Abstract

The detection of chemicals from safe distances is vital in environments with potentially hazardous or explosive threats, where high sensitivity and fast detection speed are needed. Here we demonstrate standoff detection of several solids, liquids, and gases with single-beam coherent anti-Stokes Raman scattering. This approach utilizes a phase coherent ultrabroad-bandwidth femtosecond laser to probe the fundamental vibrations that constitute a molecule’s fingerprint. Characteristic Raman lines for several chemicals are successfully obtained from arms-length and 12m standoff distances. The sensitivity and speed of this approach are also demonstrated.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Rohwetter, J. Yu, G. Mejean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J. P. Wole, and L. Woste, “Remote LIBS with ultrashort pulses: characteristics in picosecond and femtosecond regimes,” J. Anal. At. Spectrom. 19, 437-444 (2004).
    [CrossRef]
  2. F. C. DeLucia, A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5, 681-689 (2005).
    [CrossRef]
  3. J. C. Carter, S. M. Angel, M. Lawrence-Snyder, J. Scaffidi, R. E. Whipple, and J. G. Reynolds, “Standoff detection of high explosive materials at 50 meters in ambient light conditions using a small Raman instrument,” Appl. Spectrosc. 59, 769-775 (2005).
    [CrossRef] [PubMed]
  4. A. K. Misra, S. K. Sharma, and P. G. Lucey, “Remote Raman spectroscopic detection of minerals and organics under illuminated conditions from a distance of 10 m using a single 532 nm laser pulse,” Appl. Spectrosc. 60, 223-228 (2006).
    [CrossRef] [PubMed]
  5. Committee on the Review of Existing and Potential Standoff Explosives Techniques, National Research Council, Existing and Potential Standoff Explosives Detection Techniques (National Academies Press, 2004).
  6. P. D. Maker and R. W. Terhune, “Study of optical effects due to an induced polarization third order in the electric field strength,” Phys. Rev. 137, A801-A818 (1965).
    [CrossRef]
  7. G. I. Petrov, R. Arora, V. V. Yakovlev, X. Wang, A. V. Sokolov, and M. O. Scully, “Comparison of coherent and spontaneous Raman microspectroscopies for noninvasive detection of single bacterial endospores,” Proc. Natl. Acad. Sci. USA 104, 7776-7779 (2007).
    [CrossRef] [PubMed]
  8. M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrny, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, “FAST CARS: engineering a laser spectroscopic technique for rapid identification of bacterial spores,” Proc. Natl. Acad. Sci. USA 99, 10994-11001 (2002).
    [CrossRef] [PubMed]
  9. D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. C. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316, 265-268 (2007).
    [CrossRef] [PubMed]
  10. N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512-514 (2002).
    [CrossRef] [PubMed]
  11. S. H. Lim, A. G. Caster, and S. R. Leone, “Single-pulse phase-control interferometric coherent anti-Stokes Raman scattering spectroscopy,” Phys. Rev. A 72, 041803 (2005).
    [CrossRef]
  12. B. von Vacano and M. Motzkus, “Time-resolved two color single-beam CARS employing supercontinuum and femtosecond pulse shaping,” Opt. Commun. 264, 488-493 (2006).
    [CrossRef]
  13. H. W. Li, D. A. Harris, B. W. Xu, P. J. Wrzesinski, V. V. Lozovoy, and M. Dantus, “Coherent mode-selective Raman excitation towards standoff detection,” Opt. Express 16, 5499-5504(2008).
    [CrossRef] [PubMed]
  14. O. Katz, A. Natan, Y. Silberberg, and S. Rosenwaks, “Standoff detection of trace amounts of solids by nonlinear Raman spectroscopy using shaped femtosecond pulses,” Appl. Phys. Lett. 92, 171116 (2008).
    [CrossRef]
  15. V. V. Lozovoy, I. Pastirk, and M. Dantus, “Multiphoton intrapulse interference. 4. Characterization of the phase of ultrashort laser pulses,” Opt. Lett. 29, 775-777 (2004).
    [CrossRef] [PubMed]
  16. B. Xu, J. M. Gunn, J. M. D. Cruz, V. V. Lozovoy, and M. Dantus, “Quantitative investigation of the multiphoton intrapulse interference phase scan method for simultaneous phase measurement and compensation of femtosecond laser pulses,” J. Opt. Soc. Am. B 23, 750-759 (2006).
    [CrossRef]
  17. D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 90, 213902(2003).
    [CrossRef] [PubMed]
  18. M. Nisoli, S. DeSilvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793-2795 (1996).
    [CrossRef]
  19. L. Gallmann, T. Pfeifer, P. M. Nagel, M. J. Abel, D. M. Neumark, and S. R. Leone, “Comparison of the filamentation and the hollow-core fiber characteristics for pulse compression into the few-cycle regime,” Appl. Phys. B 86, 561-566 (2007).
    [CrossRef]
  20. M. Nisoli, S. Stagira, S. D. Silvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, C. Spielmann, and F. Krausz, “A novel-high energy pulse compression system: generation of multigigawatt sub-5-fs pulses,” Appl. Phys. B 65, 189-196(1997).
    [CrossRef]
  21. B. Schenkel, J. Biegert, U. Keller, C. Vozzi, M. Nisoli, G. Sansone, S. Stagira, S. De Silvestri, and O. Svelto, “Generation of 3.8-fs pulses from adaptive compression of a cascaded hollow fiber supercontinuum,” Opt. Lett. 28, 1987-1989(2003).
    [CrossRef] [PubMed]
  22. I. Pastirk, X. Zhu, R. M. Martin, and M. Dantus, “Remote characterization and dispersion compensation of amplified shaped femtosecond pulses using MIIPS,” Opt. Express 14, 8885-8889 (2006).
    [CrossRef] [PubMed]

