Abstract

An incoherent broadband cavity-enhanced absorption spectroscopy setup employing a 20m long optical cavity is described for sensitive in situ measurements of light extinction between 630 and 690nm. The setup was installed at the SAPHIR atmospheric simulation chamber during an intercomparison of instruments for nitrate (NO3) radical detection. The long cavity was stable for the entire duration of the two week campaign. A detection limit of 2pptv for NO3 in an acquisition time of 5s was established during that time. In addition to monitoring NO3, nitrogen dioxide (NO2) concentrations were simultaneously retrieved and compared against concurrent measurements by a chemiluminescence detector. Some results from the campaign are presented to demonstrate the performance of the instrument in an atmosphere containing water vapor and inorganic aerosol. The spectral analysis of NO3 and NO2, the concentration dependence of the water absorption cross sections, and the retrieval of aerosol extinction are discussed. The first deployment of the setup in the field is also briefly described.

© 2009 Optical Society of America

Full Article  |  PDF Article
Related Articles
Detection of vapors of explosives and explosive-related compounds by ultraviolet cavity ringdown spectroscopy

Christopher Ramos and Paul J. Dagdigian
Appl. Opt. 46(4) 620-627 (2007)

Trace detection of atmospheric NO2 by laser-induced fluorescence using a GaN diode laser and a diode-pumped YAG laser

Fumikazu Taketani, Megumi Kawai, Kenshi Takahashi, and Yutaka Matsumi
Appl. Opt. 46(6) 907-915 (2007)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription