Abstract

An incoherent broadband cavity-enhanced absorption spectroscopy setup employing a 20m long optical cavity is described for sensitive in situ measurements of light extinction between 630 and 690nm. The setup was installed at the SAPHIR atmospheric simulation chamber during an intercomparison of instruments for nitrate (NO3) radical detection. The long cavity was stable for the entire duration of the two week campaign. A detection limit of 2pptv for NO3 in an acquisition time of 5s was established during that time. In addition to monitoring NO3, nitrogen dioxide (NO2) concentrations were simultaneously retrieved and compared against concurrent measurements by a chemiluminescence detector. Some results from the campaign are presented to demonstrate the performance of the instrument in an atmosphere containing water vapor and inorganic aerosol. The spectral analysis of NO3 and NO2, the concentration dependence of the water absorption cross sections, and the retrieval of aerosol extinction are discussed. The first deployment of the setup in the field is also briefly described.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. C. Clemitshaw, “A review of instrumentation and measurement techniques for ground-based and airborne field studies of gas-phase tropospheric chemistry,” Crit. Rev. Environ. Sci. Technol. 34, 1-108 (2004).
    [CrossRef]
  2. S. S. Brown, “Absorption spectroscopy in high-finesse cavities for atmospheric studies,” Chem. Rev. 103, 5219-5238 (2003).
    [CrossRef] [PubMed]
  3. B. A. Paldus and A. A. Kachanov, “An historical overview of cavity-enhanced methods,” Can. J. Phys. 83, 975-999 (2005).
    [CrossRef]
  4. S. S. Brown, H. Stark, and A. R. Ravishankara, “Cavity ring-down spectroscopy for atmospheric trace gas detection: application to the nitrate radical (NO3),” Appl. Phys. B 75, 173-182 (2002).
    [CrossRef]
  5. S. S. Brown, H. Stark, S. J. Ciciora, R. J. McLaughlin, and A. R. Ravishankara, “Simultaneous in situ detection of atmospheric NO3 and N2O5 via cavity ring-down spectroscopy,” Rev. Sci. Instrum. 73, 3291-3301 (2002).
    [CrossRef]
  6. A. R. Awtry and J. H. Miller, “Development of a cw-laser-based cavity-ringdown sensor aboard a spacecraft for trace air constituents,” Appl. Phys. B 75, 255-260 (2002).
    [CrossRef]
  7. J. D. Ayers, R. L. Apodaca, W. R. Simpson, and D. S. Baer, “Off-axis cavity ringdown spectroscopy: application to atmospheric nitrate radical detection,” Appl. Opt. 44, 7239-7242 (2005).
    [CrossRef] [PubMed]
  8. S. S. Brown, H. D. Osthoff, H. Stark, W. P. Dube, T. B. Ryerson, C. Warneke, J. A. DeGouw, A. G. Wollny, D. D. Parrish, F. C. Fehsenfeld, and A. R. Ravishankara, “Aircraft observations of daytime NO3 and N2O5 and their implications for tropospheric chemistry,” J. Photochem. Photobiol., A 176, 270-278 (2005).
    [CrossRef]
  9. W. P. Dubé, S. S. Brown, H. D. Osthoff, M. R. Nunley, S. J. Ciciora, M. W. Paris, R. J. McLaughlin, and A. R. Ravishankara, “Aircraft instrument for simultaneous, in situ measurement of NO3 and N2O5 via pulsed cavity ring-down spectroscopy,” Rev. Sci. Instrum. 77, 034101 (2006).
    [CrossRef]
  10. S. Kassi, M. Chenevier, L. Gianfrani, A. Salhi, Y. Rouillard, A. Ouvrard, and D. Romanini, “Looking into the volcano with a mid-IR DFB diode laser and cavity enhanced absorption spectroscopy,” Opt. Express 14, 11442-11452 (2006).
    [CrossRef] [PubMed]
  11. S. S. Brown, W. P. Dubé, H. D. Osthoff, D. E. Wolfe, W. M. Angevine, and A. R. Ravishankara, “High resolution vertical distributions of NO3 and N2O5 through the nocturnal boundary layer,” Atmos. Chem. Phys. 7, 139-149 (2007).
    [CrossRef]
  12. T. Baynard, E. R. Lovejoy, A. Pettersson, S. S. Brown, D. Lack, H. Osthoff, P. Massoli, S. Ciciora, W. P. Dube, and A. R. Ravishankara, “Design and application of a pulsed cavity ring-down aerosol extinction spectrometer for field measurements,” Aerosol Sci. Technol. 41, 447-462 (2007).
    [CrossRef]
  13. T. Nakayama, T. Ide, F. Taketani, M. Kawai, K. Takahashi, and Y. Matsumi, “Nighttime measurements of ambient N2O5, NO2, NO and O3 in a sub-urban area, Toyokawa, Japan,” Atmos. Environ. 42, 1995-2006 (2008).
    [CrossRef]
  14. M. Bitter, S. M. Ball, I. M. Povey, and R. L. Jones, “A broadband cavity ringdown spectrometer for in situ measurements of atmospheric trace gases,” Atmos. Chem. Phys. 5, 2547-2560 (2005).
    [CrossRef]
  15. R. Wada, J. M. Beames, and A. J. Orr-Ewing, “Measurement of IO radical concentrations in the marine boundary layer using a cavity ring-down spectrometer,” J. Atmos. Chem. 58, 69-87 (2007).
    [CrossRef]
  16. H. Fuchs, W. P. Dubé, S. J. Ciciora, and S. S. Brown, “Determination of inlet transmission and conversion efficiencies for in situ measurements of the nocturnal nitrogen oxides, NO3, N2O5 and NO2, via pulsed cavity ring-down spectroscopy,” Anal. Chem. 80, 6010-6017 (2008).
    [CrossRef] [PubMed]
  17. S. S. Brown, H. Stark, T. B. Ryerson, E. J. Williams, D. K. Nicks, Jr., M. Trainer, F. C. Fehsenfeld, and A. R. Ravishankara, “Nitrogen oxides in the nocturnal boundary layer: Simultaneous in situ measurements of NO3, N2O5, NO2, NO, and O3,” J. Geophys. Res. 108(D9), 4299 (2003).
    [CrossRef]
  18. S. S. Brown, H. Stark, and A. R. Ravishankara, “Applicability of the steady state approximation to the interpretation of atmospheric observations of NO3 and N2O5,” J. Geophys. Res. 108(D17), 4539 (2003).
    [CrossRef]
  19. J. U. White, “Long optical paths of large aperture,” J. Opt. Soc. Am. 32, 285-288 (1942).
    [CrossRef]
  20. D. R. Herriott and H. J. Schulte, “Folded optical delay lines,” Appl. Opt. 4, 883-889 (1965).
    [CrossRef]
  21. U. Platt, “Modern methods of the measurement of atmospheric trace gases,” Phys. Chem. Chem. Phys. 1, 5409-5415(1999).
    [CrossRef]
  22. J. J. Scherer, “Ringdown spectral photography,” Chem. Phys. Lett. 292, 143-153 (1998).
    [CrossRef]
  23. E. R. Crosson, P. Haar, G. A. Marcus, H. A. Schwettman, B. A. Paldus, T. G. Spence, and R. N. Zare, “Pulse-stacked cavity ring-down spectroscopy,” Rev. Sci. Instrum. 70, 4-10 (1999).
    [CrossRef]
  24. A. Czyżewski, S. Chudzyński, K. Ernst, G. Karasiński, Ł. Kilianek, A. Pietruczuk, W. Skubiszak, T. Stacewicz, K. Stelmaszczyk, B. Koch, and P. Rairoux, “Cavity ring-down spectrography,” Opt. Commun. 191, 271-275 (2001).
    [CrossRef]
  25. S. M. Ball, I. M. Povey, E. G. Norton, and R. L. Jones, “Broadband cavity ringdown spectroscopy of the NO3 radical,” Chem. Phys. Lett. 342, 113-120 (2001).
    [CrossRef]
  26. S. M. Ball and R. L. Jones, “Broad-band cavity ring-down spectroscopy,” Chem. Rev. 103, 5239-5262 (2003).
    [CrossRef] [PubMed]
  27. A. A. Ruth, J. Orphal, and S. E. Fiedler, “Fourier-transform cavity-enhanced absorption spectroscopy using an incoherent broadband light source,” Appl. Opt. 46, 3611-3616 (2007).
    [CrossRef] [PubMed]
  28. E. Hamers, D. Schram, and R. Engeln, “Fourier transform phase shift cavity ring down spectroscopy,” Chem. Phys. Lett. 365, 237-243 (2002).
    [CrossRef]
  29. T. Gherman and D. Romanini, “Mode-locked cavity-enhanced absorption spectroscopy,” Opt. Express 10, 1033-1042(2002).
    [PubMed]
  30. M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311, 1595-1599 (2006).
    [CrossRef] [PubMed]
  31. J. M. Langridge, S. M. Ball, and R. L. Jones, “A compact broadband cavity enhanced absorption spectrometer for detection of atmospheric NO2,” Analyst (Amsterdam) 131, 916-922(2006).
  32. S. E. Fiedler, A. Hese, and A. A. Ruth, “Incoherent broadband cavity-enhanced absorption spectroscopy,” Chem. Phys. Lett. 371, 284-294 (2003).
    [CrossRef]
  33. D. S. Venables, T. Gherman, J. Orphal, J. Wenger, and A. A. Ruth, “High sensitivity in situ monitoring of NO3 in an atmospheric simulation chamber using incoherent broadband cavity-enhanced absorption spectroscopy,” Environ. Sci. Technol. 40, 6758-6763 (2006).
    [CrossRef] [PubMed]
  34. T. Gherman, D. S. Venables, S. Vaughan, J. Orphal, and A. A. Ruth, “Incoherent broadband cavity enhanced absorption spectroscopy in the near-ultaviolet: application to HONO and NO2,” Environ. Sci. Technol. 42, 890-895 (2008).
    [CrossRef] [PubMed]
  35. S. Vaughan, T. Gherman, A. A. Ruth, and J. Orphal, “Incoherent broadband cavity-enhanced absorption spectroscopy of the marine boundary layer species I2, IO and OIO,” Phys. Chem. Chem. Phys. 10, 4471-4477 (2008).
    [CrossRef] [PubMed]
  36. S. M. Ball, J. M. Langridge, and R. M. Jones, “Broadband cavity enhanced absorption spectroscopy using light emitting diodes,” Chem. Phys. Lett. 398, 68-74 (2004).
    [CrossRef]
  37. M. Triki, P. Cermak, G. Méjean, and D. Romanini, “Cavity-enhanced absorption spectroscopy with a red LED source for NOx trace analysis,” Appl. Phys. B 91, 195-201 (2008).
    [CrossRef]
  38. J. M. Langridge, T. Laurila, R. S. Watt, R. L. Jones, C. F. Kaminski, and J. Hult, “Cavity-enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source,” Opt. Express 16, 10178-10188 (2008).
    [CrossRef] [PubMed]
  39. H.-P. Dorn, R. L. Apodaca, S. M. Ball, T. Brauers, S. S. Brown, R. C. Cohen, J. Crowley, W. P. Dube, J. Fry, H. Fuchs, R. Häseler, U. Heitmann, S. Kato, Y. Kajii, I. Labazan, J. Langridge, J. Matsumoto, J. Meinen, S. Nishida, U. Platt, D. Rollins, A. A. Ruth, E. Schlosser, G. Schuster, A. Shillings, W. Simpson, J. Thieser, R. M. Varma, D. S. Venables, A. Wahner, and P. Wooldridge, “Intercomparison of NO3 radical detection techniques in the atmosphere simulation chamber SAPHIR,” Atmos. Chem. Phys. Discuss. (2008), in preparation.
  40. B. Welz, H. Becker-Ross, S. Florek, and U. Heitmann, High-Resolution Continuum Source AAS: The Better Way to Do Atomic Absorption Spectrometry (Wiley VCH, 2005).
    [CrossRef]
  41. J. Bossmeyer, T. Brauers, C. Richter, F. Rohrer, R. Wegener, and A. Wahner, “Simulation chamber studies on the NO3 chemistry of atmospheric aldehydes,” Geophys. Res. Lett. 33, L18810 (2006).
    [CrossRef]
  42. T. Brauers, J. Bossmeyer, H.-P. Dorn, E. Schlosser, R. Tillmann, R. Wegener, and A. Wahner, “Investigation of the formaldehyde differential absorption cross section at high and low spectral resolution in the simulation chamber SAPHIR,” Atmos. Chem. Phys. 7, 3579-3586 (2007).
    [CrossRef]
  43. S. G. Kraus, “DOASIS--A framework design for DOAS,” Ph.D. thesis (University of Mannheim, 2006).
  44. R. J. Yokelson, J. B. Burkholder, R. W. Fox, R. K. Talukdar, and A. R. Ravishankara, “Temperature dependence of the NO3 absorption spectrum,” J. Phys. Chem. 98, 13144-13150 (1994).
    [CrossRef]
  45. S. Voigt, J. P. Orphal, and J. P. Burrows, “The temperature and pressure dependence of the absorption cross sections of NO2 in the 250-800 nm region measured by Fourier-transform spectroscopy,” J. Photochem. Photobiol. A 149, 1-7 (2002).
    [CrossRef]
  46. L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian Jr., K. V. Chance, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
    [CrossRef]
  47. F. Rohrer, D. Brüning, E. S. Grobler, M. Weber, D. H. Ehhalt, R. Neubert, W. Schübler, and L. Levin, “Mixing ratios and photostationary state of NO and NO2 observed during the POPCORN field campaign at a rural site in Germany,” J. Atmos. Chem. 31, 119-137 (1998).
    [CrossRef]
  48. J. Orphal, C. E. Fellows, and P. M. Flaud, “The visible absorption spectrum of NO3 measured by high-resolution Fourier transform spectroscopy,” J. Geophys. Res. 108(D3), 4077-4087 (2003).
    [CrossRef]
  49. J. P. Burrows, A. Dehn, B. Deters, S. Himmelmann, A. Richter, S. Voigt, and J. Orphal, “Atmospheric remote-sensing reference data from GOME: 1. Temperature-dependent absorption cross-sections of NO2 in the 231-794 nm range,” J. Quant. Spectrosc. Radiat. Trans. 60, 1025-1031 (1998).
    [CrossRef]
  50. W. H. Press, T. S. Flannery, and W. T. Vetterling, Numerical Recipes: The Art of Scientific Computing (Cambridge U. Press, 1986), pp. 51 and 670.
  51. H. Fuchs, R. L. Apodaca, S. M. Ball, T. Brauers, S. S. Brown, R. C. Cohen, J. Crowley, H.-P. Dorn, W. P. Dube, J. Fry, R. Häseler, U. Heitmann, S. Kato, Y. Kajii, A. Kiendler-Scharr, I. Labazan, J. Matsumoto, J. Meinen, S. Nishida, U. Platt, F. Rohrer, A. A. Ruth, E. Schlosser, G. Schuster, A. Shillings, W. Simpson, J. Thieser, R. Tillmann, R. M. Varma, D. S. Venables, R. Wegener, and P. Wooldridge, “Intercomparison of different NO2 measurement techniques at the simulation chamber SAPHIR,” Atmos. Chem. Phys. Discuss. , in preparation.
  52. R. A. Washenfelder, A. O. Langford, H. Fuchs, and S. S. Brown, “Measurement of glyoxal using an incoherent broadband cavity enhanced absorption spectrometer,” Atmos. Chem. Phys. Discuss. 8, 16517-16553 (2008).
    [CrossRef]
  53. G. Schuster, I. Labazan, and J. N. Crowley, “A cavity ring down/cavity enhanced absorption device for measurement of ambient NO3 and N2O5,” Atmos. Meas. Tech. Discuss. 1, 67-102 (2008).
    [CrossRef]
  54. H. Moosmüller, R. Varma, and W. P. Arnott, “Cavity ring-down and cavity-enhanced detection techniques for the measurement of aerosol extinction,” Aerosol Sci. Technol. 39, 30-39 (2005).
    [CrossRef]
  55. R. Sommariva, M. J. Pilling, W. J. Bloss, D. E. Heard, J. D. Lee, Z. L. Fleming, P. S. Monks, J. M. C. Plane, A. Saiz-Lopez, S. M. Ball, M. Bitter, R. L. Jones, N. Brough, S. A. Penkett, J. R. Hopkins, A. C. Lewis, and K. A. Read, “Night-time radical chemistry during the NAMBLEX campaign,” Atmos. Chem. Phys. 7, 587-598 (2007).
    [CrossRef]

2008

T. Nakayama, T. Ide, F. Taketani, M. Kawai, K. Takahashi, and Y. Matsumi, “Nighttime measurements of ambient N2O5, NO2, NO and O3 in a sub-urban area, Toyokawa, Japan,” Atmos. Environ. 42, 1995-2006 (2008).
[CrossRef]

H. Fuchs, W. P. Dubé, S. J. Ciciora, and S. S. Brown, “Determination of inlet transmission and conversion efficiencies for in situ measurements of the nocturnal nitrogen oxides, NO3, N2O5 and NO2, via pulsed cavity ring-down spectroscopy,” Anal. Chem. 80, 6010-6017 (2008).
[CrossRef] [PubMed]

T. Gherman, D. S. Venables, S. Vaughan, J. Orphal, and A. A. Ruth, “Incoherent broadband cavity enhanced absorption spectroscopy in the near-ultaviolet: application to HONO and NO2,” Environ. Sci. Technol. 42, 890-895 (2008).
[CrossRef] [PubMed]

S. Vaughan, T. Gherman, A. A. Ruth, and J. Orphal, “Incoherent broadband cavity-enhanced absorption spectroscopy of the marine boundary layer species I2, IO and OIO,” Phys. Chem. Chem. Phys. 10, 4471-4477 (2008).
[CrossRef] [PubMed]

M. Triki, P. Cermak, G. Méjean, and D. Romanini, “Cavity-enhanced absorption spectroscopy with a red LED source for NOx trace analysis,” Appl. Phys. B 91, 195-201 (2008).
[CrossRef]

H.-P. Dorn, R. L. Apodaca, S. M. Ball, T. Brauers, S. S. Brown, R. C. Cohen, J. Crowley, W. P. Dube, J. Fry, H. Fuchs, R. Häseler, U. Heitmann, S. Kato, Y. Kajii, I. Labazan, J. Langridge, J. Matsumoto, J. Meinen, S. Nishida, U. Platt, D. Rollins, A. A. Ruth, E. Schlosser, G. Schuster, A. Shillings, W. Simpson, J. Thieser, R. M. Varma, D. S. Venables, A. Wahner, and P. Wooldridge, “Intercomparison of NO3 radical detection techniques in the atmosphere simulation chamber SAPHIR,” Atmos. Chem. Phys. Discuss. (2008), in preparation.

