

Monkhouse, P. B.

K. T. Hartinger, S. Nord, and P. B. Monkhouse, “Quenching of fluorescence from Na(32P) and K(42P) atoms following photodissociation of NaCl and KCl at 193 nm,” Appl. Phys. B 64, 363-367 (1997).
[CrossRef]

Monts, D. L.

Moore, S. W.

Morrison, R. J. S.

P. G. Griffin, R. J. S. Morrison, A. Campisi, and B. L. Chadwick, “Apparatus for the detection and removal of vapor phase alkali species from coal-derived gases at high temperature and pressure,” Rev. Sci. Instrum. 69, 3674-3677(1998).
[CrossRef]

B. L. Chadwick, G. Domazetis, and R. J. S. Morrison, “Multiwavelength monitoring of photofragment fluorescence after 193-nm photolysis of NaCl and NaOH--Application to measuring the sodium species released from coal at high-temperatures,” Anal. Chem. 67, 710-716 (1995).
[CrossRef]

Ng, C. Y.

S. H. Linn, J. M. Brom, Jr., W.-B. Tzeng, and C. Y. Ng, “Molecular beam photoionization study of HgCl2,” J. Chem. Phys. 78, 37-45 (1983).
[CrossRef]

Nord, S.

K. T. Hartinger, S. Nord, and P. B. Monkhouse, “Quenching of fluorescence from Na(32P) and K(42P) atoms following photodissociation of NaCl and KCl at 193 nm,” Appl. Phys. B 64, 363-367 (1997).
[CrossRef]

Oba, D.

F. M. Zhang, D. Oba, and D. W. Setser, “A flowing-afterglow study of the quenching reactions of Hg(3P2) and Hg(3P0) atoms by halogens, interhalogens, and polyatomic halide molecules,” J. Phys. Chem. 91, 1099-1114 (1987).
[CrossRef]

Oldenborg, R. C.

R. C. Oldenborg and S. L. Baughcum, “Photofragment fluorescence as an analytical technique: Application to gas-phase alkali chlorides,” Anal. Chem. 58, 1430-1436 (1986).
[CrossRef]

Pinnington, E. H.

L. J. Curtis, R. E. Irving, M. Henderson, R. Matulioniene, C. Froese Fischer, and E. H. Pinnington, “Measurements and predictions of the 6 s 6 p1,3P1 lifetimes in the Hg isoelectronic sequence,” Phys. Rev. A 63, 042502 (2001).
[CrossRef]

E. H. Pinnington, W. Ansbacher, J. A. Kernahan, T. Ahmad, and Z. Q. Ge, “Lifetime measurements for low-lying levels in Hg I and Hg II using the beam-foil technique,” Can. J. Phys. 66, 960-962 (1988).
[CrossRef]

Pitre, J.

J. Pitre, K. Hammond, and L. Krause, “63P1-63P0 excitation transfer in mercury, induced in collisions with N2 molecules,” Phys. Rev. A 6, 2101-2106 (1972).
[CrossRef]

J. S. Deech, J. Pitre, and L. Krause, “Quenching and depolarization of mercury resonance radiation,” Can. J. Phys. 49, 1976-1981 (1971).
[CrossRef]

Pitts, J. N.

J. G. Calvert and J. N. Pitts, Photochemistry (Wiley, 1966).

Poulos, A. T.

R. B. Barat and A. T. Poulos, “Detection of mercury compounds in the gas phase by laser photo-fragmentation/emission spectroscopy,” Appl. Spectrosc. 52, 1360-1363 (1998).

Reichardt, T. A.

Rice, S. F.

S. F. Rice, M. D. Allendorf, M. Velez, and J. M. Almanza, “Detection of NaOH vapor in glass furnaces using excimer laser photofragmentation spectroscopy,” Glass Sci. Technol. 78, 45-53 (2005).

Rodgers, M. O.

Roebber, J. L.

P. Templet, J. R. McDonald, S. P. McGlynn, C. H. Kendrow, J. L. Roebber, and K. Weiss, “Ultraviolet absorption spectra of mercuric halides,” J. Chem. Phys. 56, 5746 (1972).
[CrossRef]

Ron, Y.