2008 (2)

O. Katz, A. Natan, Y. Silberberg, and S. Rosenwaks, “Standoff detection of trace amounts of solids by nonlinear Raman spectroscopy using shaped femtosecond pulses,” Appl. Phys. Lett. 92, 171116 (2008).
[CrossRef]

H. W. Li, D. A. Harris, B. W. Xu, P. J. Wrzesinski, V. V. Lozovoy, and M. Dantus, “Coherent mode-selective Raman excitation towards standoff detection,” Opt. Express 16, 5499-5504(2008).
[CrossRef] [PubMed]

2007 (3)

L. Gallmann, T. Pfeifer, P. M. Nagel, M. J. Abel, D. M. Neumark, and S. R. Leone, “Comparison of the filamentation and the hollow-core fiber characteristics for pulse compression into the few-cycle regime,” Appl. Phys. B 86, 561-566 (2007).
[CrossRef]

G. I. Petrov, R. Arora, V. V. Yakovlev, X. Wang, A. V. Sokolov, and M. O. Scully, “Comparison of coherent and spontaneous Raman microspectroscopies for noninvasive detection of single bacterial endospores,” Proc. Natl. Acad. Sci. USA 104, 7776-7779 (2007).
[CrossRef] [PubMed]

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. C. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316, 265-268 (2007).
[CrossRef] [PubMed]

2006 (4)

2005 (3)

J. C. Carter, S. M. Angel, M. Lawrence-Snyder, J. Scaffidi, R. E. Whipple, and J. G. Reynolds, “Standoff detection of high explosive materials at 50 meters in ambient light conditions using a small Raman instrument,” Appl. Spectrosc. 59, 769-775 (2005).
[CrossRef] [PubMed]

S. H. Lim, A. G. Caster, and S. R. Leone, “Single-pulse phase-control interferometric coherent anti-Stokes Raman scattering spectroscopy,” Phys. Rev. A 72, 041803 (2005).
[CrossRef]

F. C. DeLucia, A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5, 681-689 (2005).
[CrossRef]

2004 (2)

V. V. Lozovoy, I. Pastirk, and M. Dantus, “Multiphoton intrapulse interference. 4. Characterization of the phase of ultrashort laser pulses,” Opt. Lett. 29, 775-777 (2004).
[CrossRef] [PubMed]