R. A. Washenfelder, A. O. Langford, H. Fuchs, and S. S. Brown, “Measurement of glyoxal using an incoherent broadband cavity enhanced absorption spectrometer,” Atmos. Chem. Phys. Discuss. 8, 16517-16553 (2008).
[CrossRef]

G. Schuster, I. Labazan, and J. N. Crowley, “A cavity ring down/cavity enhanced absorption device for measurement of ambient NO3 and N2O5,” Atmos. Meas. Tech. Discuss. 1, 67-102 (2008).
[CrossRef]

J. M. Langridge, T. Laurila, R. S. Watt, R. L. Jones, C. F. Kaminski, and J. Hult, “Cavity-enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source,” Opt. Express 16, 10178-10188 (2008).
[CrossRef] [PubMed]

2007

A. A. Ruth, J. Orphal, and S. E. Fiedler, “Fourier-transform cavity-enhanced absorption spectroscopy using an incoherent broadband light source,” Appl. Opt. 46, 3611-3616 (2007).
[CrossRef] [PubMed]

R. Sommariva, M. J. Pilling, W. J. Bloss, D. E. Heard, J. D. Lee, Z. L. Fleming, P. S. Monks, J. M. C. Plane, A. Saiz-Lopez, S. M. Ball, M. Bitter, R. L. Jones, N. Brough, S. A. Penkett, J. R. Hopkins, A. C. Lewis, and K. A. Read, “Night-time radical chemistry during the NAMBLEX campaign,” Atmos. Chem. Phys. 7, 587-598 (2007).
[CrossRef]

T. Brauers, J. Bossmeyer, H.-P. Dorn, E. Schlosser, R. Tillmann, R. Wegener, and A. Wahner, “Investigation of the formaldehyde differential absorption cross section at high and low spectral resolution in the simulation chamber SAPHIR,” Atmos. Chem. Phys. 7, 3579-3586 (2007).
[CrossRef]

S. S. Brown, W. P. Dubé, H. D. Osthoff, D. E. Wolfe, W. M. Angevine, and A. R. Ravishankara, “High resolution vertical distributions of NO3 and N2O5 through the nocturnal boundary layer,” Atmos. Chem. Phys. 7, 139-149 (2007).
[CrossRef]

T. Baynard, E. R. Lovejoy, A. Pettersson, S. S. Brown, D. Lack, H. Osthoff, P. Massoli, S. Ciciora, W. P. Dube, and A. R. Ravishankara, “Design and application of a pulsed cavity ring-down aerosol extinction spectrometer for field measurements,” Aerosol Sci. Technol. 41, 447-462 (2007).
[CrossRef]

R. Wada, J. M. Beames, and A. J. Orr-Ewing, “Measurement of IO radical concentrations in the marine boundary layer using a cavity ring-down spectrometer,” J. Atmos. Chem. 58, 69-87 (2007).
[CrossRef]

2006

J. Bossmeyer, T. Brauers, C. Richter, F. Rohrer, R. Wegener, and A. Wahner, “Simulation chamber studies on the NO3 chemistry of atmospheric aldehydes,” Geophys. Res. Lett. 33, L18810 (2006).
[CrossRef]

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311, 1595-1599 (2006).
[CrossRef] [PubMed]

J. M. Langridge, S. M. Ball, and R. L. Jones, “A compact broadband cavity enhanced absorption spectrometer for detection of atmospheric NO2,” Analyst (Amsterdam) 131, 916-922(2006).

D. S. Venables, T. Gherman, J. Orphal, J. Wenger, and A. A. Ruth, “High sensitivity in situ monitoring of NO3 in an atmospheric simulation chamber using incoherent broadband cavity-enhanced absorption spectroscopy,” Environ. Sci. Technol. 40, 6758-6763 (2006).
[CrossRef] [PubMed]

W. P. Dubé, S. S. Brown, H. D. Osthoff, M. R. Nunley, S. J. Ciciora, M. W. Paris, R. J. McLaughlin, and A. R. Ravishankara, “Aircraft instrument for simultaneous, in situ measurement of NO3 and N2O5 via pulsed cavity ring-down spectroscopy,” Rev. Sci. Instrum. 77, 034101 (2006).
[CrossRef]

S. Kassi, M. Chenevier, L. Gianfrani, A. Salhi, Y. Rouillard, A. Ouvrard, and D. Romanini, “Looking into the volcano with a mid-IR DFB diode laser and cavity enhanced absorption spectroscopy,” Opt. Express 14, 11442-11452 (2006).
[CrossRef] [PubMed]

2005

J. D. Ayers, R. L. Apodaca, W. R. Simpson, and D. S. Baer, “Off-axis cavity ringdown spectroscopy: application to atmospheric nitrate radical detection,” Appl. Opt. 44, 7239-7242 (2005).
[CrossRef] [PubMed]

S. S. Brown, H. D. Osthoff, H. Stark, W. P. Dube, T. B. Ryerson, C. Warneke, J. A. DeGouw, A. G. Wollny, D. D. Parrish, F. C. Fehsenfeld, and A. R. Ravishankara, “Aircraft observations of daytime NO3 and N2O5 and their implications for tropospheric chemistry,” J. Photochem. Photobiol., A 176, 270-278 (2005).
[CrossRef]

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian Jr., K. V. Chance, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

H. Moosmüller, R. Varma, and W. P. Arnott, “Cavity ring-down and cavity-enhanced detection techniques for the measurement of aerosol extinction,” Aerosol Sci. Technol. 39, 30-39 (2005).
[CrossRef]

B. A. Paldus and A. A. Kachanov, “An historical overview of cavity-enhanced methods,” Can. J. Phys. 83, 975-999 (2005).
[CrossRef]

M. Bitter, S. M. Ball, I. M. Povey, and R. L. Jones, “A broadband cavity ringdown spectrometer for in situ measurements of atmospheric trace gases,” Atmos. Chem. Phys. 5, 2547-2560 (2005).
[CrossRef]

2004

K. C. Clemitshaw, “A review of instrumentation and measurement techniques for ground-based and airborne field studies of gas-phase tropospheric chemistry,” Crit. Rev. Environ. Sci. Technol. 34, 1-108 (2004).
[CrossRef]

S. M. Ball, J. M. Langridge, and R. M. Jones, “Broadband cavity enhanced absorption spectroscopy using light emitting diodes,” Chem. Phys. Lett. 398, 68-74 (2004).
[CrossRef]

2003

S. M. Ball and R. L. Jones, “Broad-band cavity ring-down spectroscopy,” Chem. Rev. 103, 5239-5262 (2003).
[CrossRef] [PubMed]

S. E. Fiedler, A. Hese, and A. A. Ruth, “Incoherent broadband cavity-enhanced absorption spectroscopy,” Chem. Phys. Lett. 371, 284-294 (2003).
[CrossRef]

J. Orphal, C. E. Fellows, and P. M. Flaud, “The visible absorption spectrum of NO3 measured by high-resolution Fourier transform spectroscopy,” J. Geophys. Res. 108(D3), 4077-4087 (2003).
[CrossRef]

S. S. Brown, “Absorption spectroscopy in high-finesse cavities for atmospheric studies,” Chem. Rev. 103, 5219-5238 (2003).
[CrossRef] [PubMed]

S. S. Brown, H. Stark, T. B. Ryerson, E. J. Williams, D. K. Nicks, Jr., M. Trainer, F. C. Fehsenfeld, and A. R. Ravishankara, “Nitrogen oxides in the nocturnal boundary layer: Simultaneous in situ measurements of NO3, N2O5, NO2, NO, and O3,” J. Geophys. Res. 108(D9), 4299 (2003).
[CrossRef]

S. S. Brown, H. Stark, and A. R. Ravishankara, “Applicability of the steady state approximation to the interpretation of atmospheric observations of NO3 and N2O5,” J. Geophys. Res. 108(D17), 4539 (2003).
[CrossRef]

2002

S. S. Brown, H. Stark, and A. R. Ravishankara, “Cavity ring-down spectroscopy for atmospheric trace gas detection: application to the nitrate radical (NO3),” Appl. Phys. B 75, 173-182 (2002).
[CrossRef]

S. S. Brown, H. Stark, S. J. Ciciora, R. J. McLaughlin, and A. R. Ravishankara, “Simultaneous in situ detection of atmospheric NO3 and N2O5 via cavity ring-down spectroscopy,” Rev. Sci. Instrum. 73, 3291-3301 (2002).
[CrossRef]

A. R. Awtry and J. H. Miller, “Development of a cw-laser-based cavity-ringdown sensor aboard a spacecraft for trace air constituents,” Appl. Phys. B 75, 255-260 (2002).
[CrossRef]

S. Voigt, J. P. Orphal, and J. P. Burrows, “The temperature and pressure dependence of the absorption cross sections of NO2 in the 250-800 nm region measured by Fourier-transform spectroscopy,” J. Photochem. Photobiol. A 149, 1-7 (2002).
[CrossRef]

T. Gherman and D. Romanini, “Mode-locked cavity-enhanced absorption spectroscopy,” Opt. Express 10, 1033-1042(2002).
[PubMed]

E. Hamers, D. Schram, and R. Engeln, “Fourier transform phase shift cavity ring down spectroscopy,” Chem. Phys. Lett. 365, 237-243 (2002).
[CrossRef]

2001

A. Czyżewski, S. Chudzyński, K. Ernst, G. Karasiński, Ł. Kilianek, A. Pietruczuk, W. Skubiszak, T. Stacewicz, K. Stelmaszczyk, B. Koch, and P. Rairoux, “Cavity ring-down spectrography,” Opt. Commun. 191, 271-275 (2001).
[CrossRef]

S. M. Ball, I. M. Povey, E. G. Norton, and R. L. Jones, “Broadband cavity ringdown spectroscopy of the NO3 radical,” Chem. Phys. Lett. 342, 113-120 (2001).
[CrossRef]

1999

E. R. Crosson, P. Haar, G. A. Marcus, H. A. Schwettman, B. A. Paldus, T. G. Spence, and R. N. Zare, “Pulse-stacked cavity ring-down spectroscopy,” Rev. Sci. Instrum. 70, 4-10 (1999).
[CrossRef]

U. Platt, “Modern methods of the measurement of atmospheric trace gases,” Phys. Chem. Chem. Phys. 1, 5409-5415(1999).
[CrossRef]

1998

J. J. Scherer, “Ringdown spectral photography,” Chem. Phys. Lett. 292, 143-153 (1998).
[CrossRef]

J. P. Burrows, A. Dehn, B. Deters, S. Himmelmann, A. Richter, S. Voigt, and J. Orphal, “Atmospheric remote-sensing reference data from GOME: 1. Temperature-dependent absorption cross-sections of NO2 in the 231-794 nm range,” J. Quant. Spectrosc. Radiat. Trans. 60, 1025-1031 (1998).
[CrossRef]

F. Rohrer, D. Brüning, E. S. Grobler, M. Weber, D. H. Ehhalt, R. Neubert, W. Schübler, and L. Levin, “Mixing ratios and photostationary state of NO and NO2 observed during the POPCORN field campaign at a rural site in Germany,” J. Atmos. Chem. 31, 119-137 (1998).
[CrossRef]

1994

R. J. Yokelson, J. B. Burkholder, R. W. Fox, R. K. Talukdar, and A. R. Ravishankara, “Temperature dependence of the NO3 absorption spectrum,” J. Phys. Chem. 98, 13144-13150 (1994).
[CrossRef]

1965

1942

Angevine, W. M.

S. S. Brown, W. P. Dubé, H. D. Osthoff, D. E. Wolfe, W. M. Angevine, and A. R. Ravishankara, “High resolution vertical distributions of NO3 and N2O5 through the nocturnal boundary layer,” Atmos. Chem. Phys. 7, 139-149 (2007).
[CrossRef]

Apodaca, R. L.

H.-P. Dorn, R. L. Apodaca, S. M. Ball, T. Brauers, S. S. Brown, R. C. Cohen, J. Crowley, W. P. Dube, J. Fry, H. Fuchs, R. Häseler, U. Heitmann, S. Kato, Y. Kajii, I. Labazan, J. Langridge, J. Matsumoto, J. Meinen, S. Nishida, U. Platt, D. Rollins, A. A. Ruth, E. Schlosser, G. Schuster, A. Shillings, W. Simpson, J. Thieser, R. M. Varma, D. S. Venables, A. Wahner, and P. Wooldridge, “Intercomparison of NO3 radical detection techniques in the atmosphere simulation chamber SAPHIR,” Atmos. Chem. Phys. Discuss. (2008), in preparation.

J. D. Ayers, R. L. Apodaca, W. R. Simpson, and D. S. Baer, “Off-axis cavity ringdown spectroscopy: application to atmospheric nitrate radical detection,” Appl. Opt. 44, 7239-7242 (2005).
[CrossRef] [PubMed]

H. Fuchs, R. L. Apodaca, S. M. Ball, T. Brauers, S. S. Brown, R. C. Cohen, J. Crowley, H.-P. Dorn, W. P. Dube, J. Fry, R. Häseler, U. Heitmann, S. Kato, Y. Kajii, A. Kiendler-Scharr, I. Labazan, J. Matsumoto, J. Meinen, S. Nishida, U. Platt, F. Rohrer, A. A. Ruth, E. Schlosser, G. Schuster, A. Shillings, W. Simpson, J. Thieser, R. Tillmann, R. M. Varma, D. S. Venables, R. Wegener, and P. Wooldridge, “Intercomparison of different NO2 measurement techniques at the simulation chamber SAPHIR,” Atmos. Chem. Phys. Discuss. , in preparation.

Arnott, W. P.

H. Moosmüller, R. Varma, and W. P. Arnott, “Cavity ring-down and cavity-enhanced detection techniques for the measurement of aerosol extinction,” Aerosol Sci. Technol. 39, 30-39 (2005).
[CrossRef]

Auwera, J. Vander

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian Jr., K. V. Chance, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Awtry, A. R.

A. R. Awtry and J. H. Miller, “Development of a cw-laser-based cavity-ringdown sensor aboard a spacecraft for trace air constituents,” Appl. Phys. B 75, 255-260 (2002).
[CrossRef]

Ayers, J. D.

Baer, D. S.

Ball, S. M.

H.-P. Dorn, R. L. Apodaca, S. M. Ball, T. Brauers, S. S. Brown, R. C. Cohen, J. Crowley, W. P. Dube, J. Fry, H. Fuchs, R. Häseler, U. Heitmann, S. Kato, Y. Kajii, I. Labazan, J. Langridge, J. Matsumoto, J. Meinen, S. Nishida, U. Platt, D. Rollins, A. A. Ruth, E. Schlosser, G. Schuster, A. Shillings, W. Simpson, J. Thieser, R. M. Varma, D. S. Venables, A. Wahner, and P. Wooldridge, “Intercomparison of NO3 radical detection techniques in the atmosphere simulation chamber SAPHIR,” Atmos. Chem. Phys. Discuss. (2008), in preparation.

R. Sommariva, M. J. Pilling, W. J. Bloss, D. E. Heard, J. D. Lee, Z. L. Fleming, P. S. Monks, J. M. C. Plane, A. Saiz-Lopez, S. M. Ball, M. Bitter, R. L. Jones, N. Brough, S. A. Penkett, J. R. Hopkins, A. C. Lewis, and K. A. Read, “Night-time radical chemistry during the NAMBLEX campaign,” Atmos. Chem. Phys. 7, 587-598 (2007).
[CrossRef]

J. M. Langridge, S. M. Ball, and R. L. Jones, “A compact broadband cavity enhanced absorption spectrometer for detection of atmospheric NO2,” Analyst (Amsterdam) 131, 916-922(2006).

M. Bitter, S. M. Ball, I. M. Povey, and R. L. Jones, “A broadband cavity ringdown spectrometer for in situ measurements of atmospheric trace gases,” Atmos. Chem. Phys. 5, 2547-2560 (2005).
[CrossRef]

S. M. Ball, J. M. Langridge, and R. M. Jones, “Broadband cavity enhanced absorption spectroscopy using light emitting diodes,” Chem. Phys. Lett. 398, 68-74 (2004).
[CrossRef]

S. M. Ball and R. L. Jones, “Broad-band cavity ring-down spectroscopy,” Chem. Rev. 103, 5239-5262 (2003).
[CrossRef] [PubMed]

S. M. Ball, I. M. Povey, E. G. Norton, and R. L. Jones, “Broadband cavity ringdown spectroscopy of the NO3 radical,” Chem. Phys. Lett. 342, 113-120 (2001).
[CrossRef]

H. Fuchs, R. L. Apodaca, S. M. Ball, T. Brauers, S. S. Brown, R. C. Cohen, J. Crowley, H.-P. Dorn, W. P. Dube, J. Fry, R. Häseler, U. Heitmann, S. Kato, Y. Kajii, A. Kiendler-Scharr, I. Labazan, J. Matsumoto, J. Meinen, S. Nishida, U. Platt, F. Rohrer, A. A. Ruth, E. Schlosser, G. Schuster, A. Shillings, W. Simpson, J. Thieser, R. Tillmann, R. M. Varma, D. S. Venables, R. Wegener, and P. Wooldridge, “Intercomparison of different NO2 measurement techniques at the simulation chamber SAPHIR,” Atmos. Chem. Phys. Discuss. , in preparation.

Barbe, A.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian Jr., K. V. Chance, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Baynard, T.

T. Baynard, E. R. Lovejoy, A. Pettersson, S. S. Brown, D. Lack, H. Osthoff, P. Massoli, S. Ciciora, W. P. Dube, and A. R. Ravishankara, “Design and application of a pulsed cavity ring-down aerosol extinction spectrometer for field measurements,” Aerosol Sci. Technol. 41, 447-462 (2007).
[CrossRef]

Beames, J. M.

R. Wada, J. M. Beames, and A. J. Orr-Ewing, “Measurement of IO radical concentrations in the marine boundary layer using a cavity ring-down spectrometer,” J. Atmos. Chem. 58, 69-87 (2007).
[CrossRef]

Becker-Ross, H.

B. Welz, H. Becker-Ross, S. Florek, and U. Heitmann, High-Resolution Continuum Source AAS: The Better Way to Do Atomic Absorption Spectrometry (Wiley VCH, 2005).
[CrossRef]

Benner, D. C.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian Jr., K. V. Chance, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Birk, M.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian Jr., K. V. Chance, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Bitter, M.