D. Heflinger, T. Arusi-Parpar, Y. Ron, and R. Lavi, “Application of a unique scheme for remote detection of explosives,” Opt. Commun. 204, 327-331 (2002).
[CrossRef]

Rosenwaks, S.

J. Shu, I. Bar, and S. Rosenwaks, “NO and PO photofragments as trace analyte indicators of nitrocompounds and organophosphonates,” Appl. Phys. B 71, 665-672 (2000).
[CrossRef]

Roxlo, C.

C. Roxlo and A. Mandl, “Vacuum ultraviolet absorption cross sections for halogen containing molecules,” J. Appl. Phys. 51, 2969-2972 (1980).
[CrossRef]

Sausa, R. C.

J. B. Simeonsson and R. C. Sausa, “A critical review of laser photofragmentation/fragment detection techniques for gas-phase chemical analysis,” Appl. Spectrosc. Rev. 31, 1-72(1996).
[CrossRef]

R. C. Sausa, A. W. Miziolek, and S. R. Long, “State distributions, quenching, and reaction of the PO radical generated in excimer laser photofragmentation of dimethyl methylphosphonate,” J. Chem. Phys. 90, 3994-3998 (1986).
[CrossRef]

S. R. Long, R. C. Sausa, and A. W. Miziolek, “LIF studies of PO produced in excimer laser photolysis of dimethyl methyl phosphonate,” Chem. Phys. Lett. 117, 505-510 (1985).
[CrossRef]

Sawyer, R. F.

S. G. Buckley, C. S. McEnally, R. F. Sawyer, C. P. Koshland, and D. Lucas, “Metal emissions monitoring using excimer laser fragmentation fluorescence spectroscopy,” Combust. Sci. Technol. 118, 169-188 (1996).
[CrossRef]

Schade, W.

C. Bauer, P. Geiser, J. Burgmeier, G. Holl, and W. Schade, “Pulsed laser surface fragmentation and mid-infrared laser spectroscopy for remote detection of explosives,” Appl. Phys. B 85, 251-256 (2006).
[CrossRef]

Setser, D. W.

F. M. Zhang, D. Oba, and D. W. Setser, “A flowing-afterglow study of the quenching reactions of Hg(3P2) and Hg(3P0) atoms by halogens, interhalogens, and polyatomic halide molecules,” J. Phys. Chem. 91, 1099-1114 (1987).
[CrossRef]

Shu, J.

J. Shu, I. Bar, and S. Rosenwaks, “NO and PO photofragments as trace analyte indicators of nitrocompounds and organophosphonates,” Appl. Phys. B 71, 665-672 (2000).
[CrossRef]

Sibata, A.

A. Sibata, M. Takahasi, H. Mikuni, H. Horiguchi, and S. Tsuchiya, “Chemiionization of excited mercury atom with 253.7 nm irradiation in the presence of N2 and CH4,” Bull. Chem. Soc. Jpn. 52, 15-20 (1979).
[CrossRef]

Simeonsson, J. B.

J. B. Simeonsson and R. C. Sausa, “A critical review of laser photofragmentation/fragment detection techniques for gas-phase chemical analysis,” Appl. Spectrosc. Rev. 31, 1-72(1996).
[CrossRef]

Singh, J. P.

Spence, D.

D. Spence, R.-G. Wang, and M. A. Dillon, “Excitation of Rydberg states of HgCl2 and HgBr2 by electron impact,” J. Chem. Phys. 82, 1883-1889 (1985).
[CrossRef]

D. Spence, R.-G. Wang, and M. A. Dillon, “Pseudo-optical absorption spectra in HgCl2 and HgBr2 from 4 to 14 eV,” Appl. Phys. Lett. 41, 1021-1023 (1982).
[CrossRef]

Strausz, O. P.

A. J. Yarwood, O. P. Strausz, and H. E. Gunning, “Quenching of the 2537-Å resonance radiation of mercury,” J. Chem. Phys. 41, 1705-1713 (1964).
[CrossRef]

Suess, G. N.

J. V. Michael and G. N. Suess, “Absolute quenching cross sections of Hg(3P1) with various molecules,” J. Phys. Chem. 78, 482-487 (1974).
[CrossRef]

Takahasi, M.

A. Sibata, M. Takahasi, H. Mikuni, H. Horiguchi, and S. Tsuchiya, “Chemiionization of excited mercury atom with 253.7 nm irradiation in the presence of N2 and CH4,” Bull. Chem. Soc. Jpn. 52, 15-20 (1979).
[CrossRef]

Templet, P.

P. Templet, J. R. McDonald, S. P. McGlynn, C. H. Kendrow, J. L. Roebber, and K. Weiss, “Ultraviolet absorption spectra of mercuric halides,” J. Chem. Phys. 56, 5746 (1972).
[CrossRef]

Tsuchiya, S.

A. Sibata, M. Takahasi, H. Mikuni, H. Horiguchi, and S. Tsuchiya, “Chemiionization of excited mercury atom with 253.7 nm irradiation in the presence of N2 and CH4,” Bull. Chem. Soc. Jpn. 52, 15-20 (1979).
[CrossRef]

H. Horiguchi and S. Tsuchiya, “Quenching of excited mercury atoms (63P1 and 63P0) in molecular collisions,” Bull. Chem. Soc. Jpn. 47, 2768-2774 (1974).
[CrossRef]

Tzeng, W.-B.

S. H. Linn, J. M. Brom, Jr., W.-B. Tzeng, and C. Y. Ng, “Molecular beam photoionization study of HgCl2,” J. Chem. Phys. 78, 37-45 (1983).
[CrossRef]

Van Itallie, F. J.

F. J. Van Itallie, L. J. Doemeny, and R. M. Martin, “Relative cross sections for the intramultiplet quenching of Hg(63P2) to Hg(63P1),” J. Chem. Phys. 56, 3689-3696(1972).
[CrossRef]

Velez, M.

S. F. Rice, M. D. Allendorf, M. Velez, and J. M. Almanza, “Detection of NaOH vapor in glass furnaces using excimer laser photofragmentation spectroscopy,” Glass Sci. Technol. 78, 45-53 (2005).

Wadt, W. R.

W. R. Wadt, “The electronic structure of HgCl2 and HgBr2 and its relationship to photodissociation,” J. Chem. Phys. 72, 2469-2478 (1980).
[CrossRef]

W. R. Wadt, “The electronic structure of HgCl and HgBr,” Appl. Phys. Lett. 34, 658-660 (1979).
[CrossRef]

Wang, R.-G.

D. Spence, R.-G. Wang, and M. A. Dillon, “Excitation of Rydberg states of HgCl2 and HgBr2 by electron impact,” J. Chem. Phys. 82, 1883-1889 (1985).
[CrossRef]

D. Spence, R.-G. Wang, and M. A. Dillon, “Pseudo-optical absorption spectra in HgCl2 and HgBr2 from 4 to 14 eV,” Appl. Phys. Lett. 41, 1021-1023 (1982).
[CrossRef]

Wehrli, M.

M. Wehrli, “Elektronenbandenspektren der linearen moleküle HgCl2, HgBr2, HgJ2, und TeCl2,” Helv. Phys. Acta 11, 339-356 (1938).

Weiss, K.

P. Templet, J. R. McDonald, S. P. McGlynn, C. H. Kendrow, J. L. Roebber, and K. Weiss, “Ultraviolet absorption spectra of mercuric halides,” J. Chem. Phys. 56, 5746 (1972).
[CrossRef]

Whitehurst, C.

C. Whitehurst and T. A. King, “Spectroscopy, kinetics and laser effects of photodissociated HgX(X=I,Br and Cl),” J. Phys. B 20, 4035-4051 (1987).
[CrossRef]

C. Whitehurst and T. A. King, “Multiphoton excitation of mercury atoms by photodissociation of HgX2(X=Cl,Br,I),” J. Phys. B 20, 4053-4064 (1987).
[CrossRef]

Wieland, K.

K. Wieland, “Absorptions--und fluoreszenzspektren dampfförmiger quecksilberhalogenide II. HgBr2 und HgCl2,” Z. Phys. 77, 157-165 (1932).
[CrossRef]

Wu, D.

Yarwood, A. J.

A. J. Yarwood, O. P. Strausz, and H. E. Gunning, “Quenching of the 2537-Å resonance radiation of mercury,” J. Chem. Phys. 41, 1705-1713 (1964).
[CrossRef]

Yueh, F. Y.

Yueh, F.-Y.

Zhang, F. M.