P. Rohwetter, J. Yu, G. Mejean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J. P. Wole, and L. Woste, “Remote LIBS with ultrashort pulses: characteristics in picosecond and femtosecond regimes,” J. Anal. At. Spectrom. 19, 437-444 (2004).
[CrossRef]

2003 (2)

2002 (2)

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512-514 (2002).
[CrossRef] [PubMed]

M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrny, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, “FAST CARS: engineering a laser spectroscopic technique for rapid identification of bacterial spores,” Proc. Natl. Acad. Sci. USA 99, 10994-11001 (2002).
[CrossRef] [PubMed]

1997 (1)

M. Nisoli, S. Stagira, S. D. Silvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, C. Spielmann, and F. Krausz, “A novel-high energy pulse compression system: generation of multigigawatt sub-5-fs pulses,” Appl. Phys. B 65, 189-196(1997).
[CrossRef]

1996 (1)

M. Nisoli, S. DeSilvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793-2795 (1996).
[CrossRef]

1965 (1)

P. D. Maker and R. W. Terhune, “Study of optical effects due to an induced polarization third order in the electric field strength,” Phys. Rev. 137, A801-A818 (1965).
[CrossRef]

Abel, M. J.

L. Gallmann, T. Pfeifer, P. M. Nagel, M. J. Abel, D. M. Neumark, and S. R. Leone, “Comparison of the filamentation and the hollow-core fiber characteristics for pulse compression into the few-cycle regime,” Appl. Phys. B 86, 561-566 (2007).
[CrossRef]

Angel, S. M.

Ariunbold, G. O.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. C. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316, 265-268 (2007).
[CrossRef] [PubMed]

Arora, R.

G. I. Petrov, R. Arora, V. V. Yakovlev, X. Wang, A. V. Sokolov, and M. O. Scully, “Comparison of coherent and spontaneous Raman microspectroscopies for noninvasive detection of single bacterial endospores,” Proc. Natl. Acad. Sci. USA 104, 7776-7779 (2007).
[CrossRef] [PubMed]

Biegert, J.

Carter, J. C.

Caster, A. G.

S. H. Lim, A. G. Caster, and S. R. Leone, “Single-pulse phase-control interferometric coherent anti-Stokes Raman scattering spectroscopy,” Phys. Rev. A 72, 041803 (2005).
[CrossRef]

Cheng, Z.

M. Nisoli, S. Stagira, S. D. Silvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, C. Spielmann, and F. Krausz, “A novel-high energy pulse compression system: generation of multigigawatt sub-5-fs pulses,” Appl. Phys. B 65, 189-196(1997).
[CrossRef]

Cruz, J. M. D.

Dantus, M.

De Silvestri, S.

DeLucia, F. C.

F. C. DeLucia, A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5, 681-689 (2005).
[CrossRef]

DeSilvestri, S.

M. Nisoli, S. DeSilvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793-2795 (1996).
[CrossRef]

Dogariu, A.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. C. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316, 265-268 (2007).
[CrossRef] [PubMed]

Dudovich, N.

D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 90, 213902(2003).
[CrossRef] [PubMed]

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512-514 (2002).
[CrossRef] [PubMed]

Gallmann, L.

L. Gallmann, T. Pfeifer, P. M. Nagel, M. J. Abel, D. M. Neumark, and S. R. Leone, “Comparison of the filamentation and the hollow-core fiber characteristics for pulse compression into the few-cycle regime,” Appl. Phys. B 86, 561-566 (2007).
[CrossRef]

Gunn, J. M.

Harmon, R. S.

F. C. DeLucia, A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5, 681-689 (2005).
[CrossRef]

Harris, D. A.

Huang, Y.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. C. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316, 265-268 (2007).
[CrossRef] [PubMed]

Kasparian, J.

P. Rohwetter, J. Yu, G. Mejean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J. P. Wole, and L. Woste, “Remote LIBS with ultrashort pulses: characteristics in picosecond and femtosecond regimes,” J. Anal. At. Spectrom. 19, 437-444 (2004).
[CrossRef]

Kattawar, G. W.