R. Sommariva, M. J. Pilling, W. J. Bloss, D. E. Heard, J. D. Lee, Z. L. Fleming, P. S. Monks, J. M. C. Plane, A. Saiz-Lopez, S. M. Ball, M. Bitter, R. L. Jones, N. Brough, S. A. Penkett, J. R. Hopkins, A. C. Lewis, and K. A. Read, “Night-time radical chemistry during the NAMBLEX campaign,” Atmos. Chem. Phys. 7, 587-598 (2007).
[CrossRef]

M. Bitter, S. M. Ball, I. M. Povey, and R. L. Jones, “A broadband cavity ringdown spectrometer for in situ measurements of atmospheric trace gases,” Atmos. Chem. Phys. 5, 2547-2560 (2005).
[CrossRef]

Bloss, W. J.

R. Sommariva, M. J. Pilling, W. J. Bloss, D. E. Heard, J. D. Lee, Z. L. Fleming, P. S. Monks, J. M. C. Plane, A. Saiz-Lopez, S. M. Ball, M. Bitter, R. L. Jones, N. Brough, S. A. Penkett, J. R. Hopkins, A. C. Lewis, and K. A. Read, “Night-time radical chemistry during the NAMBLEX campaign,” Atmos. Chem. Phys. 7, 587-598 (2007).
[CrossRef]

Bossmeyer, J.

T. Brauers, J. Bossmeyer, H.-P. Dorn, E. Schlosser, R. Tillmann, R. Wegener, and A. Wahner, “Investigation of the formaldehyde differential absorption cross section at high and low spectral resolution in the simulation chamber SAPHIR,” Atmos. Chem. Phys. 7, 3579-3586 (2007).
[CrossRef]

J. Bossmeyer, T. Brauers, C. Richter, F. Rohrer, R. Wegener, and A. Wahner, “Simulation chamber studies on the NO3 chemistry of atmospheric aldehydes,” Geophys. Res. Lett. 33, L18810 (2006).
[CrossRef]

Brauers, T.

H.-P. Dorn, R. L. Apodaca, S. M. Ball, T. Brauers, S. S. Brown, R. C. Cohen, J. Crowley, W. P. Dube, J. Fry, H. Fuchs, R. Häseler, U. Heitmann, S. Kato, Y. Kajii, I. Labazan, J. Langridge, J. Matsumoto, J. Meinen, S. Nishida, U. Platt, D. Rollins, A. A. Ruth, E. Schlosser, G. Schuster, A. Shillings, W. Simpson, J. Thieser, R. M. Varma, D. S. Venables, A. Wahner, and P. Wooldridge, “Intercomparison of NO3 radical detection techniques in the atmosphere simulation chamber SAPHIR,” Atmos. Chem. Phys. Discuss. (2008), in preparation.

T. Brauers, J. Bossmeyer, H.-P. Dorn, E. Schlosser, R. Tillmann, R. Wegener, and A. Wahner, “Investigation of the formaldehyde differential absorption cross section at high and low spectral resolution in the simulation chamber SAPHIR,” Atmos. Chem. Phys. 7, 3579-3586 (2007).
[CrossRef]

J. Bossmeyer, T. Brauers, C. Richter, F. Rohrer, R. Wegener, and A. Wahner, “Simulation chamber studies on the NO3 chemistry of atmospheric aldehydes,” Geophys. Res. Lett. 33, L18810 (2006).
[CrossRef]

H. Fuchs, R. L. Apodaca, S. M. Ball, T. Brauers, S. S. Brown, R. C. Cohen, J. Crowley, H.-P. Dorn, W. P. Dube, J. Fry, R. Häseler, U. Heitmann, S. Kato, Y. Kajii, A. Kiendler-Scharr, I. Labazan, J. Matsumoto, J. Meinen, S. Nishida, U. Platt, F. Rohrer, A. A. Ruth, E. Schlosser, G. Schuster, A. Shillings, W. Simpson, J. Thieser, R. Tillmann, R. M. Varma, D. S. Venables, R. Wegener, and P. Wooldridge, “Intercomparison of different NO2 measurement techniques at the simulation chamber SAPHIR,” Atmos. Chem. Phys. Discuss. , in preparation.

Brough, N.

R. Sommariva, M. J. Pilling, W. J. Bloss, D. E. Heard, J. D. Lee, Z. L. Fleming, P. S. Monks, J. M. C. Plane, A. Saiz-Lopez, S. M. Ball, M. Bitter, R. L. Jones, N. Brough, S. A. Penkett, J. R. Hopkins, A. C. Lewis, and K. A. Read, “Night-time radical chemistry during the NAMBLEX campaign,” Atmos. Chem. Phys. 7, 587-598 (2007).
[CrossRef]

Brown, L. R.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian Jr., K. V. Chance, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Brown, S. S.

H.-P. Dorn, R. L. Apodaca, S. M. Ball, T. Brauers, S. S. Brown, R. C. Cohen, J. Crowley, W. P. Dube, J. Fry, H. Fuchs, R. Häseler, U. Heitmann, S. Kato, Y. Kajii, I. Labazan, J. Langridge, J. Matsumoto, J. Meinen, S. Nishida, U. Platt, D. Rollins, A. A. Ruth, E. Schlosser, G. Schuster, A. Shillings, W. Simpson, J. Thieser, R. M. Varma, D. S. Venables, A. Wahner, and P. Wooldridge, “Intercomparison of NO3 radical detection techniques in the atmosphere simulation chamber SAPHIR,” Atmos. Chem. Phys. Discuss. (2008), in preparation.

H. Fuchs, W. P. Dubé, S. J. Ciciora, and S. S. Brown, “Determination of inlet transmission and conversion efficiencies for in situ measurements of the nocturnal nitrogen oxides, NO3, N2O5 and NO2, via pulsed cavity ring-down spectroscopy,” Anal. Chem. 80, 6010-6017 (2008).
[CrossRef] [PubMed]

R. A. Washenfelder, A. O. Langford, H. Fuchs, and S. S. Brown, “Measurement of glyoxal using an incoherent broadband cavity enhanced absorption spectrometer,” Atmos. Chem. Phys. Discuss. 8, 16517-16553 (2008).
[CrossRef]

T. Baynard, E. R. Lovejoy, A. Pettersson, S. S. Brown, D. Lack, H. Osthoff, P. Massoli, S. Ciciora, W. P. Dube, and A. R. Ravishankara, “Design and application of a pulsed cavity ring-down aerosol extinction spectrometer for field measurements,” Aerosol Sci. Technol. 41, 447-462 (2007).
[CrossRef]

S. S. Brown, W. P. Dubé, H. D. Osthoff, D. E. Wolfe, W. M. Angevine, and A. R. Ravishankara, “High resolution vertical distributions of NO3 and N2O5 through the nocturnal boundary layer,” Atmos. Chem. Phys. 7, 139-149 (2007).
[CrossRef]

W. P. Dubé, S. S. Brown, H. D. Osthoff, M. R. Nunley, S. J. Ciciora, M. W. Paris, R. J. McLaughlin, and A. R. Ravishankara, “Aircraft instrument for simultaneous, in situ measurement of NO3 and N2O5 via pulsed cavity ring-down spectroscopy,” Rev. Sci. Instrum. 77, 034101 (2006).
[CrossRef]

S. S. Brown, H. D. Osthoff, H. Stark, W. P. Dube, T. B. Ryerson, C. Warneke, J. A. DeGouw, A. G. Wollny, D. D. Parrish, F. C. Fehsenfeld, and A. R. Ravishankara, “Aircraft observations of daytime NO3 and N2O5 and their implications for tropospheric chemistry,” J. Photochem. Photobiol., A 176, 270-278 (2005).
[CrossRef]

S. S. Brown, H. Stark, and A. R. Ravishankara, “Applicability of the steady state approximation to the interpretation of atmospheric observations of NO3 and N2O5,” J. Geophys. Res. 108(D17), 4539 (2003).
[CrossRef]

S. S. Brown, “Absorption spectroscopy in high-finesse cavities for atmospheric studies,” Chem. Rev. 103, 5219-5238 (2003).
[CrossRef] [PubMed]

S. S. Brown, H. Stark, T. B. Ryerson, E. J. Williams, D. K. Nicks, Jr., M. Trainer, F. C. Fehsenfeld, and A. R. Ravishankara, “Nitrogen oxides in the nocturnal boundary layer: Simultaneous in situ measurements of NO3, N2O5, NO2, NO, and O3,” J. Geophys. Res. 108(D9), 4299 (2003).
[CrossRef]

S. S. Brown, H. Stark, and A. R. Ravishankara, “Cavity ring-down spectroscopy for atmospheric trace gas detection: application to the nitrate radical (NO3),” Appl. Phys. B 75, 173-182 (2002).
[CrossRef]

S. S. Brown, H. Stark, S. J. Ciciora, R. J. McLaughlin, and A. R. Ravishankara, “Simultaneous in situ detection of atmospheric NO3 and N2O5 via cavity ring-down spectroscopy,” Rev. Sci. Instrum. 73, 3291-3301 (2002).
[CrossRef]

H. Fuchs, R. L. Apodaca, S. M. Ball, T. Brauers, S. S. Brown, R. C. Cohen, J. Crowley, H.-P. Dorn, W. P. Dube, J. Fry, R. Häseler, U. Heitmann, S. Kato, Y. Kajii, A. Kiendler-Scharr, I. Labazan, J. Matsumoto, J. Meinen, S. Nishida, U. Platt, F. Rohrer, A. A. Ruth, E. Schlosser, G. Schuster, A. Shillings, W. Simpson, J. Thieser, R. Tillmann, R. M. Varma, D. S. Venables, R. Wegener, and P. Wooldridge, “Intercomparison of different NO2 measurement techniques at the simulation chamber SAPHIR,” Atmos. Chem. Phys. Discuss. , in preparation.

Brüning, D.

F. Rohrer, D. Brüning, E. S. Grobler, M. Weber, D. H. Ehhalt, R. Neubert, W. Schübler, and L. Levin, “Mixing ratios and photostationary state of NO and NO2 observed during the POPCORN field campaign at a rural site in Germany,” J. Atmos. Chem. 31, 119-137 (1998).
[CrossRef]

Burkholder, J. B.

R. J. Yokelson, J. B. Burkholder, R. W. Fox, R. K. Talukdar, and A. R. Ravishankara, “Temperature dependence of the NO3 absorption spectrum,” J. Phys. Chem. 98, 13144-13150 (1994).
[CrossRef]

Burrows, J. P.

S. Voigt, J. P. Orphal, and J. P. Burrows, “The temperature and pressure dependence of the absorption cross sections of NO2 in the 250-800 nm region measured by Fourier-transform spectroscopy,” J. Photochem. Photobiol. A 149, 1-7 (2002).
[CrossRef]

J. P. Burrows, A. Dehn, B. Deters, S. Himmelmann, A. Richter, S. Voigt, and J. Orphal, “Atmospheric remote-sensing reference data from GOME: 1. Temperature-dependent absorption cross-sections of NO2 in the 231-794 nm range,” J. Quant. Spectrosc. Radiat. Trans. 60, 1025-1031 (1998).
[CrossRef]

Carleer, M. R.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian Jr., K. V. Chance, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Cermak, P.

M. Triki, P. Cermak, G. Méjean, and D. Romanini, “Cavity-enhanced absorption spectroscopy with a red LED source for NOx trace analysis,” Appl. Phys. B 91, 195-201 (2008).
[CrossRef]

Chackerian, C.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian Jr., K. V. Chance, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Chance, K. V.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian Jr., K. V. Chance, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Chenevier, M.

Chudzynski, S.

A. Czyżewski, S. Chudzyński, K. Ernst, G. Karasiński, Ł. Kilianek, A. Pietruczuk, W. Skubiszak, T. Stacewicz, K. Stelmaszczyk, B. Koch, and P. Rairoux, “Cavity ring-down spectrography,” Opt. Commun. 191, 271-275 (2001).
[CrossRef]

Ciciora, S.

T. Baynard, E. R. Lovejoy, A. Pettersson, S. S. Brown, D. Lack, H. Osthoff, P. Massoli, S. Ciciora, W. P. Dube, and A. R. Ravishankara, “Design and application of a pulsed cavity ring-down aerosol extinction spectrometer for field measurements,” Aerosol Sci. Technol. 41, 447-462 (2007).
[CrossRef]

Ciciora, S. J.

H. Fuchs, W. P. Dubé, S. J. Ciciora, and S. S. Brown, “Determination of inlet transmission and conversion efficiencies for in situ measurements of the nocturnal nitrogen oxides, NO3, N2O5 and NO2, via pulsed cavity ring-down spectroscopy,” Anal. Chem. 80, 6010-6017 (2008).
[CrossRef] [PubMed]

W. P. Dubé, S. S. Brown, H. D. Osthoff, M. R. Nunley, S. J. Ciciora, M. W. Paris, R. J. McLaughlin, and A. R. Ravishankara, “Aircraft instrument for simultaneous, in situ measurement of NO3 and N2O5 via pulsed cavity ring-down spectroscopy,” Rev. Sci. Instrum. 77, 034101 (2006).
[CrossRef]

S. S. Brown, H. Stark, S. J. Ciciora, R. J. McLaughlin, and A. R. Ravishankara, “Simultaneous in situ detection of atmospheric NO3 and N2O5 via cavity ring-down spectroscopy,” Rev. Sci. Instrum. 73, 3291-3301 (2002).
[CrossRef]

Clemitshaw, K. C.

K. C. Clemitshaw, “A review of instrumentation and measurement techniques for ground-based and airborne field studies of gas-phase tropospheric chemistry,” Crit. Rev. Environ. Sci. Technol. 34, 1-108 (2004).
[CrossRef]

Cohen, R. C.

H.-P. Dorn, R. L. Apodaca, S. M. Ball, T. Brauers, S. S. Brown, R. C. Cohen, J. Crowley, W. P. Dube, J. Fry, H. Fuchs, R. Häseler, U. Heitmann, S. Kato, Y. Kajii, I. Labazan, J. Langridge, J. Matsumoto, J. Meinen, S. Nishida, U. Platt, D. Rollins, A. A. Ruth, E. Schlosser, G. Schuster, A. Shillings, W. Simpson, J. Thieser, R. M. Varma, D. S. Venables, A. Wahner, and P. Wooldridge, “Intercomparison of NO3 radical detection techniques in the atmosphere simulation chamber SAPHIR,” Atmos. Chem. Phys. Discuss. (2008), in preparation.

H. Fuchs, R. L. Apodaca, S. M. Ball, T. Brauers, S. S. Brown, R. C. Cohen, J. Crowley, H.-P. Dorn, W. P. Dube, J. Fry, R. Häseler, U. Heitmann, S. Kato, Y. Kajii, A. Kiendler-Scharr, I. Labazan, J. Matsumoto, J. Meinen, S. Nishida, U. Platt, F. Rohrer, A. A. Ruth, E. Schlosser, G. Schuster, A. Shillings, W. Simpson, J. Thieser, R. Tillmann, R. M. Varma, D. S. Venables, R. Wegener, and P. Wooldridge, “Intercomparison of different NO2 measurement techniques at the simulation chamber SAPHIR,” Atmos. Chem. Phys. Discuss. , in preparation.

Crosson, E. R.

E. R. Crosson, P. Haar, G. A. Marcus, H. A. Schwettman, B. A. Paldus, T. G. Spence, and R. N. Zare, “Pulse-stacked cavity ring-down spectroscopy,” Rev. Sci. Instrum. 70, 4-10 (1999).
[CrossRef]

Crowley, J.

H.-P. Dorn, R. L. Apodaca, S. M. Ball, T. Brauers, S. S. Brown, R. C. Cohen, J. Crowley, W. P. Dube, J. Fry, H. Fuchs, R. Häseler, U. Heitmann, S. Kato, Y. Kajii, I. Labazan, J. Langridge, J. Matsumoto, J. Meinen, S. Nishida, U. Platt, D. Rollins, A. A. Ruth, E. Schlosser, G. Schuster, A. Shillings, W. Simpson, J. Thieser, R. M. Varma, D. S. Venables, A. Wahner, and P. Wooldridge, “Intercomparison of NO3 radical detection techniques in the atmosphere simulation chamber SAPHIR,” Atmos. Chem. Phys. Discuss. (2008), in preparation.

H. Fuchs, R. L. Apodaca, S. M. Ball, T. Brauers, S. S. Brown, R. C. Cohen, J. Crowley, H.-P. Dorn, W. P. Dube, J. Fry, R. Häseler, U. Heitmann, S. Kato, Y. Kajii, A. Kiendler-Scharr, I. Labazan, J. Matsumoto, J. Meinen, S. Nishida, U. Platt, F. Rohrer, A. A. Ruth, E. Schlosser, G. Schuster, A. Shillings, W. Simpson, J. Thieser, R. Tillmann, R. M. Varma, D. S. Venables, R. Wegener, and P. Wooldridge, “Intercomparison of different NO2 measurement techniques at the simulation chamber SAPHIR,” Atmos. Chem. Phys. Discuss. , in preparation.

Crowley, J. N.

G. Schuster, I. Labazan, and J. N. Crowley, “A cavity ring down/cavity enhanced absorption device for measurement of ambient NO3 and N2O5,” Atmos. Meas. Tech. Discuss. 1, 67-102 (2008).
[CrossRef]

Czyzewski, A.

A. Czyżewski, S. Chudzyński, K. Ernst, G. Karasiński, Ł. Kilianek, A. Pietruczuk, W. Skubiszak, T. Stacewicz, K. Stelmaszczyk, B. Koch, and P. Rairoux, “Cavity ring-down spectrography,” Opt. Commun. 191, 271-275 (2001).
[CrossRef]

Dana, V.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian Jr., K. V. Chance, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

DeGouw, J. A.

S. S. Brown, H. D. Osthoff, H. Stark, W. P. Dube, T. B. Ryerson, C. Warneke, J. A. DeGouw, A. G. Wollny, D. D. Parrish, F. C. Fehsenfeld, and A. R. Ravishankara, “Aircraft observations of daytime NO3 and N2O5 and their implications for tropospheric chemistry,” J. Photochem. Photobiol., A 176, 270-278 (2005).
[CrossRef]

Dehn, A.

J. P. Burrows, A. Dehn, B. Deters, S. Himmelmann, A. Richter, S. Voigt, and J. Orphal, “Atmospheric remote-sensing reference data from GOME: 1. Temperature-dependent absorption cross-sections of NO2 in the 231-794 nm range,” J. Quant. Spectrosc. Radiat. Trans. 60, 1025-1031 (1998).
[CrossRef]

Deters, B.