F. M. Zhang, D. Oba, and D. W. Setser, “A flowing-afterglow study of the quenching reactions of Hg(3P2) and Hg(3P0) atoms by halogens, interhalogens, and polyatomic halide molecules,” J. Phys. Chem. 91, 1099-1114 (1987).
[CrossRef]

Anal. Chem. (2)

B. L. Chadwick, G. Domazetis, and R. J. S. Morrison, “Multiwavelength monitoring of photofragment fluorescence after 193-nm photolysis of NaCl and NaOH--Application to measuring the sodium species released from coal at high-temperatures,” Anal. Chem. 67, 710-716 (1995).
[CrossRef]

R. C. Oldenborg and S. L. Baughcum, “Photofragment fluorescence as an analytical technique: Application to gas-phase alkali chlorides,” Anal. Chem. 58, 1430-1436 (1986).
[CrossRef]

Appl. Opt. (6)

Appl. Phys. B (3)

K. T. Hartinger, S. Nord, and P. B. Monkhouse, “Quenching of fluorescence from Na(32P) and K(42P) atoms following photodissociation of NaCl and KCl at 193 nm,” Appl. Phys. B 64, 363-367 (1997).
[CrossRef]

J. Shu, I. Bar, and S. Rosenwaks, “NO and PO photofragments as trace analyte indicators of nitrocompounds and organophosphonates,” Appl. Phys. B 71, 665-672 (2000).
[CrossRef]

C. Bauer, P. Geiser, J. Burgmeier, G. Holl, and W. Schade, “Pulsed laser surface fragmentation and mid-infrared laser spectroscopy for remote detection of explosives,” Appl. Phys. B 85, 251-256 (2006).
[CrossRef]

Appl. Phys. Lett. (3)

W. R. Wadt, “The electronic structure of HgCl and HgBr,” Appl. Phys. Lett. 34, 658-660 (1979).
[CrossRef]

D. Spence, R.-G. Wang, and M. A. Dillon, “Pseudo-optical absorption spectra in HgCl2 and HgBr2 from 4 to 14 eV,” Appl. Phys. Lett. 41, 1021-1023 (1982).
[CrossRef]

J. G. Eden, “VUV-pumped HgCl laser,” Appl. Phys. Lett. 33, 495-497 (1978).
[CrossRef]

Appl. Spectrosc. (1)

R. B. Barat and A. T. Poulos, “Detection of mercury compounds in the gas phase by laser photo-fragmentation/emission spectroscopy,” Appl. Spectrosc. 52, 1360-1363 (1998).

Appl. Spectrosc. Rev. (1)

J. B. Simeonsson and R. C. Sausa, “A critical review of laser photofragmentation/fragment detection techniques for gas-phase chemical analysis,” Appl. Spectrosc. Rev. 31, 1-72(1996).
[CrossRef]

Astrophys. J. (1)

R. H. Garstang, “Magnetic quadrupole line intensities,” Astrophys. J. 148, 579-584 (1967).
[CrossRef]

Bull. Chem. Soc. Jpn. (2)

A. Sibata, M. Takahasi, H. Mikuni, H. Horiguchi, and S. Tsuchiya, “Chemiionization of excited mercury atom with 253.7 nm irradiation in the presence of N2 and CH4,” Bull. Chem. Soc. Jpn. 52, 15-20 (1979).
[CrossRef]

H. Horiguchi and S. Tsuchiya, “Quenching of excited mercury atoms (63P1 and 63P0) in molecular collisions,” Bull. Chem. Soc. Jpn. 47, 2768-2774 (1974).
[CrossRef]

Can. J. Phys. (2)

E. H. Pinnington, W. Ansbacher, J. A. Kernahan, T. Ahmad, and Z. Q. Ge, “Lifetime measurements for low-lying levels in Hg I and Hg II using the beam-foil technique,” Can. J. Phys. 66, 960-962 (1988).
[CrossRef]

J. S. Deech, J. Pitre, and L. Krause, “Quenching and depolarization of mercury resonance radiation,” Can. J. Phys. 49, 1976-1981 (1971).
[CrossRef]

Chem. Phys. Lett. (3)

H. F. Krause and S. Datz, “Crossed molecular beam study of electronic energy transfer: Hg(36P2)+NO(X2Π)-->NO(A2Σ)+Hg(61S0),” Chem. Phys. Lett. 41, 339-343(1976).
[CrossRef]