M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrny, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, “FAST CARS: engineering a laser spectroscopic technique for rapid identification of bacterial spores,” Proc. Natl. Acad. Sci. USA 99, 10994-11001 (2002).
[CrossRef] [PubMed]

Katz, O.

O. Katz, A. Natan, Y. Silberberg, and S. Rosenwaks, “Standoff detection of trace amounts of solids by nonlinear Raman spectroscopy using shaped femtosecond pulses,” Appl. Phys. Lett. 92, 171116 (2008).
[CrossRef]

Keller, U.

Krausz, F.

M. Nisoli, S. Stagira, S. D. Silvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, C. Spielmann, and F. Krausz, “A novel-high energy pulse compression system: generation of multigigawatt sub-5-fs pulses,” Appl. Phys. B 65, 189-196(1997).
[CrossRef]

LaPointe, A.

F. C. DeLucia, A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5, 681-689 (2005).
[CrossRef]

Lawrence-Snyder, M.

Lenzner, M.

M. Nisoli, S. Stagira, S. D. Silvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, C. Spielmann, and F. Krausz, “A novel-high energy pulse compression system: generation of multigigawatt sub-5-fs pulses,” Appl. Phys. B 65, 189-196(1997).
[CrossRef]

Leone, S. R.

L. Gallmann, T. Pfeifer, P. M. Nagel, M. J. Abel, D. M. Neumark, and S. R. Leone, “Comparison of the filamentation and the hollow-core fiber characteristics for pulse compression into the few-cycle regime,” Appl. Phys. B 86, 561-566 (2007).
[CrossRef]

S. H. Lim, A. G. Caster, and S. R. Leone, “Single-pulse phase-control interferometric coherent anti-Stokes Raman scattering spectroscopy,” Phys. Rev. A 72, 041803 (2005).
[CrossRef]

Li, H. W.

Lim, S. H.

S. H. Lim, A. G. Caster, and S. R. Leone, “Single-pulse phase-control interferometric coherent anti-Stokes Raman scattering spectroscopy,” Phys. Rev. A 72, 041803 (2005).
[CrossRef]

Lozovoy, V. V.

Lucey, P. G.

Lucht, R. P.

M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrny, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, “FAST CARS: engineering a laser spectroscopic technique for rapid identification of bacterial spores,” Proc. Natl. Acad. Sci. USA 99, 10994-11001 (2002).
[CrossRef] [PubMed]

Maker, P. D.

P. D. Maker and R. W. Terhune, “Study of optical effects due to an induced polarization third order in the electric field strength,” Phys. Rev. 137, A801-A818 (1965).
[CrossRef]

Martin, R. M.

McNesby, K. L.

F. C. DeLucia, A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5, 681-689 (2005).
[CrossRef]

Mejean, G.

P. Rohwetter, J. Yu, G. Mejean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J. P. Wole, and L. Woste, “Remote LIBS with ultrashort pulses: characteristics in picosecond and femtosecond regimes,” J. Anal. At. Spectrom. 19, 437-444 (2004).
[CrossRef]

Misra, A. K.

Miziolek, A. W.

F. C. DeLucia, A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5, 681-689 (2005).
[CrossRef]

Motzkus, M.

B. von Vacano and M. Motzkus, “Time-resolved two color single-beam CARS employing supercontinuum and femtosecond pulse shaping,” Opt. Commun. 264, 488-493 (2006).
[CrossRef]

Murawski, R. K.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. C. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316, 265-268 (2007).
[CrossRef] [PubMed]

Nagel, P. M.

L. Gallmann, T. Pfeifer, P. M. Nagel, M. J. Abel, D. M. Neumark, and S. R. Leone, “Comparison of the filamentation and the hollow-core fiber characteristics for pulse compression into the few-cycle regime,” Appl. Phys. B 86, 561-566 (2007).
[CrossRef]

Natan, A.

O. Katz, A. Natan, Y. Silberberg, and S. Rosenwaks, “Standoff detection of trace amounts of solids by nonlinear Raman spectroscopy using shaped femtosecond pulses,” Appl. Phys. Lett. 92, 171116 (2008).
[CrossRef]

Neumark, D. M.