J. P. Burrows, A. Dehn, B. Deters, S. Himmelmann, A. Richter, S. Voigt, and J. Orphal, “Atmospheric remote-sensing reference data from GOME: 1. Temperature-dependent absorption cross-sections of NO2 in the 231-794 nm range,” J. Quant. Spectrosc. Radiat. Trans. 60, 1025-1031 (1998).
[CrossRef]

Devi, V. M.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian Jr., K. V. Chance, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Dorn, H.-P.

H.-P. Dorn, R. L. Apodaca, S. M. Ball, T. Brauers, S. S. Brown, R. C. Cohen, J. Crowley, W. P. Dube, J. Fry, H. Fuchs, R. Häseler, U. Heitmann, S. Kato, Y. Kajii, I. Labazan, J. Langridge, J. Matsumoto, J. Meinen, S. Nishida, U. Platt, D. Rollins, A. A. Ruth, E. Schlosser, G. Schuster, A. Shillings, W. Simpson, J. Thieser, R. M. Varma, D. S. Venables, A. Wahner, and P. Wooldridge, “Intercomparison of NO3 radical detection techniques in the atmosphere simulation chamber SAPHIR,” Atmos. Chem. Phys. Discuss. (2008), in preparation.

T. Brauers, J. Bossmeyer, H.-P. Dorn, E. Schlosser, R. Tillmann, R. Wegener, and A. Wahner, “Investigation of the formaldehyde differential absorption cross section at high and low spectral resolution in the simulation chamber SAPHIR,” Atmos. Chem. Phys. 7, 3579-3586 (2007).
[CrossRef]

H. Fuchs, R. L. Apodaca, S. M. Ball, T. Brauers, S. S. Brown, R. C. Cohen, J. Crowley, H.-P. Dorn, W. P. Dube, J. Fry, R. Häseler, U. Heitmann, S. Kato, Y. Kajii, A. Kiendler-Scharr, I. Labazan, J. Matsumoto, J. Meinen, S. Nishida, U. Platt, F. Rohrer, A. A. Ruth, E. Schlosser, G. Schuster, A. Shillings, W. Simpson, J. Thieser, R. Tillmann, R. M. Varma, D. S. Venables, R. Wegener, and P. Wooldridge, “Intercomparison of different NO2 measurement techniques at the simulation chamber SAPHIR,” Atmos. Chem. Phys. Discuss. , in preparation.

Dube, W. P.

H.-P. Dorn, R. L. Apodaca, S. M. Ball, T. Brauers, S. S. Brown, R. C. Cohen, J. Crowley, W. P. Dube, J. Fry, H. Fuchs, R. Häseler, U. Heitmann, S. Kato, Y. Kajii, I. Labazan, J. Langridge, J. Matsumoto, J. Meinen, S. Nishida, U. Platt, D. Rollins, A. A. Ruth, E. Schlosser, G. Schuster, A. Shillings, W. Simpson, J. Thieser, R. M. Varma, D. S. Venables, A. Wahner, and P. Wooldridge, “Intercomparison of NO3 radical detection techniques in the atmosphere simulation chamber SAPHIR,” Atmos. Chem. Phys. Discuss. (2008), in preparation.

T. Baynard, E. R. Lovejoy, A. Pettersson, S. S. Brown, D. Lack, H. Osthoff, P. Massoli, S. Ciciora, W. P. Dube, and A. R. Ravishankara, “Design and application of a pulsed cavity ring-down aerosol extinction spectrometer for field measurements,” Aerosol Sci. Technol. 41, 447-462 (2007).
[CrossRef]

S. S. Brown, H. D. Osthoff, H. Stark, W. P. Dube, T. B. Ryerson, C. Warneke, J. A. DeGouw, A. G. Wollny, D. D. Parrish, F. C. Fehsenfeld, and A. R. Ravishankara, “Aircraft observations of daytime NO3 and N2O5 and their implications for tropospheric chemistry,” J. Photochem. Photobiol., A 176, 270-278 (2005).
[CrossRef]

H. Fuchs, R. L. Apodaca, S. M. Ball, T. Brauers, S. S. Brown, R. C. Cohen, J. Crowley, H.-P. Dorn, W. P. Dube, J. Fry, R. Häseler, U. Heitmann, S. Kato, Y. Kajii, A. Kiendler-Scharr, I. Labazan, J. Matsumoto, J. Meinen, S. Nishida, U. Platt, F. Rohrer, A. A. Ruth, E. Schlosser, G. Schuster, A. Shillings, W. Simpson, J. Thieser, R. Tillmann, R. M. Varma, D. S. Venables, R. Wegener, and P. Wooldridge, “Intercomparison of different NO2 measurement techniques at the simulation chamber SAPHIR,” Atmos. Chem. Phys. Discuss. , in preparation.

Dubé, W. P.

H. Fuchs, W. P. Dubé, S. J. Ciciora, and S. S. Brown, “Determination of inlet transmission and conversion efficiencies for in situ measurements of the nocturnal nitrogen oxides, NO3, N2O5 and NO2, via pulsed cavity ring-down spectroscopy,” Anal. Chem. 80, 6010-6017 (2008).
[CrossRef] [PubMed]

S. S. Brown, W. P. Dubé, H. D. Osthoff, D. E. Wolfe, W. M. Angevine, and A. R. Ravishankara, “High resolution vertical distributions of NO3 and N2O5 through the nocturnal boundary layer,” Atmos. Chem. Phys. 7, 139-149 (2007).
[CrossRef]

W. P. Dubé, S. S. Brown, H. D. Osthoff, M. R. Nunley, S. J. Ciciora, M. W. Paris, R. J. McLaughlin, and A. R. Ravishankara, “Aircraft instrument for simultaneous, in situ measurement of NO3 and N2O5 via pulsed cavity ring-down spectroscopy,” Rev. Sci. Instrum. 77, 034101 (2006).
[CrossRef]

Ehhalt, D. H.

F. Rohrer, D. Brüning, E. S. Grobler, M. Weber, D. H. Ehhalt, R. Neubert, W. Schübler, and L. Levin, “Mixing ratios and photostationary state of NO and NO2 observed during the POPCORN field campaign at a rural site in Germany,” J. Atmos. Chem. 31, 119-137 (1998).
[CrossRef]

Engeln, R.

E. Hamers, D. Schram, and R. Engeln, “Fourier transform phase shift cavity ring down spectroscopy,” Chem. Phys. Lett. 365, 237-243 (2002).
[CrossRef]

Ernst, K.

A. Czyżewski, S. Chudzyński, K. Ernst, G. Karasiński, Ł. Kilianek, A. Pietruczuk, W. Skubiszak, T. Stacewicz, K. Stelmaszczyk, B. Koch, and P. Rairoux, “Cavity ring-down spectrography,” Opt. Commun. 191, 271-275 (2001).
[CrossRef]

Fehsenfeld, F. C.

S. S. Brown, H. D. Osthoff, H. Stark, W. P. Dube, T. B. Ryerson, C. Warneke, J. A. DeGouw, A. G. Wollny, D. D. Parrish, F. C. Fehsenfeld, and A. R. Ravishankara, “Aircraft observations of daytime NO3 and N2O5 and their implications for tropospheric chemistry,” J. Photochem. Photobiol., A 176, 270-278 (2005).
[CrossRef]

S. S. Brown, H. Stark, T. B. Ryerson, E. J. Williams, D. K. Nicks, Jr., M. Trainer, F. C. Fehsenfeld, and A. R. Ravishankara, “Nitrogen oxides in the nocturnal boundary layer: Simultaneous in situ measurements of NO3, N2O5, NO2, NO, and O3,” J. Geophys. Res. 108(D9), 4299 (2003).
[CrossRef]

Fellows, C. E.

J. Orphal, C. E. Fellows, and P. M. Flaud, “The visible absorption spectrum of NO3 measured by high-resolution Fourier transform spectroscopy,” J. Geophys. Res. 108(D3), 4077-4087 (2003).
[CrossRef]

Fiedler, S. E.

A. A. Ruth, J. Orphal, and S. E. Fiedler, “Fourier-transform cavity-enhanced absorption spectroscopy using an incoherent broadband light source,” Appl. Opt. 46, 3611-3616 (2007).
[CrossRef] [PubMed]

S. E. Fiedler, A. Hese, and A. A. Ruth, “Incoherent broadband cavity-enhanced absorption spectroscopy,” Chem. Phys. Lett. 371, 284-294 (2003).
[CrossRef]

Flannery, T. S.

W. H. Press, T. S. Flannery, and W. T. Vetterling, Numerical Recipes: The Art of Scientific Computing (Cambridge U. Press, 1986), pp. 51 and 670.

Flaud, J.-M.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian Jr., K. V. Chance, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Flaud, P. M.

J. Orphal, C. E. Fellows, and P. M. Flaud, “The visible absorption spectrum of NO3 measured by high-resolution Fourier transform spectroscopy,” J. Geophys. Res. 108(D3), 4077-4087 (2003).
[CrossRef]

Fleming, Z. L.

R. Sommariva, M. J. Pilling, W. J. Bloss, D. E. Heard, J. D. Lee, Z. L. Fleming, P. S. Monks, J. M. C. Plane, A. Saiz-Lopez, S. M. Ball, M. Bitter, R. L. Jones, N. Brough, S. A. Penkett, J. R. Hopkins, A. C. Lewis, and K. A. Read, “Night-time radical chemistry during the NAMBLEX campaign,” Atmos. Chem. Phys. 7, 587-598 (2007).
[CrossRef]

Florek, S.

B. Welz, H. Becker-Ross, S. Florek, and U. Heitmann, High-Resolution Continuum Source AAS: The Better Way to Do Atomic Absorption Spectrometry (Wiley VCH, 2005).
[CrossRef]

Fox, R. W.

R. J. Yokelson, J. B. Burkholder, R. W. Fox, R. K. Talukdar, and A. R. Ravishankara, “Temperature dependence of the NO3 absorption spectrum,” J. Phys. Chem. 98, 13144-13150 (1994).
[CrossRef]

Fry, J.

H.-P. Dorn, R. L. Apodaca, S. M. Ball, T. Brauers, S. S. Brown, R. C. Cohen, J. Crowley, W. P. Dube, J. Fry, H. Fuchs, R. Häseler, U. Heitmann, S. Kato, Y. Kajii, I. Labazan, J. Langridge, J. Matsumoto, J. Meinen, S. Nishida, U. Platt, D. Rollins, A. A. Ruth, E. Schlosser, G. Schuster, A. Shillings, W. Simpson, J. Thieser, R. M. Varma, D. S. Venables, A. Wahner, and P. Wooldridge, “Intercomparison of NO3 radical detection techniques in the atmosphere simulation chamber SAPHIR,” Atmos. Chem. Phys. Discuss. (2008), in preparation.

H. Fuchs, R. L. Apodaca, S. M. Ball, T. Brauers, S. S. Brown, R. C. Cohen, J. Crowley, H.-P. Dorn, W. P. Dube, J. Fry, R. Häseler, U. Heitmann, S. Kato, Y. Kajii, A. Kiendler-Scharr, I. Labazan, J. Matsumoto, J. Meinen, S. Nishida, U. Platt, F. Rohrer, A. A. Ruth, E. Schlosser, G. Schuster, A. Shillings, W. Simpson, J. Thieser, R. Tillmann, R. M. Varma, D. S. Venables, R. Wegener, and P. Wooldridge, “Intercomparison of different NO2 measurement techniques at the simulation chamber SAPHIR,” Atmos. Chem. Phys. Discuss. , in preparation.

Fuchs, H.

H.-P. Dorn, R. L. Apodaca, S. M. Ball, T. Brauers, S. S. Brown, R. C. Cohen, J. Crowley, W. P. Dube, J. Fry, H. Fuchs, R. Häseler, U. Heitmann, S. Kato, Y. Kajii, I. Labazan, J. Langridge, J. Matsumoto, J. Meinen, S. Nishida, U. Platt, D. Rollins, A. A. Ruth, E. Schlosser, G. Schuster, A. Shillings, W. Simpson, J. Thieser, R. M. Varma, D. S. Venables, A. Wahner, and P. Wooldridge, “Intercomparison of NO3 radical detection techniques in the atmosphere simulation chamber SAPHIR,” Atmos. Chem. Phys. Discuss. (2008), in preparation.

H. Fuchs, W. P. Dubé, S. J. Ciciora, and S. S. Brown, “Determination of inlet transmission and conversion efficiencies for in situ measurements of the nocturnal nitrogen oxides, NO3, N2O5 and NO2, via pulsed cavity ring-down spectroscopy,” Anal. Chem. 80, 6010-6017 (2008).
[CrossRef] [PubMed]

R. A. Washenfelder, A. O. Langford, H. Fuchs, and S. S. Brown, “Measurement of glyoxal using an incoherent broadband cavity enhanced absorption spectrometer,” Atmos. Chem. Phys. Discuss. 8, 16517-16553 (2008).
[CrossRef]

H. Fuchs, R. L. Apodaca, S. M. Ball, T. Brauers, S. S. Brown, R. C. Cohen, J. Crowley, H.-P. Dorn, W. P. Dube, J. Fry, R. Häseler, U. Heitmann, S. Kato, Y. Kajii, A. Kiendler-Scharr, I. Labazan, J. Matsumoto, J. Meinen, S. Nishida, U. Platt, F. Rohrer, A. A. Ruth, E. Schlosser, G. Schuster, A. Shillings, W. Simpson, J. Thieser, R. Tillmann, R. M. Varma, D. S. Venables, R. Wegener, and P. Wooldridge, “Intercomparison of different NO2 measurement techniques at the simulation chamber SAPHIR,” Atmos. Chem. Phys. Discuss. , in preparation.

Gamache, R. R.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian Jr., K. V. Chance, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Gherman, T.

T. Gherman, D. S. Venables, S. Vaughan, J. Orphal, and A. A. Ruth, “Incoherent broadband cavity enhanced absorption spectroscopy in the near-ultaviolet: application to HONO and NO2,” Environ. Sci. Technol. 42, 890-895 (2008).
[CrossRef] [PubMed]

S. Vaughan, T. Gherman, A. A. Ruth, and J. Orphal, “Incoherent broadband cavity-enhanced absorption spectroscopy of the marine boundary layer species I2, IO and OIO,” Phys. Chem. Chem. Phys. 10, 4471-4477 (2008).
[CrossRef] [PubMed]

D. S. Venables, T. Gherman, J. Orphal, J. Wenger, and A. A. Ruth, “High sensitivity in situ monitoring of NO3 in an atmospheric simulation chamber using incoherent broadband cavity-enhanced absorption spectroscopy,” Environ. Sci. Technol. 40, 6758-6763 (2006).
[CrossRef] [PubMed]

T. Gherman and D. Romanini, “Mode-locked cavity-enhanced absorption spectroscopy,” Opt. Express 10, 1033-1042(2002).
[PubMed]

Gianfrani, L.

Goldman, A.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian Jr., K. V. Chance, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Grobler, E. S.

F. Rohrer, D. Brüning, E. S. Grobler, M. Weber, D. H. Ehhalt, R. Neubert, W. Schübler, and L. Levin, “Mixing ratios and photostationary state of NO and NO2 observed during the POPCORN field campaign at a rural site in Germany,” J. Atmos. Chem. 31, 119-137 (1998).
[CrossRef]

Haar, P.

E. R. Crosson, P. Haar, G. A. Marcus, H. A. Schwettman, B. A. Paldus, T. G. Spence, and R. N. Zare, “Pulse-stacked cavity ring-down spectroscopy,” Rev. Sci. Instrum. 70, 4-10 (1999).
[CrossRef]

Hamers, E.

E. Hamers, D. Schram, and R. Engeln, “Fourier transform phase shift cavity ring down spectroscopy,” Chem. Phys. Lett. 365, 237-243 (2002).
[CrossRef]

Hartmann, J.-M.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian Jr., K. V. Chance, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Häseler, R.

H.-P. Dorn, R. L. Apodaca, S. M. Ball, T. Brauers, S. S. Brown, R. C. Cohen, J. Crowley, W. P. Dube, J. Fry, H. Fuchs, R. Häseler, U. Heitmann, S. Kato, Y. Kajii, I. Labazan, J. Langridge, J. Matsumoto, J. Meinen, S. Nishida, U. Platt, D. Rollins, A. A. Ruth, E. Schlosser, G. Schuster, A. Shillings, W. Simpson, J. Thieser, R. M. Varma, D. S. Venables, A. Wahner, and P. Wooldridge, “Intercomparison of NO3 radical detection techniques in the atmosphere simulation chamber SAPHIR,” Atmos. Chem. Phys. Discuss. (2008), in preparation.

H. Fuchs, R. L. Apodaca, S. M. Ball, T. Brauers, S. S. Brown, R. C. Cohen, J. Crowley, H.-P. Dorn, W. P. Dube, J. Fry, R. Häseler, U. Heitmann, S. Kato, Y. Kajii, A. Kiendler-Scharr, I. Labazan, J. Matsumoto, J. Meinen, S. Nishida, U. Platt, F. Rohrer, A. A. Ruth, E. Schlosser, G. Schuster, A. Shillings, W. Simpson, J. Thieser, R. Tillmann, R. M. Varma, D. S. Venables, R. Wegener, and P. Wooldridge, “Intercomparison of different NO2 measurement techniques at the simulation chamber SAPHIR,” Atmos. Chem. Phys. Discuss. , in preparation.

Heard, D. E.

R. Sommariva, M. J. Pilling, W. J. Bloss, D. E. Heard, J. D. Lee, Z. L. Fleming, P. S. Monks, J. M. C. Plane, A. Saiz-Lopez, S. M. Ball, M. Bitter, R. L. Jones, N. Brough, S. A. Penkett, J. R. Hopkins, A. C. Lewis, and K. A. Read, “Night-time radical chemistry during the NAMBLEX campaign,” Atmos. Chem. Phys. 7, 587-598 (2007).
[CrossRef]

Heitmann, U.

H.-P. Dorn, R. L. Apodaca, S. M. Ball, T. Brauers, S. S. Brown, R. C. Cohen, J. Crowley, W. P. Dube, J. Fry, H. Fuchs, R. Häseler, U. Heitmann, S. Kato, Y. Kajii, I. Labazan, J. Langridge, J. Matsumoto, J. Meinen, S. Nishida, U. Platt, D. Rollins, A. A. Ruth, E. Schlosser, G. Schuster, A. Shillings, W. Simpson, J. Thieser, R. M. Varma, D. S. Venables, A. Wahner, and P. Wooldridge, “Intercomparison of NO3 radical detection techniques in the atmosphere simulation chamber SAPHIR,” Atmos. Chem. Phys. Discuss. (2008), in preparation.