T. A. Cool, J. A. McGarvey, Jr., and A. C. Erlandson, “Two-photon excitation of mercury atoms by photodissociation of mercury halides,” Chem. Phys. Lett. 58, 108-113(1978).
[CrossRef]

S. R. Long, R. C. Sausa, and A. W. Miziolek, “LIF studies of PO produced in excimer laser photolysis of dimethyl methyl phosphonate,” Chem. Phys. Lett. 117, 505-510 (1985).
[CrossRef]

Combust. Sci. Technol. (1)

S. G. Buckley, C. S. McEnally, R. F. Sawyer, C. P. Koshland, and D. Lucas, “Metal emissions monitoring using excimer laser fragmentation fluorescence spectroscopy,” Combust. Sci. Technol. 118, 169-188 (1996).
[CrossRef]

Glass Sci. Technol. (1)

S. F. Rice, M. D. Allendorf, M. Velez, and J. M. Almanza, “Detection of NaOH vapor in glass furnaces using excimer laser photofragmentation spectroscopy,” Glass Sci. Technol. 78, 45-53 (2005).

Helv. Phys. Acta (1)

M. Wehrli, “Elektronenbandenspektren der linearen moleküle HgCl2, HgBr2, HgJ2, und TeCl2,” Helv. Phys. Acta 11, 339-356 (1938).

J. Appl. Phys. (1)

C. Roxlo and A. Mandl, “Vacuum ultraviolet absorption cross sections for halogen containing molecules,” J. Appl. Phys. 51, 2969-2972 (1980).
[CrossRef]

J. Chem. Phys. (8)

D. Spence, R.-G. Wang, and M. A. Dillon, “Excitation of Rydberg states of HgCl2 and HgBr2 by electron impact,” J. Chem. Phys. 82, 1883-1889 (1985).
[CrossRef]

P. Templet, J. R. McDonald, S. P. McGlynn, C. H. Kendrow, J. L. Roebber, and K. Weiss, “Ultraviolet absorption spectra of mercuric halides,” J. Chem. Phys. 56, 5746 (1972).
[CrossRef]

W. R. Wadt, “The electronic structure of HgCl2 and HgBr2 and its relationship to photodissociation,” J. Chem. Phys. 72, 2469-2478 (1980).
[CrossRef]

R. C. Sausa, A. W. Miziolek, and S. R. Long, “State distributions, quenching, and reaction of the PO radical generated in excimer laser photofragmentation of dimethyl methylphosphonate,” J. Chem. Phys. 90, 3994-3998 (1986).
[CrossRef]

R. Burnham and N. Djeu, “Absolute rates of collisional deactivation of Hg(6p3P2) by nitrogen and carbon monoxide,” J. Chem. Phys. 61, 5158-5161 (1974).
[CrossRef]

F. J. Van Itallie, L. J. Doemeny, and R. M. Martin, “Relative cross sections for the intramultiplet quenching of Hg(63P2) to Hg(63P1),” J. Chem. Phys. 56, 3689-3696(1972).
[CrossRef]

A. J. Yarwood, O. P. Strausz, and H. E. Gunning, “Quenching of the 2537-Å resonance radiation of mercury,” J. Chem. Phys. 41, 1705-1713 (1964).
[CrossRef]

S. H. Linn, J. M. Brom, Jr., W.-B. Tzeng, and C. Y. Ng, “Molecular beam photoionization study of HgCl2,” J. Chem. Phys. 78, 37-45 (1983).
[CrossRef]

J. Phys. (Paris) (1)

J. P. Barrat, D. Casalta, J. L. Cojan, and J. Hamel, “Dépolarisation et ≪quenching≫ du niveau 63P1 du mercure lors de collisions avec des gaz étrangers,” J. Phys. (Paris) 27, 608-618 (1966).
[CrossRef]

J. Phys. B (3)

C. Whitehurst and T. A. King, “Multiphoton excitation of mercury atoms by photodissociation of HgX2(X=Cl,Br,I),” J. Phys. B 20, 4053-4064 (1987).
[CrossRef]