L. Gallmann, T. Pfeifer, P. M. Nagel, M. J. Abel, D. M. Neumark, and S. R. Leone, “Comparison of the filamentation and the hollow-core fiber characteristics for pulse compression into the few-cycle regime,” Appl. Phys. B 86, 561-566 (2007).
[CrossRef]

Nisoli, M.

B. Schenkel, J. Biegert, U. Keller, C. Vozzi, M. Nisoli, G. Sansone, S. Stagira, S. De Silvestri, and O. Svelto, “Generation of 3.8-fs pulses from adaptive compression of a cascaded hollow fiber supercontinuum,” Opt. Lett. 28, 1987-1989(2003).
[CrossRef] [PubMed]

M. Nisoli, S. Stagira, S. D. Silvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, C. Spielmann, and F. Krausz, “A novel-high energy pulse compression system: generation of multigigawatt sub-5-fs pulses,” Appl. Phys. B 65, 189-196(1997).
[CrossRef]

M. Nisoli, S. DeSilvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793-2795 (1996).
[CrossRef]

Opatrny, T.

M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrny, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, “FAST CARS: engineering a laser spectroscopic technique for rapid identification of bacterial spores,” Proc. Natl. Acad. Sci. USA 99, 10994-11001 (2002).
[CrossRef] [PubMed]

Oron, D.

D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 90, 213902(2003).
[CrossRef] [PubMed]

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512-514 (2002).
[CrossRef] [PubMed]

Pastirk, I.

Pestov, D.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. C. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316, 265-268 (2007).
[CrossRef] [PubMed]

Petrov, G. I.

G. I. Petrov, R. Arora, V. V. Yakovlev, X. Wang, A. V. Sokolov, and M. O. Scully, “Comparison of coherent and spontaneous Raman microspectroscopies for noninvasive detection of single bacterial endospores,” Proc. Natl. Acad. Sci. USA 104, 7776-7779 (2007).
[CrossRef] [PubMed]

Pfeifer, T.

L. Gallmann, T. Pfeifer, P. M. Nagel, M. J. Abel, D. M. Neumark, and S. R. Leone, “Comparison of the filamentation and the hollow-core fiber characteristics for pulse compression into the few-cycle regime,” Appl. Phys. B 86, 561-566 (2007).
[CrossRef]

Pilloff, H.

M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrny, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, “FAST CARS: engineering a laser spectroscopic technique for rapid identification of bacterial spores,” Proc. Natl. Acad. Sci. USA 99, 10994-11001 (2002).
[CrossRef] [PubMed]

Rebane, A.

M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrny, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, “FAST CARS: engineering a laser spectroscopic technique for rapid identification of bacterial spores,” Proc. Natl. Acad. Sci. USA 99, 10994-11001 (2002).
[CrossRef] [PubMed]

Reynolds, J. G.

Rohwetter, P.

P. Rohwetter, J. Yu, G. Mejean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J. P. Wole, and L. Woste, “Remote LIBS with ultrashort pulses: characteristics in picosecond and femtosecond regimes,” J. Anal. At. Spectrom. 19, 437-444 (2004).
[CrossRef]

Rosenwaks, S.

O. Katz, A. Natan, Y. Silberberg, and S. Rosenwaks, “Standoff detection of trace amounts of solids by nonlinear Raman spectroscopy using shaped femtosecond pulses,” Appl. Phys. Lett. 92, 171116 (2008).
[CrossRef]

Rostovtsev, Y. V.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. C. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316, 265-268 (2007).
[CrossRef] [PubMed]

Salmon, E.

P. Rohwetter, J. Yu, G. Mejean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J. P. Wole, and L. Woste, “Remote LIBS with ultrashort pulses: characteristics in picosecond and femtosecond regimes,” J. Anal. At. Spectrom. 19, 437-444 (2004).
[CrossRef]

Samuels, A. C.

F. C. DeLucia, A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5, 681-689 (2005).
[CrossRef]

Sansone, G.