H. Fuchs, R. L. Apodaca, S. M. Ball, T. Brauers, S. S. Brown, R. C. Cohen, J. Crowley, H.-P. Dorn, W. P. Dube, J. Fry, R. Häseler, U. Heitmann, S. Kato, Y. Kajii, A. Kiendler-Scharr, I. Labazan, J. Matsumoto, J. Meinen, S. Nishida, U. Platt, F. Rohrer, A. A. Ruth, E. Schlosser, G. Schuster, A. Shillings, W. Simpson, J. Thieser, R. Tillmann, R. M. Varma, D. S. Venables, R. Wegener, and P. Wooldridge, “Intercomparison of different NO2 measurement techniques at the simulation chamber SAPHIR,” Atmos. Chem. Phys. Discuss. , in preparation.

B. Welz, H. Becker-Ross, S. Florek, and U. Heitmann, High-Resolution Continuum Source AAS: The Better Way to Do Atomic Absorption Spectrometry (Wiley VCH, 2005).
[CrossRef]

Herriott, D. R.

Hese, A.

S. E. Fiedler, A. Hese, and A. A. Ruth, “Incoherent broadband cavity-enhanced absorption spectroscopy,” Chem. Phys. Lett. 371, 284-294 (2003).
[CrossRef]

Himmelmann, S.

J. P. Burrows, A. Dehn, B. Deters, S. Himmelmann, A. Richter, S. Voigt, and J. Orphal, “Atmospheric remote-sensing reference data from GOME: 1. Temperature-dependent absorption cross-sections of NO2 in the 231-794 nm range,” J. Quant. Spectrosc. Radiat. Trans. 60, 1025-1031 (1998).
[CrossRef]

Hopkins, J. R.

R. Sommariva, M. J. Pilling, W. J. Bloss, D. E. Heard, J. D. Lee, Z. L. Fleming, P. S. Monks, J. M. C. Plane, A. Saiz-Lopez, S. M. Ball, M. Bitter, R. L. Jones, N. Brough, S. A. Penkett, J. R. Hopkins, A. C. Lewis, and K. A. Read, “Night-time radical chemistry during the NAMBLEX campaign,” Atmos. Chem. Phys. 7, 587-598 (2007).
[CrossRef]

Hult, J.

Ide, T.

T. Nakayama, T. Ide, F. Taketani, M. Kawai, K. Takahashi, and Y. Matsumi, “Nighttime measurements of ambient N2O5, NO2, NO and O3 in a sub-urban area, Toyokawa, Japan,” Atmos. Environ. 42, 1995-2006 (2008).
[CrossRef]

Jacquemart, D.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian Jr., K. V. Chance, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Jones, R. J.

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311, 1595-1599 (2006).
[CrossRef] [PubMed]

Jones, R. L.

J. M. Langridge, T. Laurila, R. S. Watt, R. L. Jones, C. F. Kaminski, and J. Hult, “Cavity-enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source,” Opt. Express 16, 10178-10188 (2008).
[CrossRef] [PubMed]

R. Sommariva, M. J. Pilling, W. J. Bloss, D. E. Heard, J. D. Lee, Z. L. Fleming, P. S. Monks, J. M. C. Plane, A. Saiz-Lopez, S. M. Ball, M. Bitter, R. L. Jones, N. Brough, S. A. Penkett, J. R. Hopkins, A. C. Lewis, and K. A. Read, “Night-time radical chemistry during the NAMBLEX campaign,” Atmos. Chem. Phys. 7, 587-598 (2007).
[CrossRef]

J. M. Langridge, S. M. Ball, and R. L. Jones, “A compact broadband cavity enhanced absorption spectrometer for detection of atmospheric NO2,” Analyst (Amsterdam) 131, 916-922(2006).

M. Bitter, S. M. Ball, I. M. Povey, and R. L. Jones, “A broadband cavity ringdown spectrometer for in situ measurements of atmospheric trace gases,” Atmos. Chem. Phys. 5, 2547-2560 (2005).
[CrossRef]

S. M. Ball and R. L. Jones, “Broad-band cavity ring-down spectroscopy,” Chem. Rev. 103, 5239-5262 (2003).
[CrossRef] [PubMed]

S. M. Ball, I. M. Povey, E. G. Norton, and R. L. Jones, “Broadband cavity ringdown spectroscopy of the NO3 radical,” Chem. Phys. Lett. 342, 113-120 (2001).
[CrossRef]

Jones, R. M.

S. M. Ball, J. M. Langridge, and R. M. Jones, “Broadband cavity enhanced absorption spectroscopy using light emitting diodes,” Chem. Phys. Lett. 398, 68-74 (2004).
[CrossRef]

Jucks, K. W.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian Jr., K. V. Chance, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Kachanov, A. A.

B. A. Paldus and A. A. Kachanov, “An historical overview of cavity-enhanced methods,” Can. J. Phys. 83, 975-999 (2005).
[CrossRef]

Kajii, Y.

H.-P. Dorn, R. L. Apodaca, S. M. Ball, T. Brauers, S. S. Brown, R. C. Cohen, J. Crowley, W. P. Dube, J. Fry, H. Fuchs, R. Häseler, U. Heitmann, S. Kato, Y. Kajii, I. Labazan, J. Langridge, J. Matsumoto, J. Meinen, S. Nishida, U. Platt, D. Rollins, A. A. Ruth, E. Schlosser, G. Schuster, A. Shillings, W. Simpson, J. Thieser, R. M. Varma, D. S. Venables, A. Wahner, and P. Wooldridge, “Intercomparison of NO3 radical detection techniques in the atmosphere simulation chamber SAPHIR,” Atmos. Chem. Phys. Discuss. (2008), in preparation.

H. Fuchs, R. L. Apodaca, S. M. Ball, T. Brauers, S. S. Brown, R. C. Cohen, J. Crowley, H.-P. Dorn, W. P. Dube, J. Fry, R. Häseler, U. Heitmann, S. Kato, Y. Kajii, A. Kiendler-Scharr, I. Labazan, J. Matsumoto, J. Meinen, S. Nishida, U. Platt, F. Rohrer, A. A. Ruth, E. Schlosser, G. Schuster, A. Shillings, W. Simpson, J. Thieser, R. Tillmann, R. M. Varma, D. S. Venables, R. Wegener, and P. Wooldridge, “Intercomparison of different NO2 measurement techniques at the simulation chamber SAPHIR,” Atmos. Chem. Phys. Discuss. , in preparation.

Kaminski, C. F.

Karasinski, G.

A. Czyżewski, S. Chudzyński, K. Ernst, G. Karasiński, Ł. Kilianek, A. Pietruczuk, W. Skubiszak, T. Stacewicz, K. Stelmaszczyk, B. Koch, and P. Rairoux, “Cavity ring-down spectrography,” Opt. Commun. 191, 271-275 (2001).
[CrossRef]

Kassi, S.

Kato, S.

H.-P. Dorn, R. L. Apodaca, S. M. Ball, T. Brauers, S. S. Brown, R. C. Cohen, J. Crowley, W. P. Dube, J. Fry, H. Fuchs, R. Häseler, U. Heitmann, S. Kato, Y. Kajii, I. Labazan, J. Langridge, J. Matsumoto, J. Meinen, S. Nishida, U. Platt, D. Rollins, A. A. Ruth, E. Schlosser, G. Schuster, A. Shillings, W. Simpson, J. Thieser, R. M. Varma, D. S. Venables, A. Wahner, and P. Wooldridge, “Intercomparison of NO3 radical detection techniques in the atmosphere simulation chamber SAPHIR,” Atmos. Chem. Phys. Discuss. (2008), in preparation.

H. Fuchs, R. L. Apodaca, S. M. Ball, T. Brauers, S. S. Brown, R. C. Cohen, J. Crowley, H.-P. Dorn, W. P. Dube, J. Fry, R. Häseler, U. Heitmann, S. Kato, Y. Kajii, A. Kiendler-Scharr, I. Labazan, J. Matsumoto, J. Meinen, S. Nishida, U. Platt, F. Rohrer, A. A. Ruth, E. Schlosser, G. Schuster, A. Shillings, W. Simpson, J. Thieser, R. Tillmann, R. M. Varma, D. S. Venables, R. Wegener, and P. Wooldridge, “Intercomparison of different NO2 measurement techniques at the simulation chamber SAPHIR,” Atmos. Chem. Phys. Discuss. , in preparation.

Kawai, M.

T. Nakayama, T. Ide, F. Taketani, M. Kawai, K. Takahashi, and Y. Matsumi, “Nighttime measurements of ambient N2O5, NO2, NO and O3 in a sub-urban area, Toyokawa, Japan,” Atmos. Environ. 42, 1995-2006 (2008).
[CrossRef]

Kiendler-Scharr, A.

H. Fuchs, R. L. Apodaca, S. M. Ball, T. Brauers, S. S. Brown, R. C. Cohen, J. Crowley, H.-P. Dorn, W. P. Dube, J. Fry, R. Häseler, U. Heitmann, S. Kato, Y. Kajii, A. Kiendler-Scharr, I. Labazan, J. Matsumoto, J. Meinen, S. Nishida, U. Platt, F. Rohrer, A. A. Ruth, E. Schlosser, G. Schuster, A. Shillings, W. Simpson, J. Thieser, R. Tillmann, R. M. Varma, D. S. Venables, R. Wegener, and P. Wooldridge, “Intercomparison of different NO2 measurement techniques at the simulation chamber SAPHIR,” Atmos. Chem. Phys. Discuss. , in preparation.

Kilianek, L.

A. Czyżewski, S. Chudzyński, K. Ernst, G. Karasiński, Ł. Kilianek, A. Pietruczuk, W. Skubiszak, T. Stacewicz, K. Stelmaszczyk, B. Koch, and P. Rairoux, “Cavity ring-down spectrography,” Opt. Commun. 191, 271-275 (2001).
[CrossRef]

Koch, B.

A. Czyżewski, S. Chudzyński, K. Ernst, G. Karasiński, Ł. Kilianek, A. Pietruczuk, W. Skubiszak, T. Stacewicz, K. Stelmaszczyk, B. Koch, and P. Rairoux, “Cavity ring-down spectrography,” Opt. Commun. 191, 271-275 (2001).
[CrossRef]

Kraus, S. G.

S. G. Kraus, “DOASIS--A framework design for DOAS,” Ph.D. thesis (University of Mannheim, 2006).

Labazan, I.

H.-P. Dorn, R. L. Apodaca, S. M. Ball, T. Brauers, S. S. Brown, R. C. Cohen, J. Crowley, W. P. Dube, J. Fry, H. Fuchs, R. Häseler, U. Heitmann, S. Kato, Y. Kajii, I. Labazan, J. Langridge, J. Matsumoto, J. Meinen, S. Nishida, U. Platt, D. Rollins, A. A. Ruth, E. Schlosser, G. Schuster, A. Shillings, W. Simpson, J. Thieser, R. M. Varma, D. S. Venables, A. Wahner, and P. Wooldridge, “Intercomparison of NO3 radical detection techniques in the atmosphere simulation chamber SAPHIR,” Atmos. Chem. Phys. Discuss. (2008), in preparation.

G. Schuster, I. Labazan, and J. N. Crowley, “A cavity ring down/cavity enhanced absorption device for measurement of ambient NO3 and N2O5,” Atmos. Meas. Tech. Discuss. 1, 67-102 (2008).
[CrossRef]

H. Fuchs, R. L. Apodaca, S. M. Ball, T. Brauers, S. S. Brown, R. C. Cohen, J. Crowley, H.-P. Dorn, W. P. Dube, J. Fry, R. Häseler, U. Heitmann, S. Kato, Y. Kajii, A. Kiendler-Scharr, I. Labazan, J. Matsumoto, J. Meinen, S. Nishida, U. Platt, F. Rohrer, A. A. Ruth, E. Schlosser, G. Schuster, A. Shillings, W. Simpson, J. Thieser, R. Tillmann, R. M. Varma, D. S. Venables, R. Wegener, and P. Wooldridge, “Intercomparison of different NO2 measurement techniques at the simulation chamber SAPHIR,” Atmos. Chem. Phys. Discuss. , in preparation.

Lack, D.

T. Baynard, E. R. Lovejoy, A. Pettersson, S. S. Brown, D. Lack, H. Osthoff, P. Massoli, S. Ciciora, W. P. Dube, and A. R. Ravishankara, “Design and application of a pulsed cavity ring-down aerosol extinction spectrometer for field measurements,” Aerosol Sci. Technol. 41, 447-462 (2007).
[CrossRef]

Langford, A. O.

R. A. Washenfelder, A. O. Langford, H. Fuchs, and S. S. Brown, “Measurement of glyoxal using an incoherent broadband cavity enhanced absorption spectrometer,” Atmos. Chem. Phys. Discuss. 8, 16517-16553 (2008).
[CrossRef]

Langridge, J.

H.-P. Dorn, R. L. Apodaca, S. M. Ball, T. Brauers, S. S. Brown, R. C. Cohen, J. Crowley, W. P. Dube, J. Fry, H. Fuchs, R. Häseler, U. Heitmann, S. Kato, Y. Kajii, I. Labazan, J. Langridge, J. Matsumoto, J. Meinen, S. Nishida, U. Platt, D. Rollins, A. A. Ruth, E. Schlosser, G. Schuster, A. Shillings, W. Simpson, J. Thieser, R. M. Varma, D. S. Venables, A. Wahner, and P. Wooldridge, “Intercomparison of NO3 radical detection techniques in the atmosphere simulation chamber SAPHIR,” Atmos. Chem. Phys. Discuss. (2008), in preparation.

Langridge, J. M.

J. M. Langridge, T. Laurila, R. S. Watt, R. L. Jones, C. F. Kaminski, and J. Hult, “Cavity-enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source,” Opt. Express 16, 10178-10188 (2008).
[CrossRef] [PubMed]

J. M. Langridge, S. M. Ball, and R. L. Jones, “A compact broadband cavity enhanced absorption spectrometer for detection of atmospheric NO2,” Analyst (Amsterdam) 131, 916-922(2006).

S. M. Ball, J. M. Langridge, and R. M. Jones, “Broadband cavity enhanced absorption spectroscopy using light emitting diodes,” Chem. Phys. Lett. 398, 68-74 (2004).
[CrossRef]

Laurila, T.

Lee, J. D.

R. Sommariva, M. J. Pilling, W. J. Bloss, D. E. Heard, J. D. Lee, Z. L. Fleming, P. S. Monks, J. M. C. Plane, A. Saiz-Lopez, S. M. Ball, M. Bitter, R. L. Jones, N. Brough, S. A. Penkett, J. R. Hopkins, A. C. Lewis, and K. A. Read, “Night-time radical chemistry during the NAMBLEX campaign,” Atmos. Chem. Phys. 7, 587-598 (2007).
[CrossRef]

Levin, L.

F. Rohrer, D. Brüning, E. S. Grobler, M. Weber, D. H. Ehhalt, R. Neubert, W. Schübler, and L. Levin, “Mixing ratios and photostationary state of NO and NO2 observed during the POPCORN field campaign at a rural site in Germany,” J. Atmos. Chem. 31, 119-137 (1998).
[CrossRef]

Lewis, A. C.

R. Sommariva, M. J. Pilling, W. J. Bloss, D. E. Heard, J. D. Lee, Z. L. Fleming, P. S. Monks, J. M. C. Plane, A. Saiz-Lopez, S. M. Ball, M. Bitter, R. L. Jones, N. Brough, S. A. Penkett, J. R. Hopkins, A. C. Lewis, and K. A. Read, “Night-time radical chemistry during the NAMBLEX campaign,” Atmos. Chem. Phys. 7, 587-598 (2007).
[CrossRef]

Lovejoy, E. R.

T. Baynard, E. R. Lovejoy, A. Pettersson, S. S. Brown, D. Lack, H. Osthoff, P. Massoli, S. Ciciora, W. P. Dube, and A. R. Ravishankara, “Design and application of a pulsed cavity ring-down aerosol extinction spectrometer for field measurements,” Aerosol Sci. Technol. 41, 447-462 (2007).
[CrossRef]

Maki, A. G.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian Jr., K. V. Chance, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Mandin, J.-Y.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian Jr., K. V. Chance, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Marcus, G. A.

E. R. Crosson, P. Haar, G. A. Marcus, H. A. Schwettman, B. A. Paldus, T. G. Spence, and R. N. Zare, “Pulse-stacked cavity ring-down spectroscopy,” Rev. Sci. Instrum. 70, 4-10 (1999).
[CrossRef]

Massie, S.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian Jr., K. V. Chance, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Massoli, P.

T. Baynard, E. R. Lovejoy, A. Pettersson, S. S. Brown, D. Lack, H. Osthoff, P. Massoli, S. Ciciora, W. P. Dube, and A. R. Ravishankara, “Design and application of a pulsed cavity ring-down aerosol extinction spectrometer for field measurements,” Aerosol Sci. Technol. 41, 447-462 (2007).
[CrossRef]

Matsumi, Y.

T. Nakayama, T. Ide, F. Taketani, M. Kawai, K. Takahashi, and Y. Matsumi, “Nighttime measurements of ambient N2O5, NO2, NO and O3 in a sub-urban area, Toyokawa, Japan,” Atmos. Environ. 42, 1995-2006 (2008).
[CrossRef]

Matsumoto, J.

H.-P. Dorn, R. L. Apodaca, S. M. Ball, T. Brauers, S. S. Brown, R. C. Cohen, J. Crowley, W. P. Dube, J. Fry, H. Fuchs, R. Häseler, U. Heitmann, S. Kato, Y. Kajii, I. Labazan, J. Langridge, J. Matsumoto, J. Meinen, S. Nishida, U. Platt, D. Rollins, A. A. Ruth, E. Schlosser, G. Schuster, A. Shillings, W. Simpson, J. Thieser, R. M. Varma, D. S. Venables, A. Wahner, and P. Wooldridge, “Intercomparison of NO3 radical detection techniques in the atmosphere simulation chamber SAPHIR,” Atmos. Chem. Phys. Discuss. (2008), in preparation.