C. Whitehurst and T. A. King, “Spectroscopy, kinetics and laser effects of photodissociated HgX(X=I,Br and Cl),” J. Phys. B 20, 4035-4051 (1987).
[CrossRef]

L. J. Curtis, “A predictive data-based exposition of nsnp 1,3P1 lifetimes in the Cd and Hg isoelectronic sequences,” J. Phys. B 26, L589-L594 (1993).
[CrossRef]

J. Phys. Chem. (2)

F. M. Zhang, D. Oba, and D. W. Setser, “A flowing-afterglow study of the quenching reactions of Hg(3P2) and Hg(3P0) atoms by halogens, interhalogens, and polyatomic halide molecules,” J. Phys. Chem. 91, 1099-1114 (1987).
[CrossRef]

J. V. Michael and G. N. Suess, “Absolute quenching cross sections of Hg(3P1) with various molecules,” J. Phys. Chem. 78, 482-487 (1974).
[CrossRef]

Opt. Commun. (1)

D. Heflinger, T. Arusi-Parpar, Y. Ron, and R. Lavi, “Application of a unique scheme for remote detection of explosives,” Opt. Commun. 204, 327-331 (2002).
[CrossRef]

Phys. Rev. A (2)

J. Pitre, K. Hammond, and L. Krause, “63P1-63P0 excitation transfer in mercury, induced in collisions with N2 molecules,” Phys. Rev. A 6, 2101-2106 (1972).
[CrossRef]

L. J. Curtis, R. E. Irving, M. Henderson, R. Matulioniene, C. Froese Fischer, and E. H. Pinnington, “Measurements and predictions of the 6 s 6 p1,3P1 lifetimes in the Hg isoelectronic sequence,” Phys. Rev. A 63, 042502 (2001).
[CrossRef]

Prog. Energy Combust. Sci. (1)

P. Monkhouse, “On-line diagnostic methods for metal species in industrial process gas,” Prog. Energy Combust. Sci. 28, 331-381 (2002).
[CrossRef]

Rev. Sci. Instrum. (1)

P. G. Griffin, R. J. S. Morrison, A. Campisi, and B. L. Chadwick, “Apparatus for the detection and removal of vapor phase alkali species from coal-derived gases at high temperature and pressure,” Rev. Sci. Instrum. 69, 3674-3677(1998).
[CrossRef]

Z. Phys. (1)

K. Wieland, “Absorptions--und fluoreszenzspektren dampfförmiger quecksilberhalogenide II. HgBr2 und HgCl2,” Z. Phys. 77, 157-165 (1932).
[CrossRef]

Other (2)

CRC Handbook of Chemistry and Physics, 67th ed., R. Weast, ed. (CRC Press, 1986).

J. G. Calvert and J. N. Pitts, Photochemistry (Wiley, 1966).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Energy level diagram for Hg Cl 2 and possible product states. Solid lines designate the peaks of the absorption bands for optically allowed transitions from Hg Cl 2 ( 1 Σ g + 1 ) to valence states 1 Π u 1 , 1 Σ u + 1 , and 2 Σ u + 1 , Rydberg states, and calculated excitation energies for the 1 Π g 3 , 1 Π g 1 , 1 Π u 3 , and 1 Σ u + 3 states of Hg Cl 2 . The gray shaded regions represent the energies spanned by the bands from [26]. Energies above the ionization energy (IE) of Hg Cl 2 [41] are denoted by the diagonally shaded pattern. Additionally, electronic state correlations [22] are indicated by dashed lines. Excited state energy levels of product channels are those of HgCl and Hg.

Fig. 2
Fig. 2

Hg Cl 2 PFE intensity versus incident laser energy (dots) and fit of the experimental data to Eq. (1) (solid line).

Fig. 3
Fig. 3

Hg Cl 2 PFE waveforms obtained at indicated pressures of N 2 for (a) the entire timescale of the waveforms, and (b) a magnification of the rise of the waveforms. The vertical arrow denotes the onset of the laser pulse.

Fig. 4
Fig. 4

Dependence of Hg Cl 2 PFE signal on buffer-gas composition. The total cell pressure is 30 Torr for each waveform. The vertical arrow indicates the onset of the laser pulse.