Sartania, S.

M. Nisoli, S. Stagira, S. D. Silvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, C. Spielmann, and F. Krausz, “A novel-high energy pulse compression system: generation of multigigawatt sub-5-fs pulses,” Appl. Phys. B 65, 189-196(1997).
[CrossRef]

Sautenkov, V. A.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. C. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316, 265-268 (2007).
[CrossRef] [PubMed]

Scaffidi, J.

Schenkel, B.

Scully, M. O.

G. I. Petrov, R. Arora, V. V. Yakovlev, X. Wang, A. V. Sokolov, and M. O. Scully, “Comparison of coherent and spontaneous Raman microspectroscopies for noninvasive detection of single bacterial endospores,” Proc. Natl. Acad. Sci. USA 104, 7776-7779 (2007).
[CrossRef] [PubMed]

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. C. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316, 265-268 (2007).
[CrossRef] [PubMed]

M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrny, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, “FAST CARS: engineering a laser spectroscopic technique for rapid identification of bacterial spores,” Proc. Natl. Acad. Sci. USA 99, 10994-11001 (2002).
[CrossRef] [PubMed]

Sharma, S. K.

Silberberg, Y.

O. Katz, A. Natan, Y. Silberberg, and S. Rosenwaks, “Standoff detection of trace amounts of solids by nonlinear Raman spectroscopy using shaped femtosecond pulses,” Appl. Phys. Lett. 92, 171116 (2008).
[CrossRef]

D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 90, 213902(2003).
[CrossRef] [PubMed]

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512-514 (2002).
[CrossRef] [PubMed]

Silvestri, S. D.

M. Nisoli, S. Stagira, S. D. Silvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, C. Spielmann, and F. Krausz, “A novel-high energy pulse compression system: generation of multigigawatt sub-5-fs pulses,” Appl. Phys. B 65, 189-196(1997).
[CrossRef]

Sokolov, A. V.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. C. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316, 265-268 (2007).
[CrossRef] [PubMed]

G. I. Petrov, R. Arora, V. V. Yakovlev, X. Wang, A. V. Sokolov, and M. O. Scully, “Comparison of coherent and spontaneous Raman microspectroscopies for noninvasive detection of single bacterial endospores,” Proc. Natl. Acad. Sci. USA 104, 7776-7779 (2007).
[CrossRef] [PubMed]

M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrny, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, “FAST CARS: engineering a laser spectroscopic technique for rapid identification of bacterial spores,” Proc. Natl. Acad. Sci. USA 99, 10994-11001 (2002).
[CrossRef] [PubMed]

Spielmann, C.

M. Nisoli, S. Stagira, S. D. Silvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, C. Spielmann, and F. Krausz, “A novel-high energy pulse compression system: generation of multigigawatt sub-5-fs pulses,” Appl. Phys. B 65, 189-196(1997).
[CrossRef]

Stagira, S.

B. Schenkel, J. Biegert, U. Keller, C. Vozzi, M. Nisoli, G. Sansone, S. Stagira, S. De Silvestri, and O. Svelto, “Generation of 3.8-fs pulses from adaptive compression of a cascaded hollow fiber supercontinuum,” Opt. Lett. 28, 1987-1989(2003).
[CrossRef] [PubMed]

M. Nisoli, S. Stagira, S. D. Silvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, C. Spielmann, and F. Krausz, “A novel-high energy pulse compression system: generation of multigigawatt sub-5-fs pulses,” Appl. Phys. B 65, 189-196(1997).
[CrossRef]

Stelmaszczyk, K.

P. Rohwetter, J. Yu, G. Mejean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J. P. Wole, and L. Woste, “Remote LIBS with ultrashort pulses: characteristics in picosecond and femtosecond regimes,” J. Anal. At. Spectrom. 19, 437-444 (2004).
[CrossRef]

Svelto, O.