H. Fuchs, R. L. Apodaca, S. M. Ball, T. Brauers, S. S. Brown, R. C. Cohen, J. Crowley, H.-P. Dorn, W. P. Dube, J. Fry, R. Häseler, U. Heitmann, S. Kato, Y. Kajii, A. Kiendler-Scharr, I. Labazan, J. Matsumoto, J. Meinen, S. Nishida, U. Platt, F. Rohrer, A. A. Ruth, E. Schlosser, G. Schuster, A. Shillings, W. Simpson, J. Thieser, R. Tillmann, R. M. Varma, D. S. Venables, R. Wegener, and P. Wooldridge, “Intercomparison of different NO2 measurement techniques at the simulation chamber SAPHIR,” Atmos. Chem. Phys. Discuss. , in preparation.

McLaughlin, R. J.

W. P. Dubé, S. S. Brown, H. D. Osthoff, M. R. Nunley, S. J. Ciciora, M. W. Paris, R. J. McLaughlin, and A. R. Ravishankara, “Aircraft instrument for simultaneous, in situ measurement of NO3 and N2O5 via pulsed cavity ring-down spectroscopy,” Rev. Sci. Instrum. 77, 034101 (2006).
[CrossRef]

S. S. Brown, H. Stark, S. J. Ciciora, R. J. McLaughlin, and A. R. Ravishankara, “Simultaneous in situ detection of atmospheric NO3 and N2O5 via cavity ring-down spectroscopy,” Rev. Sci. Instrum. 73, 3291-3301 (2002).
[CrossRef]

Meinen, J.

H.-P. Dorn, R. L. Apodaca, S. M. Ball, T. Brauers, S. S. Brown, R. C. Cohen, J. Crowley, W. P. Dube, J. Fry, H. Fuchs, R. Häseler, U. Heitmann, S. Kato, Y. Kajii, I. Labazan, J. Langridge, J. Matsumoto, J. Meinen, S. Nishida, U. Platt, D. Rollins, A. A. Ruth, E. Schlosser, G. Schuster, A. Shillings, W. Simpson, J. Thieser, R. M. Varma, D. S. Venables, A. Wahner, and P. Wooldridge, “Intercomparison of NO3 radical detection techniques in the atmosphere simulation chamber SAPHIR,” Atmos. Chem. Phys. Discuss. (2008), in preparation.

H. Fuchs, R. L. Apodaca, S. M. Ball, T. Brauers, S. S. Brown, R. C. Cohen, J. Crowley, H.-P. Dorn, W. P. Dube, J. Fry, R. Häseler, U. Heitmann, S. Kato, Y. Kajii, A. Kiendler-Scharr, I. Labazan, J. Matsumoto, J. Meinen, S. Nishida, U. Platt, F. Rohrer, A. A. Ruth, E. Schlosser, G. Schuster, A. Shillings, W. Simpson, J. Thieser, R. Tillmann, R. M. Varma, D. S. Venables, R. Wegener, and P. Wooldridge, “Intercomparison of different NO2 measurement techniques at the simulation chamber SAPHIR,” Atmos. Chem. Phys. Discuss. , in preparation.

Méjean, G.

M. Triki, P. Cermak, G. Méjean, and D. Romanini, “Cavity-enhanced absorption spectroscopy with a red LED source for NOx trace analysis,” Appl. Phys. B 91, 195-201 (2008).
[CrossRef]

Miller, J. H.

A. R. Awtry and J. H. Miller, “Development of a cw-laser-based cavity-ringdown sensor aboard a spacecraft for trace air constituents,” Appl. Phys. B 75, 255-260 (2002).
[CrossRef]

Moll, K. D.

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311, 1595-1599 (2006).
[CrossRef] [PubMed]

Monks, P. S.

R. Sommariva, M. J. Pilling, W. J. Bloss, D. E. Heard, J. D. Lee, Z. L. Fleming, P. S. Monks, J. M. C. Plane, A. Saiz-Lopez, S. M. Ball, M. Bitter, R. L. Jones, N. Brough, S. A. Penkett, J. R. Hopkins, A. C. Lewis, and K. A. Read, “Night-time radical chemistry during the NAMBLEX campaign,” Atmos. Chem. Phys. 7, 587-598 (2007).
[CrossRef]

Moosmüller, H.

H. Moosmüller, R. Varma, and W. P. Arnott, “Cavity ring-down and cavity-enhanced detection techniques for the measurement of aerosol extinction,” Aerosol Sci. Technol. 39, 30-39 (2005).
[CrossRef]

Nakayama, T.

T. Nakayama, T. Ide, F. Taketani, M. Kawai, K. Takahashi, and Y. Matsumi, “Nighttime measurements of ambient N2O5, NO2, NO and O3 in a sub-urban area, Toyokawa, Japan,” Atmos. Environ. 42, 1995-2006 (2008).
[CrossRef]

Neubert, R.

F. Rohrer, D. Brüning, E. S. Grobler, M. Weber, D. H. Ehhalt, R. Neubert, W. Schübler, and L. Levin, “Mixing ratios and photostationary state of NO and NO2 observed during the POPCORN field campaign at a rural site in Germany,” J. Atmos. Chem. 31, 119-137 (1998).
[CrossRef]

Nicks, D. K.

S. S. Brown, H. Stark, T. B. Ryerson, E. J. Williams, D. K. Nicks, Jr., M. Trainer, F. C. Fehsenfeld, and A. R. Ravishankara, “Nitrogen oxides in the nocturnal boundary layer: Simultaneous in situ measurements of NO3, N2O5, NO2, NO, and O3,” J. Geophys. Res. 108(D9), 4299 (2003).
[CrossRef]

Nishida, S.

H.-P. Dorn, R. L. Apodaca, S. M. Ball, T. Brauers, S. S. Brown, R. C. Cohen, J. Crowley, W. P. Dube, J. Fry, H. Fuchs, R. Häseler, U. Heitmann, S. Kato, Y. Kajii, I. Labazan, J. Langridge, J. Matsumoto, J. Meinen, S. Nishida, U. Platt, D. Rollins, A. A. Ruth, E. Schlosser, G. Schuster, A. Shillings, W. Simpson, J. Thieser, R. M. Varma, D. S. Venables, A. Wahner, and P. Wooldridge, “Intercomparison of NO3 radical detection techniques in the atmosphere simulation chamber SAPHIR,” Atmos. Chem. Phys. Discuss. (2008), in preparation.

H. Fuchs, R. L. Apodaca, S. M. Ball, T. Brauers, S. S. Brown, R. C. Cohen, J. Crowley, H.-P. Dorn, W. P. Dube, J. Fry, R. Häseler, U. Heitmann, S. Kato, Y. Kajii, A. Kiendler-Scharr, I. Labazan, J. Matsumoto, J. Meinen, S. Nishida, U. Platt, F. Rohrer, A. A. Ruth, E. Schlosser, G. Schuster, A. Shillings, W. Simpson, J. Thieser, R. Tillmann, R. M. Varma, D. S. Venables, R. Wegener, and P. Wooldridge, “Intercomparison of different NO2 measurement techniques at the simulation chamber SAPHIR,” Atmos. Chem. Phys. Discuss. , in preparation.

Norton, E. G.

S. M. Ball, I. M. Povey, E. G. Norton, and R. L. Jones, “Broadband cavity ringdown spectroscopy of the NO3 radical,” Chem. Phys. Lett. 342, 113-120 (2001).
[CrossRef]

Nunley, M. R.

W. P. Dubé, S. S. Brown, H. D. Osthoff, M. R. Nunley, S. J. Ciciora, M. W. Paris, R. J. McLaughlin, and A. R. Ravishankara, “Aircraft instrument for simultaneous, in situ measurement of NO3 and N2O5 via pulsed cavity ring-down spectroscopy,” Rev. Sci. Instrum. 77, 034101 (2006).
[CrossRef]

Orphal, J.

S. Vaughan, T. Gherman, A. A. Ruth, and J. Orphal, “Incoherent broadband cavity-enhanced absorption spectroscopy of the marine boundary layer species I2, IO and OIO,” Phys. Chem. Chem. Phys. 10, 4471-4477 (2008).
[CrossRef] [PubMed]

T. Gherman, D. S. Venables, S. Vaughan, J. Orphal, and A. A. Ruth, “Incoherent broadband cavity enhanced absorption spectroscopy in the near-ultaviolet: application to HONO and NO2,” Environ. Sci. Technol. 42, 890-895 (2008).
[CrossRef] [PubMed]

A. A. Ruth, J. Orphal, and S. E. Fiedler, “Fourier-transform cavity-enhanced absorption spectroscopy using an incoherent broadband light source,” Appl. Opt. 46, 3611-3616 (2007).
[CrossRef] [PubMed]

D. S. Venables, T. Gherman, J. Orphal, J. Wenger, and A. A. Ruth, “High sensitivity in situ monitoring of NO3 in an atmospheric simulation chamber using incoherent broadband cavity-enhanced absorption spectroscopy,” Environ. Sci. Technol. 40, 6758-6763 (2006).
[CrossRef] [PubMed]

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian Jr., K. V. Chance, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

J. Orphal, C. E. Fellows, and P. M. Flaud, “The visible absorption spectrum of NO3 measured by high-resolution Fourier transform spectroscopy,” J. Geophys. Res. 108(D3), 4077-4087 (2003).
[CrossRef]

J. P. Burrows, A. Dehn, B. Deters, S. Himmelmann, A. Richter, S. Voigt, and J. Orphal, “Atmospheric remote-sensing reference data from GOME: 1. Temperature-dependent absorption cross-sections of NO2 in the 231-794 nm range,” J. Quant. Spectrosc. Radiat. Trans. 60, 1025-1031 (1998).
[CrossRef]

Orphal, J. P.

S. Voigt, J. P. Orphal, and J. P. Burrows, “The temperature and pressure dependence of the absorption cross sections of NO2 in the 250-800 nm region measured by Fourier-transform spectroscopy,” J. Photochem. Photobiol. A 149, 1-7 (2002).
[CrossRef]

Orr-Ewing, A. J.

R. Wada, J. M. Beames, and A. J. Orr-Ewing, “Measurement of IO radical concentrations in the marine boundary layer using a cavity ring-down spectrometer,” J. Atmos. Chem. 58, 69-87 (2007).
[CrossRef]

Osthoff, H.

T. Baynard, E. R. Lovejoy, A. Pettersson, S. S. Brown, D. Lack, H. Osthoff, P. Massoli, S. Ciciora, W. P. Dube, and A. R. Ravishankara, “Design and application of a pulsed cavity ring-down aerosol extinction spectrometer for field measurements,” Aerosol Sci. Technol. 41, 447-462 (2007).
[CrossRef]

Osthoff, H. D.

S. S. Brown, W. P. Dubé, H. D. Osthoff, D. E. Wolfe, W. M. Angevine, and A. R. Ravishankara, “High resolution vertical distributions of NO3 and N2O5 through the nocturnal boundary layer,” Atmos. Chem. Phys. 7, 139-149 (2007).
[CrossRef]

W. P. Dubé, S. S. Brown, H. D. Osthoff, M. R. Nunley, S. J. Ciciora, M. W. Paris, R. J. McLaughlin, and A. R. Ravishankara, “Aircraft instrument for simultaneous, in situ measurement of NO3 and N2O5 via pulsed cavity ring-down spectroscopy,” Rev. Sci. Instrum. 77, 034101 (2006).
[CrossRef]

S. S. Brown, H. D. Osthoff, H. Stark, W. P. Dube, T. B. Ryerson, C. Warneke, J. A. DeGouw, A. G. Wollny, D. D. Parrish, F. C. Fehsenfeld, and A. R. Ravishankara, “Aircraft observations of daytime NO3 and N2O5 and their implications for tropospheric chemistry,” J. Photochem. Photobiol., A 176, 270-278 (2005).
[CrossRef]

Ouvrard, A.

Paldus, B. A.

B. A. Paldus and A. A. Kachanov, “An historical overview of cavity-enhanced methods,” Can. J. Phys. 83, 975-999 (2005).
[CrossRef]

E. R. Crosson, P. Haar, G. A. Marcus, H. A. Schwettman, B. A. Paldus, T. G. Spence, and R. N. Zare, “Pulse-stacked cavity ring-down spectroscopy,” Rev. Sci. Instrum. 70, 4-10 (1999).
[CrossRef]

Paris, M. W.

W. P. Dubé, S. S. Brown, H. D. Osthoff, M. R. Nunley, S. J. Ciciora, M. W. Paris, R. J. McLaughlin, and A. R. Ravishankara, “Aircraft instrument for simultaneous, in situ measurement of NO3 and N2O5 via pulsed cavity ring-down spectroscopy,” Rev. Sci. Instrum. 77, 034101 (2006).
[CrossRef]

Parrish, D. D.

S. S. Brown, H. D. Osthoff, H. Stark, W. P. Dube, T. B. Ryerson, C. Warneke, J. A. DeGouw, A. G. Wollny, D. D. Parrish, F. C. Fehsenfeld, and A. R. Ravishankara, “Aircraft observations of daytime NO3 and N2O5 and their implications for tropospheric chemistry,” J. Photochem. Photobiol., A 176, 270-278 (2005).
[CrossRef]

Penkett, S. A.

R. Sommariva, M. J. Pilling, W. J. Bloss, D. E. Heard, J. D. Lee, Z. L. Fleming, P. S. Monks, J. M. C. Plane, A. Saiz-Lopez, S. M. Ball, M. Bitter, R. L. Jones, N. Brough, S. A. Penkett, J. R. Hopkins, A. C. Lewis, and K. A. Read, “Night-time radical chemistry during the NAMBLEX campaign,” Atmos. Chem. Phys. 7, 587-598 (2007).
[CrossRef]

Perrin, A.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian Jr., K. V. Chance, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Pettersson, A.

T. Baynard, E. R. Lovejoy, A. Pettersson, S. S. Brown, D. Lack, H. Osthoff, P. Massoli, S. Ciciora, W. P. Dube, and A. R. Ravishankara, “Design and application of a pulsed cavity ring-down aerosol extinction spectrometer for field measurements,” Aerosol Sci. Technol. 41, 447-462 (2007).
[CrossRef]

Pietruczuk, A.

A. Czyżewski, S. Chudzyński, K. Ernst, G. Karasiński, Ł. Kilianek, A. Pietruczuk, W. Skubiszak, T. Stacewicz, K. Stelmaszczyk, B. Koch, and P. Rairoux, “Cavity ring-down spectrography,” Opt. Commun. 191, 271-275 (2001).
[CrossRef]

Pilling, M. J.

R. Sommariva, M. J. Pilling, W. J. Bloss, D. E. Heard, J. D. Lee, Z. L. Fleming, P. S. Monks, J. M. C. Plane, A. Saiz-Lopez, S. M. Ball, M. Bitter, R. L. Jones, N. Brough, S. A. Penkett, J. R. Hopkins, A. C. Lewis, and K. A. Read, “Night-time radical chemistry during the NAMBLEX campaign,” Atmos. Chem. Phys. 7, 587-598 (2007).
[CrossRef]

Plane, J. M. C.

R. Sommariva, M. J. Pilling, W. J. Bloss, D. E. Heard, J. D. Lee, Z. L. Fleming, P. S. Monks, J. M. C. Plane, A. Saiz-Lopez, S. M. Ball, M. Bitter, R. L. Jones, N. Brough, S. A. Penkett, J. R. Hopkins, A. C. Lewis, and K. A. Read, “Night-time radical chemistry during the NAMBLEX campaign,” Atmos. Chem. Phys. 7, 587-598 (2007).
[CrossRef]

Platt, U.

H.-P. Dorn, R. L. Apodaca, S. M. Ball, T. Brauers, S. S. Brown, R. C. Cohen, J. Crowley, W. P. Dube, J. Fry, H. Fuchs, R. Häseler, U. Heitmann, S. Kato, Y. Kajii, I. Labazan, J. Langridge, J. Matsumoto, J. Meinen, S. Nishida, U. Platt, D. Rollins, A. A. Ruth, E. Schlosser, G. Schuster, A. Shillings, W. Simpson, J. Thieser, R. M. Varma, D. S. Venables, A. Wahner, and P. Wooldridge, “Intercomparison of NO3 radical detection techniques in the atmosphere simulation chamber SAPHIR,” Atmos. Chem. Phys. Discuss. (2008), in preparation.

U. Platt, “Modern methods of the measurement of atmospheric trace gases,” Phys. Chem. Chem. Phys. 1, 5409-5415(1999).
[CrossRef]

H. Fuchs, R. L. Apodaca, S. M. Ball, T. Brauers, S. S. Brown, R. C. Cohen, J. Crowley, H.-P. Dorn, W. P. Dube, J. Fry, R. Häseler, U. Heitmann, S. Kato, Y. Kajii, A. Kiendler-Scharr, I. Labazan, J. Matsumoto, J. Meinen, S. Nishida, U. Platt, F. Rohrer, A. A. Ruth, E. Schlosser, G. Schuster, A. Shillings, W. Simpson, J. Thieser, R. Tillmann, R. M. Varma, D. S. Venables, R. Wegener, and P. Wooldridge, “Intercomparison of different NO2 measurement techniques at the simulation chamber SAPHIR,” Atmos. Chem. Phys. Discuss. , in preparation.

Povey, I. M.

M. Bitter, S. M. Ball, I. M. Povey, and R. L. Jones, “A broadband cavity ringdown spectrometer for in situ measurements of atmospheric trace gases,” Atmos. Chem. Phys. 5, 2547-2560 (2005).
[CrossRef]

S. M. Ball, I. M. Povey, E. G. Norton, and R. L. Jones, “Broadband cavity ringdown spectroscopy of the NO3 radical,” Chem. Phys. Lett. 342, 113-120 (2001).
[CrossRef]

Press, W. H.

W. H. Press, T. S. Flannery, and W. T. Vetterling, Numerical Recipes: The Art of Scientific Computing (Cambridge U. Press, 1986), pp. 51 and 670.

Rairoux, P.

A. Czyżewski, S. Chudzyński, K. Ernst, G. Karasiński, Ł. Kilianek, A. Pietruczuk, W. Skubiszak, T. Stacewicz, K. Stelmaszczyk, B. Koch, and P. Rairoux, “Cavity ring-down spectrography,” Opt. Commun. 191, 271-275 (2001).
[CrossRef]

Ravishankara, A. R.