Fig. 5
Fig. 5

Reaction pathway and rate coefficients described by Eqs. (3, 4, 5, 6) in the text. Radiative transitions are denoted by wavy lines, and nonradiative transitions via collisions with molecule M are illustrated with straight lines. The term “other” represents all participating states of Hg-containing species other than the Hg ( 6 P 1 3 ) state.

Fig. 6
Fig. 6

Hg Cl 2 PFE signal (••••) and fit of the experimental data to Eq. (9) () using values of k Int RL obtained by the method described in Subsection 3C. In each case, the total cell pressure is 30 Torr .

Fig. 7
Fig. 7

Total rate coefficients of Int RL obtained by fitting the Hg Cl 2 PFE waveforms according to Eq. (9) (symbols) and linear fit to the rates at low pressures (solid line). The fit for CO 2 assumes zero contribution from CO 2 .

Fig. 8
Fig. 8

Total quenching rate coefficients of Hg ( 6 P 1 3 ) with flue gas constituents (a)  N 2 , (b)  O 2 from the O 2 / N 2 mixtures specified, and (c)  CO 2 from the CO 2 / N 2 mixtures specified. The dashed horizontal line denotes the average values of k j Hg ( 6 P 1 3 ) .

Fig. 9
Fig. 9

Ratio C Int RL , mixture / C Int RL , N 2 for mixtures of O 2 / N 2 and CO 2 / N 2 as a function of N 2 mixture fraction. The solid line denotes a ratio of 1.

Tables (2)

Tables Icon

Table 1 Total Quenching Rate Coefficients of Hg ( 6 P 1 3 )

Tables Icon

Table 2 Total Quenching Rate Coefficients of Int RL from the Current Work (First Line) and Quenching Rate Coefficients of Hg ( 6 P 2 3 ) for the Indicated Processes (Subsequent Lines)

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

S = A · E ( E E sat ) 1 + ( E E sat ) ,
Hg Cl n + m h ν ( 209.8 nm ) Hg Cl n * ( Int ) Hg ( 6 3 P 1 ) + 2 Cl ,
Int R L k 1 Hg ( 6 3 P 1 ) + h ν k 1 other + h ν ,
Int RL + M k 2 Hg ( 6 P 1 3 ) + M k 2 other + M ,
Hg ( 6 P 1 3 ) k 3 Hg ( 6 S 0 1 ) + h ν ( 253 . 7 nm ) ,
Hg ( 6 P 1 3 ) + M k 4 Hg ( 6 S 0 1 ) + M k 4 Hg ( 6 P 0 3 ) + M ,
d [ Int RL ] d t = [ Int RL ] { ( k 1 + k 1 ) + ( k 2 + k 2 ) [ M ] } ,
d [ Hg ( 6 P 1 3 ) ] d t = [ Int RL ] ( k 1 + k 2 [ M ] ) [ Hg ( 6 P 1 3 ) ] { k 3 + ( k 4 + k 4 ) [ M ] } .
[ Hg ( 6 P 1 3 ) ] = C 1 [ exp ( k Int RL t ) exp ( k Hg ( 6 P 1 3 ) t ) ] ,
C 1 = { ( k 1 + k 2 [ M ] ) [ Int RL ] 0 } / ( k Hg ( 6 P 1 3 ) k Int RL )
k Int RL = ( k 1 + k 1 ) + ( k 2 + k 2 ) [ M ] ,
k Hg ( 6 P 1 3 ) = k 3 + ( k 4 + k 4 ) [ M ]
k i = τ r , i 1 + Σ j k j i [ M j ] ,
0 [ Hg ( 6 P 1 3 ) ] d t = ( k 1 + k 2 [ M ] ) [ Int RL ] 0 ( k Hg ( 6 P 1 3 ) ) ( k Int RL ) .
0 [ Hg ( 6 P 1 3 ) ] d t = Σ j k 2 , j [ M j ] [ Int RL ] 0 ( τ r , Hg ( 6 P 1 3 ) 1 + Σ j k j Hg ( 6 P 1 3 ) [ M j ] ) Σ j k j Int RL [ M j ] = C Int RL · ( τ r , Hg ( 6 P 1 3 ) 1 + Σ j k j Hg ( 6 P 1 3 ) [ M j ] ) 1 ,
C Int RL = ( Σ j k 2 , j [ M j ] [ Int RL ] 0 ) / ( Σ j k j Int RL [ M j ] )

Metrics