B. Schenkel, J. Biegert, U. Keller, C. Vozzi, M. Nisoli, G. Sansone, S. Stagira, S. De Silvestri, and O. Svelto, “Generation of 3.8-fs pulses from adaptive compression of a cascaded hollow fiber supercontinuum,” Opt. Lett. 28, 1987-1989(2003).
[CrossRef] [PubMed]

M. Nisoli, S. Stagira, S. D. Silvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, C. Spielmann, and F. Krausz, “A novel-high energy pulse compression system: generation of multigigawatt sub-5-fs pulses,” Appl. Phys. B 65, 189-196(1997).
[CrossRef]

M. Nisoli, S. DeSilvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793-2795 (1996).
[CrossRef]

Terhune, R. W.

P. D. Maker and R. W. Terhune, “Study of optical effects due to an induced polarization third order in the electric field strength,” Phys. Rev. 137, A801-A818 (1965).
[CrossRef]

von Vacano, B.

B. von Vacano and M. Motzkus, “Time-resolved two color single-beam CARS employing supercontinuum and femtosecond pulse shaping,” Opt. Commun. 264, 488-493 (2006).
[CrossRef]

Vozzi, C.

Walters, R. A.

F. C. DeLucia, A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5, 681-689 (2005).
[CrossRef]

Wang, X.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. C. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316, 265-268 (2007).
[CrossRef] [PubMed]

G. I. Petrov, R. Arora, V. V. Yakovlev, X. Wang, A. V. Sokolov, and M. O. Scully, “Comparison of coherent and spontaneous Raman microspectroscopies for noninvasive detection of single bacterial endospores,” Proc. Natl. Acad. Sci. USA 104, 7776-7779 (2007).
[CrossRef] [PubMed]

Whipple, R. E.

Winkel, R. J.

F. C. DeLucia, A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5, 681-689 (2005).
[CrossRef]

Wole, J. P.

P. Rohwetter, J. Yu, G. Mejean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J. P. Wole, and L. Woste, “Remote LIBS with ultrashort pulses: characteristics in picosecond and femtosecond regimes,” J. Anal. At. Spectrom. 19, 437-444 (2004).
[CrossRef]

Woste, L.

P. Rohwetter, J. Yu, G. Mejean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J. P. Wole, and L. Woste, “Remote LIBS with ultrashort pulses: characteristics in picosecond and femtosecond regimes,” J. Anal. At. Spectrom. 19, 437-444 (2004).
[CrossRef]

Wrzesinski, P. J.

Xu, B.

Xu, B. W.

Yakovlev, V. V.

G. I. Petrov, R. Arora, V. V. Yakovlev, X. Wang, A. V. Sokolov, and M. O. Scully, “Comparison of coherent and spontaneous Raman microspectroscopies for noninvasive detection of single bacterial endospores,” Proc. Natl. Acad. Sci. USA 104, 7776-7779 (2007).
[CrossRef] [PubMed]

Yu, J.

P. Rohwetter, J. Yu, G. Mejean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J. P. Wole, and L. Woste, “Remote LIBS with ultrashort pulses: characteristics in picosecond and femtosecond regimes,” J. Anal. At. Spectrom. 19, 437-444 (2004).
[CrossRef]

Zhi, M. C.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. C. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316, 265-268 (2007).
[CrossRef] [PubMed]

Zhu, X.

Zubairy, M. S.

M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrny, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, “FAST CARS: engineering a laser spectroscopic technique for rapid identification of bacterial spores,” Proc. Natl. Acad. Sci. USA 99, 10994-11001 (2002).
[CrossRef] [PubMed]

Appl. Phys. B (2)

L. Gallmann, T. Pfeifer, P. M. Nagel, M. J. Abel, D. M. Neumark, and S. R. Leone, “Comparison of the filamentation and the hollow-core fiber characteristics for pulse compression into the few-cycle regime,” Appl. Phys. B 86, 561-566 (2007).
[CrossRef]

M. Nisoli, S. Stagira, S. D. Silvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, C. Spielmann, and F. Krausz, “A novel-high energy pulse compression system: generation of multigigawatt sub-5-fs pulses,” Appl. Phys. B 65, 189-196(1997).
[CrossRef]

Appl. Phys. Lett. (2)