S. S. Brown, W. P. Dubé, H. D. Osthoff, D. E. Wolfe, W. M. Angevine, and A. R. Ravishankara, “High resolution vertical distributions of NO3 and N2O5 through the nocturnal boundary layer,” Atmos. Chem. Phys. 7, 139-149 (2007).
[CrossRef]

T. Baynard, E. R. Lovejoy, A. Pettersson, S. S. Brown, D. Lack, H. Osthoff, P. Massoli, S. Ciciora, W. P. Dube, and A. R. Ravishankara, “Design and application of a pulsed cavity ring-down aerosol extinction spectrometer for field measurements,” Aerosol Sci. Technol. 41, 447-462 (2007).
[CrossRef]

W. P. Dubé, S. S. Brown, H. D. Osthoff, M. R. Nunley, S. J. Ciciora, M. W. Paris, R. J. McLaughlin, and A. R. Ravishankara, “Aircraft instrument for simultaneous, in situ measurement of NO3 and N2O5 via pulsed cavity ring-down spectroscopy,” Rev. Sci. Instrum. 77, 034101 (2006).
[CrossRef]

S. S. Brown, H. D. Osthoff, H. Stark, W. P. Dube, T. B. Ryerson, C. Warneke, J. A. DeGouw, A. G. Wollny, D. D. Parrish, F. C. Fehsenfeld, and A. R. Ravishankara, “Aircraft observations of daytime NO3 and N2O5 and their implications for tropospheric chemistry,” J. Photochem. Photobiol., A 176, 270-278 (2005).
[CrossRef]

S. S. Brown, H. Stark, and A. R. Ravishankara, “Applicability of the steady state approximation to the interpretation of atmospheric observations of NO3 and N2O5,” J. Geophys. Res. 108(D17), 4539 (2003).
[CrossRef]

S. S. Brown, H. Stark, T. B. Ryerson, E. J. Williams, D. K. Nicks, Jr., M. Trainer, F. C. Fehsenfeld, and A. R. Ravishankara, “Nitrogen oxides in the nocturnal boundary layer: Simultaneous in situ measurements of NO3, N2O5, NO2, NO, and O3,” J. Geophys. Res. 108(D9), 4299 (2003).
[CrossRef]

S. S. Brown, H. Stark, and A. R. Ravishankara, “Cavity ring-down spectroscopy for atmospheric trace gas detection: application to the nitrate radical (NO3),” Appl. Phys. B 75, 173-182 (2002).
[CrossRef]

S. S. Brown, H. Stark, S. J. Ciciora, R. J. McLaughlin, and A. R. Ravishankara, “Simultaneous in situ detection of atmospheric NO3 and N2O5 via cavity ring-down spectroscopy,” Rev. Sci. Instrum. 73, 3291-3301 (2002).
[CrossRef]

R. J. Yokelson, J. B. Burkholder, R. W. Fox, R. K. Talukdar, and A. R. Ravishankara, “Temperature dependence of the NO3 absorption spectrum,” J. Phys. Chem. 98, 13144-13150 (1994).
[CrossRef]

Read, K. A.

R. Sommariva, M. J. Pilling, W. J. Bloss, D. E. Heard, J. D. Lee, Z. L. Fleming, P. S. Monks, J. M. C. Plane, A. Saiz-Lopez, S. M. Ball, M. Bitter, R. L. Jones, N. Brough, S. A. Penkett, J. R. Hopkins, A. C. Lewis, and K. A. Read, “Night-time radical chemistry during the NAMBLEX campaign,” Atmos. Chem. Phys. 7, 587-598 (2007).
[CrossRef]

Richter, A.

J. P. Burrows, A. Dehn, B. Deters, S. Himmelmann, A. Richter, S. Voigt, and J. Orphal, “Atmospheric remote-sensing reference data from GOME: 1. Temperature-dependent absorption cross-sections of NO2 in the 231-794 nm range,” J. Quant. Spectrosc. Radiat. Trans. 60, 1025-1031 (1998).
[CrossRef]

Richter, C.

J. Bossmeyer, T. Brauers, C. Richter, F. Rohrer, R. Wegener, and A. Wahner, “Simulation chamber studies on the NO3 chemistry of atmospheric aldehydes,” Geophys. Res. Lett. 33, L18810 (2006).
[CrossRef]

Rinsland, C. P.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian Jr., K. V. Chance, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Rohrer, F.

J. Bossmeyer, T. Brauers, C. Richter, F. Rohrer, R. Wegener, and A. Wahner, “Simulation chamber studies on the NO3 chemistry of atmospheric aldehydes,” Geophys. Res. Lett. 33, L18810 (2006).
[CrossRef]

F. Rohrer, D. Brüning, E. S. Grobler, M. Weber, D. H. Ehhalt, R. Neubert, W. Schübler, and L. Levin, “Mixing ratios and photostationary state of NO and NO2 observed during the POPCORN field campaign at a rural site in Germany,” J. Atmos. Chem. 31, 119-137 (1998).
[CrossRef]

H. Fuchs, R. L. Apodaca, S. M. Ball, T. Brauers, S. S. Brown, R. C. Cohen, J. Crowley, H.-P. Dorn, W. P. Dube, J. Fry, R. Häseler, U. Heitmann, S. Kato, Y. Kajii, A. Kiendler-Scharr, I. Labazan, J. Matsumoto, J. Meinen, S. Nishida, U. Platt, F. Rohrer, A. A. Ruth, E. Schlosser, G. Schuster, A. Shillings, W. Simpson, J. Thieser, R. Tillmann, R. M. Varma, D. S. Venables, R. Wegener, and P. Wooldridge, “Intercomparison of different NO2 measurement techniques at the simulation chamber SAPHIR,” Atmos. Chem. Phys. Discuss. , in preparation.

Rollins, D.

H.-P. Dorn, R. L. Apodaca, S. M. Ball, T. Brauers, S. S. Brown, R. C. Cohen, J. Crowley, W. P. Dube, J. Fry, H. Fuchs, R. Häseler, U. Heitmann, S. Kato, Y. Kajii, I. Labazan, J. Langridge, J. Matsumoto, J. Meinen, S. Nishida, U. Platt, D. Rollins, A. A. Ruth, E. Schlosser, G. Schuster, A. Shillings, W. Simpson, J. Thieser, R. M. Varma, D. S. Venables, A. Wahner, and P. Wooldridge, “Intercomparison of NO3 radical detection techniques in the atmosphere simulation chamber SAPHIR,” Atmos. Chem. Phys. Discuss. (2008), in preparation.

Romanini, D.

Rothman, L. S.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian Jr., K. V. Chance, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Rouillard, Y.

Ruth, A. A.

H.-P. Dorn, R. L. Apodaca, S. M. Ball, T. Brauers, S. S. Brown, R. C. Cohen, J. Crowley, W. P. Dube, J. Fry, H. Fuchs, R. Häseler, U. Heitmann, S. Kato, Y. Kajii, I. Labazan, J. Langridge, J. Matsumoto, J. Meinen, S. Nishida, U. Platt, D. Rollins, A. A. Ruth, E. Schlosser, G. Schuster, A. Shillings, W. Simpson, J. Thieser, R. M. Varma, D. S. Venables, A. Wahner, and P. Wooldridge, “Intercomparison of NO3 radical detection techniques in the atmosphere simulation chamber SAPHIR,” Atmos. Chem. Phys. Discuss. (2008), in preparation.

T. Gherman, D. S. Venables, S. Vaughan, J. Orphal, and A. A. Ruth, “Incoherent broadband cavity enhanced absorption spectroscopy in the near-ultaviolet: application to HONO and NO2,” Environ. Sci. Technol. 42, 890-895 (2008).
[CrossRef] [PubMed]

S. Vaughan, T. Gherman, A. A. Ruth, and J. Orphal, “Incoherent broadband cavity-enhanced absorption spectroscopy of the marine boundary layer species I2, IO and OIO,” Phys. Chem. Chem. Phys. 10, 4471-4477 (2008).
[CrossRef] [PubMed]

A. A. Ruth, J. Orphal, and S. E. Fiedler, “Fourier-transform cavity-enhanced absorption spectroscopy using an incoherent broadband light source,” Appl. Opt. 46, 3611-3616 (2007).
[CrossRef] [PubMed]

D. S. Venables, T. Gherman, J. Orphal, J. Wenger, and A. A. Ruth, “High sensitivity in situ monitoring of NO3 in an atmospheric simulation chamber using incoherent broadband cavity-enhanced absorption spectroscopy,” Environ. Sci. Technol. 40, 6758-6763 (2006).
[CrossRef] [PubMed]

S. E. Fiedler, A. Hese, and A. A. Ruth, “Incoherent broadband cavity-enhanced absorption spectroscopy,” Chem. Phys. Lett. 371, 284-294 (2003).
[CrossRef]

H. Fuchs, R. L. Apodaca, S. M. Ball, T. Brauers, S. S. Brown, R. C. Cohen, J. Crowley, H.-P. Dorn, W. P. Dube, J. Fry, R. Häseler, U. Heitmann, S. Kato, Y. Kajii, A. Kiendler-Scharr, I. Labazan, J. Matsumoto, J. Meinen, S. Nishida, U. Platt, F. Rohrer, A. A. Ruth, E. Schlosser, G. Schuster, A. Shillings, W. Simpson, J. Thieser, R. Tillmann, R. M. Varma, D. S. Venables, R. Wegener, and P. Wooldridge, “Intercomparison of different NO2 measurement techniques at the simulation chamber SAPHIR,” Atmos. Chem. Phys. Discuss. , in preparation.

Ryerson, T. B.

S. S. Brown, H. D. Osthoff, H. Stark, W. P. Dube, T. B. Ryerson, C. Warneke, J. A. DeGouw, A. G. Wollny, D. D. Parrish, F. C. Fehsenfeld, and A. R. Ravishankara, “Aircraft observations of daytime NO3 and N2O5 and their implications for tropospheric chemistry,” J. Photochem. Photobiol., A 176, 270-278 (2005).
[CrossRef]

S. S. Brown, H. Stark, T. B. Ryerson, E. J. Williams, D. K. Nicks, Jr., M. Trainer, F. C. Fehsenfeld, and A. R. Ravishankara, “Nitrogen oxides in the nocturnal boundary layer: Simultaneous in situ measurements of NO3, N2O5, NO2, NO, and O3,” J. Geophys. Res. 108(D9), 4299 (2003).
[CrossRef]

Safdi, B.

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311, 1595-1599 (2006).
[CrossRef] [PubMed]

Saiz-Lopez, A.

R. Sommariva, M. J. Pilling, W. J. Bloss, D. E. Heard, J. D. Lee, Z. L. Fleming, P. S. Monks, J. M. C. Plane, A. Saiz-Lopez, S. M. Ball, M. Bitter, R. L. Jones, N. Brough, S. A. Penkett, J. R. Hopkins, A. C. Lewis, and K. A. Read, “Night-time radical chemistry during the NAMBLEX campaign,” Atmos. Chem. Phys. 7, 587-598 (2007).
[CrossRef]

Salhi, A.

Scherer, J. J.

J. J. Scherer, “Ringdown spectral photography,” Chem. Phys. Lett. 292, 143-153 (1998).
[CrossRef]

Schlosser, E.

H.-P. Dorn, R. L. Apodaca, S. M. Ball, T. Brauers, S. S. Brown, R. C. Cohen, J. Crowley, W. P. Dube, J. Fry, H. Fuchs, R. Häseler, U. Heitmann, S. Kato, Y. Kajii, I. Labazan, J. Langridge, J. Matsumoto, J. Meinen, S. Nishida, U. Platt, D. Rollins, A. A. Ruth, E. Schlosser, G. Schuster, A. Shillings, W. Simpson, J. Thieser, R. M. Varma, D. S. Venables, A. Wahner, and P. Wooldridge, “Intercomparison of NO3 radical detection techniques in the atmosphere simulation chamber SAPHIR,” Atmos. Chem. Phys. Discuss. (2008), in preparation.

T. Brauers, J. Bossmeyer, H.-P. Dorn, E. Schlosser, R. Tillmann, R. Wegener, and A. Wahner, “Investigation of the formaldehyde differential absorption cross section at high and low spectral resolution in the simulation chamber SAPHIR,” Atmos. Chem. Phys. 7, 3579-3586 (2007).
[CrossRef]

H. Fuchs, R. L. Apodaca, S. M. Ball, T. Brauers, S. S. Brown, R. C. Cohen, J. Crowley, H.-P. Dorn, W. P. Dube, J. Fry, R. Häseler, U. Heitmann, S. Kato, Y. Kajii, A. Kiendler-Scharr, I. Labazan, J. Matsumoto, J. Meinen, S. Nishida, U. Platt, F. Rohrer, A. A. Ruth, E. Schlosser, G. Schuster, A. Shillings, W. Simpson, J. Thieser, R. Tillmann, R. M. Varma, D. S. Venables, R. Wegener, and P. Wooldridge, “Intercomparison of different NO2 measurement techniques at the simulation chamber SAPHIR,” Atmos. Chem. Phys. Discuss. , in preparation.

Schram, D.

E. Hamers, D. Schram, and R. Engeln, “Fourier transform phase shift cavity ring down spectroscopy,” Chem. Phys. Lett. 365, 237-243 (2002).
[CrossRef]

Schübler, W.

F. Rohrer, D. Brüning, E. S. Grobler, M. Weber, D. H. Ehhalt, R. Neubert, W. Schübler, and L. Levin, “Mixing ratios and photostationary state of NO and NO2 observed during the POPCORN field campaign at a rural site in Germany,” J. Atmos. Chem. 31, 119-137 (1998).
[CrossRef]

Schulte, H. J.

Schuster, G.

G. Schuster, I. Labazan, and J. N. Crowley, “A cavity ring down/cavity enhanced absorption device for measurement of ambient NO3 and N2O5,” Atmos. Meas. Tech. Discuss. 1, 67-102 (2008).
[CrossRef]

H.-P. Dorn, R. L. Apodaca, S. M. Ball, T. Brauers, S. S. Brown, R. C. Cohen, J. Crowley, W. P. Dube, J. Fry, H. Fuchs, R. Häseler, U. Heitmann, S. Kato, Y. Kajii, I. Labazan, J. Langridge, J. Matsumoto, J. Meinen, S. Nishida, U. Platt, D. Rollins, A. A. Ruth, E. Schlosser, G. Schuster, A. Shillings, W. Simpson, J. Thieser, R. M. Varma, D. S. Venables, A. Wahner, and P. Wooldridge, “Intercomparison of NO3 radical detection techniques in the atmosphere simulation chamber SAPHIR,” Atmos. Chem. Phys. Discuss. (2008), in preparation.

H. Fuchs, R. L. Apodaca, S. M. Ball, T. Brauers, S. S. Brown, R. C. Cohen, J. Crowley, H.-P. Dorn, W. P. Dube, J. Fry, R. Häseler, U. Heitmann, S. Kato, Y. Kajii, A. Kiendler-Scharr, I. Labazan, J. Matsumoto, J. Meinen, S. Nishida, U. Platt, F. Rohrer, A. A. Ruth, E. Schlosser, G. Schuster, A. Shillings, W. Simpson, J. Thieser, R. Tillmann, R. M. Varma, D. S. Venables, R. Wegener, and P. Wooldridge, “Intercomparison of different NO2 measurement techniques at the simulation chamber SAPHIR,” Atmos. Chem. Phys. Discuss. , in preparation.

Schwettman, H. A.

E. R. Crosson, P. Haar, G. A. Marcus, H. A. Schwettman, B. A. Paldus, T. G. Spence, and R. N. Zare, “Pulse-stacked cavity ring-down spectroscopy,” Rev. Sci. Instrum. 70, 4-10 (1999).
[CrossRef]

Shillings, A.

H.-P. Dorn, R. L. Apodaca, S. M. Ball, T. Brauers, S. S. Brown, R. C. Cohen, J. Crowley, W. P. Dube, J. Fry, H. Fuchs, R. Häseler, U. Heitmann, S. Kato, Y. Kajii, I. Labazan, J. Langridge, J. Matsumoto, J. Meinen, S. Nishida, U. Platt, D. Rollins, A. A. Ruth, E. Schlosser, G. Schuster, A. Shillings, W. Simpson, J. Thieser, R. M. Varma, D. S. Venables, A. Wahner, and P. Wooldridge, “Intercomparison of NO3 radical detection techniques in the atmosphere simulation chamber SAPHIR,” Atmos. Chem. Phys. Discuss. (2008), in preparation.

H. Fuchs, R. L. Apodaca, S. M. Ball, T. Brauers, S. S. Brown, R. C. Cohen, J. Crowley, H.-P. Dorn, W. P. Dube, J. Fry, R. Häseler, U. Heitmann, S. Kato, Y. Kajii, A. Kiendler-Scharr, I. Labazan, J. Matsumoto, J. Meinen, S. Nishida, U. Platt, F. Rohrer, A. A. Ruth, E. Schlosser, G. Schuster, A. Shillings, W. Simpson, J. Thieser, R. Tillmann, R. M. Varma, D. S. Venables, R. Wegener, and P. Wooldridge, “Intercomparison of different NO2 measurement techniques at the simulation chamber SAPHIR,” Atmos. Chem. Phys. Discuss. , in preparation.

Simpson, W.

H.-P. Dorn, R. L. Apodaca, S. M. Ball, T. Brauers, S. S. Brown, R. C. Cohen, J. Crowley, W. P. Dube, J. Fry, H. Fuchs, R. Häseler, U. Heitmann, S. Kato, Y. Kajii, I. Labazan, J. Langridge, J. Matsumoto, J. Meinen, S. Nishida, U. Platt, D. Rollins, A. A. Ruth, E. Schlosser, G. Schuster, A. Shillings, W. Simpson, J. Thieser, R. M. Varma, D. S. Venables, A. Wahner, and P. Wooldridge, “Intercomparison of NO3 radical detection techniques in the atmosphere simulation chamber SAPHIR,” Atmos. Chem. Phys. Discuss. (2008), in preparation.

H. Fuchs, R. L. Apodaca, S. M. Ball, T. Brauers, S. S. Brown, R. C. Cohen, J. Crowley, H.-P. Dorn, W. P. Dube, J. Fry, R. Häseler, U. Heitmann, S. Kato, Y. Kajii, A. Kiendler-Scharr, I. Labazan, J. Matsumoto, J. Meinen, S. Nishida, U. Platt, F. Rohrer, A. A. Ruth, E. Schlosser, G. Schuster, A. Shillings, W. Simpson, J. Thieser, R. Tillmann, R. M. Varma, D. S. Venables, R. Wegener, and P. Wooldridge, “Intercomparison of different NO2 measurement techniques at the simulation chamber SAPHIR,” Atmos. Chem. Phys. Discuss. , in preparation.

Simpson, W. R.

Skubiszak, W.