O. Katz, A. Natan, Y. Silberberg, and S. Rosenwaks, “Standoff detection of trace amounts of solids by nonlinear Raman spectroscopy using shaped femtosecond pulses,” Appl. Phys. Lett. 92, 171116 (2008).
[CrossRef]

M. Nisoli, S. DeSilvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793-2795 (1996).
[CrossRef]

Appl. Spectrosc. (2)

IEEE Sens. J. (1)

F. C. DeLucia, A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5, 681-689 (2005).
[CrossRef]

J. Anal. At. Spectrom. (1)

P. Rohwetter, J. Yu, G. Mejean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J. P. Wole, and L. Woste, “Remote LIBS with ultrashort pulses: characteristics in picosecond and femtosecond regimes,” J. Anal. At. Spectrom. 19, 437-444 (2004).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (1)

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512-514 (2002).
[CrossRef] [PubMed]

Opt. Commun. (1)

B. von Vacano and M. Motzkus, “Time-resolved two color single-beam CARS employing supercontinuum and femtosecond pulse shaping,” Opt. Commun. 264, 488-493 (2006).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. (1)

P. D. Maker and R. W. Terhune, “Study of optical effects due to an induced polarization third order in the electric field strength,” Phys. Rev. 137, A801-A818 (1965).
[CrossRef]

Phys. Rev. A (1)

S. H. Lim, A. G. Caster, and S. R. Leone, “Single-pulse phase-control interferometric coherent anti-Stokes Raman scattering spectroscopy,” Phys. Rev. A 72, 041803 (2005).
[CrossRef]

Phys. Rev. Lett. (1)

D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 90, 213902(2003).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA (2)

G. I. Petrov, R. Arora, V. V. Yakovlev, X. Wang, A. V. Sokolov, and M. O. Scully, “Comparison of coherent and spontaneous Raman microspectroscopies for noninvasive detection of single bacterial endospores,” Proc. Natl. Acad. Sci. USA 104, 7776-7779 (2007).
[CrossRef] [PubMed]

M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrny, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, “FAST CARS: engineering a laser spectroscopic technique for rapid identification of bacterial spores,” Proc. Natl. Acad. Sci. USA 99, 10994-11001 (2002).
[CrossRef] [PubMed]

Science (1)

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. C. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316, 265-268 (2007).
[CrossRef] [PubMed]

Other (1)

Committee on the Review of Existing and Potential Standoff Explosives Techniques, National Research Council, Existing and Potential Standoff Explosives Detection Techniques (National Academies Press, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic experimental setup used for single-beam CARS experiments (not to scale). Shapers 1 and 2 are located in the dashed rectangles. HWG, hollow waveguide; SLM, spatial light modulator; BS, beam splitter; P, polarizer; SP, short-pass filter.

Fig. 2
Fig. 2

A, Ultrabroad-bandwidth supercontinuum spectrum and the spectral phase measured by MIIPS (dashed curve). The residual phase after MIIPS compensation is plotted and also displayed in the top panel (enlarged). B, SHG before (dashed curve) and after (solid curve) MIIPS compensation.

Fig. 3
Fig. 3

Processed single-beam CARS spectra from liquid, gaseous, and solid-state samples. o-nitrotulene and m-nitrotoluene are liquids; CH 2 Cl 2 and CHCl 3 are vapor samples; polystyrene and PMMA are solid samples.

Fig. 4
Fig. 4

Concentration studies for single-beam CARS. A, B, CARS spectra of mixtures of 50 50 and 1 99 o-xylene in p-xylene, respectively. C, Double logarithmic plot of the relative CARS intensity for o-xylene and p-xylene as a function of o-xylene concentration.

Fig. 5
Fig. 5

Top, unprocessed single-beam CARS spectra with (top curve) and without (bottom curve) phase distortion compensation by MIIPS for m-xylene. Middle, processed six consecutive single-shot CARS spectra obtained for toluene. Bottom, processed single-beam CARS spectra for o-xylene (top curve) and toluene (bottom curve) with back scattering detection.

Metrics