A. Czyżewski, S. Chudzyński, K. Ernst, G. Karasiński, Ł. Kilianek, A. Pietruczuk, W. Skubiszak, T. Stacewicz, K. Stelmaszczyk, B. Koch, and P. Rairoux, “Cavity ring-down spectrography,” Opt. Commun. 191, 271-275 (2001).
[CrossRef]

Smith, M. A. H.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian Jr., K. V. Chance, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Sommariva, R.

R. Sommariva, M. J. Pilling, W. J. Bloss, D. E. Heard, J. D. Lee, Z. L. Fleming, P. S. Monks, J. M. C. Plane, A. Saiz-Lopez, S. M. Ball, M. Bitter, R. L. Jones, N. Brough, S. A. Penkett, J. R. Hopkins, A. C. Lewis, and K. A. Read, “Night-time radical chemistry during the NAMBLEX campaign,” Atmos. Chem. Phys. 7, 587-598 (2007).
[CrossRef]

Spence, T. G.

E. R. Crosson, P. Haar, G. A. Marcus, H. A. Schwettman, B. A. Paldus, T. G. Spence, and R. N. Zare, “Pulse-stacked cavity ring-down spectroscopy,” Rev. Sci. Instrum. 70, 4-10 (1999).
[CrossRef]

Stacewicz, T.

A. Czyżewski, S. Chudzyński, K. Ernst, G. Karasiński, Ł. Kilianek, A. Pietruczuk, W. Skubiszak, T. Stacewicz, K. Stelmaszczyk, B. Koch, and P. Rairoux, “Cavity ring-down spectrography,” Opt. Commun. 191, 271-275 (2001).
[CrossRef]

Stark, H.

S. S. Brown, H. D. Osthoff, H. Stark, W. P. Dube, T. B. Ryerson, C. Warneke, J. A. DeGouw, A. G. Wollny, D. D. Parrish, F. C. Fehsenfeld, and A. R. Ravishankara, “Aircraft observations of daytime NO3 and N2O5 and their implications for tropospheric chemistry,” J. Photochem. Photobiol., A 176, 270-278 (2005).
[CrossRef]

S. S. Brown, H. Stark, and A. R. Ravishankara, “Applicability of the steady state approximation to the interpretation of atmospheric observations of NO3 and N2O5,” J. Geophys. Res. 108(D17), 4539 (2003).
[CrossRef]

S. S. Brown, H. Stark, T. B. Ryerson, E. J. Williams, D. K. Nicks, Jr., M. Trainer, F. C. Fehsenfeld, and A. R. Ravishankara, “Nitrogen oxides in the nocturnal boundary layer: Simultaneous in situ measurements of NO3, N2O5, NO2, NO, and O3,” J. Geophys. Res. 108(D9), 4299 (2003).
[CrossRef]

S. S. Brown, H. Stark, and A. R. Ravishankara, “Cavity ring-down spectroscopy for atmospheric trace gas detection: application to the nitrate radical (NO3),” Appl. Phys. B 75, 173-182 (2002).
[CrossRef]

S. S. Brown, H. Stark, S. J. Ciciora, R. J. McLaughlin, and A. R. Ravishankara, “Simultaneous in situ detection of atmospheric NO3 and N2O5 via cavity ring-down spectroscopy,” Rev. Sci. Instrum. 73, 3291-3301 (2002).
[CrossRef]

Stelmaszczyk, K.

A. Czyżewski, S. Chudzyński, K. Ernst, G. Karasiński, Ł. Kilianek, A. Pietruczuk, W. Skubiszak, T. Stacewicz, K. Stelmaszczyk, B. Koch, and P. Rairoux, “Cavity ring-down spectrography,” Opt. Commun. 191, 271-275 (2001).
[CrossRef]

Takahashi, K.

T. Nakayama, T. Ide, F. Taketani, M. Kawai, K. Takahashi, and Y. Matsumi, “Nighttime measurements of ambient N2O5, NO2, NO and O3 in a sub-urban area, Toyokawa, Japan,” Atmos. Environ. 42, 1995-2006 (2008).
[CrossRef]

Taketani, F.

T. Nakayama, T. Ide, F. Taketani, M. Kawai, K. Takahashi, and Y. Matsumi, “Nighttime measurements of ambient N2O5, NO2, NO and O3 in a sub-urban area, Toyokawa, Japan,” Atmos. Environ. 42, 1995-2006 (2008).
[CrossRef]

Talukdar, R. K.

R. J. Yokelson, J. B. Burkholder, R. W. Fox, R. K. Talukdar, and A. R. Ravishankara, “Temperature dependence of the NO3 absorption spectrum,” J. Phys. Chem. 98, 13144-13150 (1994).
[CrossRef]

Thieser, J.

H.-P. Dorn, R. L. Apodaca, S. M. Ball, T. Brauers, S. S. Brown, R. C. Cohen, J. Crowley, W. P. Dube, J. Fry, H. Fuchs, R. Häseler, U. Heitmann, S. Kato, Y. Kajii, I. Labazan, J. Langridge, J. Matsumoto, J. Meinen, S. Nishida, U. Platt, D. Rollins, A. A. Ruth, E. Schlosser, G. Schuster, A. Shillings, W. Simpson, J. Thieser, R. M. Varma, D. S. Venables, A. Wahner, and P. Wooldridge, “Intercomparison of NO3 radical detection techniques in the atmosphere simulation chamber SAPHIR,” Atmos. Chem. Phys. Discuss. (2008), in preparation.

H. Fuchs, R. L. Apodaca, S. M. Ball, T. Brauers, S. S. Brown, R. C. Cohen, J. Crowley, H.-P. Dorn, W. P. Dube, J. Fry, R. Häseler, U. Heitmann, S. Kato, Y. Kajii, A. Kiendler-Scharr, I. Labazan, J. Matsumoto, J. Meinen, S. Nishida, U. Platt, F. Rohrer, A. A. Ruth, E. Schlosser, G. Schuster, A. Shillings, W. Simpson, J. Thieser, R. Tillmann, R. M. Varma, D. S. Venables, R. Wegener, and P. Wooldridge, “Intercomparison of different NO2 measurement techniques at the simulation chamber SAPHIR,” Atmos. Chem. Phys. Discuss. , in preparation.

Thorpe, M. J.

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311, 1595-1599 (2006).
[CrossRef] [PubMed]

Tillmann, R.

T. Brauers, J. Bossmeyer, H.-P. Dorn, E. Schlosser, R. Tillmann, R. Wegener, and A. Wahner, “Investigation of the formaldehyde differential absorption cross section at high and low spectral resolution in the simulation chamber SAPHIR,” Atmos. Chem. Phys. 7, 3579-3586 (2007).
[CrossRef]

H. Fuchs, R. L. Apodaca, S. M. Ball, T. Brauers, S. S. Brown, R. C. Cohen, J. Crowley, H.-P. Dorn, W. P. Dube, J. Fry, R. Häseler, U. Heitmann, S. Kato, Y. Kajii, A. Kiendler-Scharr, I. Labazan, J. Matsumoto, J. Meinen, S. Nishida, U. Platt, F. Rohrer, A. A. Ruth, E. Schlosser, G. Schuster, A. Shillings, W. Simpson, J. Thieser, R. Tillmann, R. M. Varma, D. S. Venables, R. Wegener, and P. Wooldridge, “Intercomparison of different NO2 measurement techniques at the simulation chamber SAPHIR,” Atmos. Chem. Phys. Discuss. , in preparation.

Toth, R. A.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian Jr., K. V. Chance, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Trainer, M.

S. S. Brown, H. Stark, T. B. Ryerson, E. J. Williams, D. K. Nicks, Jr., M. Trainer, F. C. Fehsenfeld, and A. R. Ravishankara, “Nitrogen oxides in the nocturnal boundary layer: Simultaneous in situ measurements of NO3, N2O5, NO2, NO, and O3,” J. Geophys. Res. 108(D9), 4299 (2003).
[CrossRef]

Triki, M.

M. Triki, P. Cermak, G. Méjean, and D. Romanini, “Cavity-enhanced absorption spectroscopy with a red LED source for NOx trace analysis,” Appl. Phys. B 91, 195-201 (2008).
[CrossRef]

Varanasi, P.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian Jr., K. V. Chance, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Varma, R.

H. Moosmüller, R. Varma, and W. P. Arnott, “Cavity ring-down and cavity-enhanced detection techniques for the measurement of aerosol extinction,” Aerosol Sci. Technol. 39, 30-39 (2005).
[CrossRef]

Varma, R. M.

H.-P. Dorn, R. L. Apodaca, S. M. Ball, T. Brauers, S. S. Brown, R. C. Cohen, J. Crowley, W. P. Dube, J. Fry, H. Fuchs, R. Häseler, U. Heitmann, S. Kato, Y. Kajii, I. Labazan, J. Langridge, J. Matsumoto, J. Meinen, S. Nishida, U. Platt, D. Rollins, A. A. Ruth, E. Schlosser, G. Schuster, A. Shillings, W. Simpson, J. Thieser, R. M. Varma, D. S. Venables, A. Wahner, and P. Wooldridge, “Intercomparison of NO3 radical detection techniques in the atmosphere simulation chamber SAPHIR,” Atmos. Chem. Phys. Discuss. (2008), in preparation.

H. Fuchs, R. L. Apodaca, S. M. Ball, T. Brauers, S. S. Brown, R. C. Cohen, J. Crowley, H.-P. Dorn, W. P. Dube, J. Fry, R. Häseler, U. Heitmann, S. Kato, Y. Kajii, A. Kiendler-Scharr, I. Labazan, J. Matsumoto, J. Meinen, S. Nishida, U. Platt, F. Rohrer, A. A. Ruth, E. Schlosser, G. Schuster, A. Shillings, W. Simpson, J. Thieser, R. Tillmann, R. M. Varma, D. S. Venables, R. Wegener, and P. Wooldridge, “Intercomparison of different NO2 measurement techniques at the simulation chamber SAPHIR,” Atmos. Chem. Phys. Discuss. , in preparation.

Vaughan, S.

T. Gherman, D. S. Venables, S. Vaughan, J. Orphal, and A. A. Ruth, “Incoherent broadband cavity enhanced absorption spectroscopy in the near-ultaviolet: application to HONO and NO2,” Environ. Sci. Technol. 42, 890-895 (2008).
[CrossRef] [PubMed]

S. Vaughan, T. Gherman, A. A. Ruth, and J. Orphal, “Incoherent broadband cavity-enhanced absorption spectroscopy of the marine boundary layer species I2, IO and OIO,” Phys. Chem. Chem. Phys. 10, 4471-4477 (2008).
[CrossRef] [PubMed]

Venables, D. S.

T. Gherman, D. S. Venables, S. Vaughan, J. Orphal, and A. A. Ruth, “Incoherent broadband cavity enhanced absorption spectroscopy in the near-ultaviolet: application to HONO and NO2,” Environ. Sci. Technol. 42, 890-895 (2008).
[CrossRef] [PubMed]

H.-P. Dorn, R. L. Apodaca, S. M. Ball, T. Brauers, S. S. Brown, R. C. Cohen, J. Crowley, W. P. Dube, J. Fry, H. Fuchs, R. Häseler, U. Heitmann, S. Kato, Y. Kajii, I. Labazan, J. Langridge, J. Matsumoto, J. Meinen, S. Nishida, U. Platt, D. Rollins, A. A. Ruth, E. Schlosser, G. Schuster, A. Shillings, W. Simpson, J. Thieser, R. M. Varma, D. S. Venables, A. Wahner, and P. Wooldridge, “Intercomparison of NO3 radical detection techniques in the atmosphere simulation chamber SAPHIR,” Atmos. Chem. Phys. Discuss. (2008), in preparation.

D. S. Venables, T. Gherman, J. Orphal, J. Wenger, and A. A. Ruth, “High sensitivity in situ monitoring of NO3 in an atmospheric simulation chamber using incoherent broadband cavity-enhanced absorption spectroscopy,” Environ. Sci. Technol. 40, 6758-6763 (2006).
[CrossRef] [PubMed]

H. Fuchs, R. L. Apodaca, S. M. Ball, T. Brauers, S. S. Brown, R. C. Cohen, J. Crowley, H.-P. Dorn, W. P. Dube, J. Fry, R. Häseler, U. Heitmann, S. Kato, Y. Kajii, A. Kiendler-Scharr, I. Labazan, J. Matsumoto, J. Meinen, S. Nishida, U. Platt, F. Rohrer, A. A. Ruth, E. Schlosser, G. Schuster, A. Shillings, W. Simpson, J. Thieser, R. Tillmann, R. M. Varma, D. S. Venables, R. Wegener, and P. Wooldridge, “Intercomparison of different NO2 measurement techniques at the simulation chamber SAPHIR,” Atmos. Chem. Phys. Discuss. , in preparation.

Vetterling, W. T.

W. H. Press, T. S. Flannery, and W. T. Vetterling, Numerical Recipes: The Art of Scientific Computing (Cambridge U. Press, 1986), pp. 51 and 670.

Voigt, S.

S. Voigt, J. P. Orphal, and J. P. Burrows, “The temperature and pressure dependence of the absorption cross sections of NO2 in the 250-800 nm region measured by Fourier-transform spectroscopy,” J. Photochem. Photobiol. A 149, 1-7 (2002).
[CrossRef]

J. P. Burrows, A. Dehn, B. Deters, S. Himmelmann, A. Richter, S. Voigt, and J. Orphal, “Atmospheric remote-sensing reference data from GOME: 1. Temperature-dependent absorption cross-sections of NO2 in the 231-794 nm range,” J. Quant. Spectrosc. Radiat. Trans. 60, 1025-1031 (1998).
[CrossRef]

Wada, R.

R. Wada, J. M. Beames, and A. J. Orr-Ewing, “Measurement of IO radical concentrations in the marine boundary layer using a cavity ring-down spectrometer,” J. Atmos. Chem. 58, 69-87 (2007).
[CrossRef]

Wagner, G.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian Jr., K. V. Chance, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Wahner, A.

H.-P. Dorn, R. L. Apodaca, S. M. Ball, T. Brauers, S. S. Brown, R. C. Cohen, J. Crowley, W. P. Dube, J. Fry, H. Fuchs, R. Häseler, U. Heitmann, S. Kato, Y. Kajii, I. Labazan, J. Langridge, J. Matsumoto, J. Meinen, S. Nishida, U. Platt, D. Rollins, A. A. Ruth, E. Schlosser, G. Schuster, A. Shillings, W. Simpson, J. Thieser, R. M. Varma, D. S. Venables, A. Wahner, and P. Wooldridge, “Intercomparison of NO3 radical detection techniques in the atmosphere simulation chamber SAPHIR,” Atmos. Chem. Phys. Discuss. (2008), in preparation.

T. Brauers, J. Bossmeyer, H.-P. Dorn, E. Schlosser, R. Tillmann, R. Wegener, and A. Wahner, “Investigation of the formaldehyde differential absorption cross section at high and low spectral resolution in the simulation chamber SAPHIR,” Atmos. Chem. Phys. 7, 3579-3586 (2007).
[CrossRef]

J. Bossmeyer, T. Brauers, C. Richter, F. Rohrer, R. Wegener, and A. Wahner, “Simulation chamber studies on the NO3 chemistry of atmospheric aldehydes,” Geophys. Res. Lett. 33, L18810 (2006).
[CrossRef]

Warneke, C.

S. S. Brown, H. D. Osthoff, H. Stark, W. P. Dube, T. B. Ryerson, C. Warneke, J. A. DeGouw, A. G. Wollny, D. D. Parrish, F. C. Fehsenfeld, and A. R. Ravishankara, “Aircraft observations of daytime NO3 and N2O5 and their implications for tropospheric chemistry,” J. Photochem. Photobiol., A 176, 270-278 (2005).
[CrossRef]

Washenfelder, R. A.

R. A. Washenfelder, A. O. Langford, H. Fuchs, and S. S. Brown, “Measurement of glyoxal using an incoherent broadband cavity enhanced absorption spectrometer,” Atmos. Chem. Phys. Discuss. 8, 16517-16553 (2008).
[CrossRef]

Watt, R. S.

Weber, M.

F. Rohrer, D. Brüning, E. S. Grobler, M. Weber, D. H. Ehhalt, R. Neubert, W. Schübler, and L. Levin, “Mixing ratios and photostationary state of NO and NO2 observed during the POPCORN field campaign at a rural site in Germany,” J. Atmos. Chem. 31, 119-137 (1998).
[CrossRef]

Wegener, R.

T. Brauers, J. Bossmeyer, H.-P. Dorn, E. Schlosser, R. Tillmann, R. Wegener, and A. Wahner, “Investigation of the formaldehyde differential absorption cross section at high and low spectral resolution in the simulation chamber SAPHIR,” Atmos. Chem. Phys. 7, 3579-3586 (2007).
[CrossRef]

J. Bossmeyer, T. Brauers, C. Richter, F. Rohrer, R. Wegener, and A. Wahner, “Simulation chamber studies on the NO3 chemistry of atmospheric aldehydes,” Geophys. Res. Lett. 33, L18810 (2006).
[CrossRef]

H. Fuchs, R. L. Apodaca, S. M. Ball, T. Brauers, S. S. Brown, R. C. Cohen, J. Crowley, H.-P. Dorn, W. P. Dube, J. Fry, R. Häseler, U. Heitmann, S. Kato, Y. Kajii, A. Kiendler-Scharr, I. Labazan, J. Matsumoto, J. Meinen, S. Nishida, U. Platt, F. Rohrer, A. A. Ruth, E. Schlosser, G. Schuster, A. Shillings, W. Simpson, J. Thieser, R. Tillmann, R. M. Varma, D. S. Venables, R. Wegener, and P. Wooldridge, “Intercomparison of different NO2 measurement techniques at the simulation chamber SAPHIR,” Atmos. Chem. Phys. Discuss. , in preparation.

Welz, B.

B. Welz, H. Becker-Ross, S. Florek, and U. Heitmann, High-Resolution Continuum Source AAS: The Better Way to Do Atomic Absorption Spectrometry (Wiley VCH, 2005).
[CrossRef]

Wenger, J.

D. S. Venables, T. Gherman, J. Orphal, J. Wenger, and A. A. Ruth, “High sensitivity in situ monitoring of NO3 in an atmospheric simulation chamber using incoherent broadband cavity-enhanced absorption spectroscopy,” Environ. Sci. Technol. 40, 6758-6763 (2006).
[CrossRef] [PubMed]

White, J. U.

Williams, E. J.

S. S. Brown, H. Stark, T. B. Ryerson, E. J. Williams, D. K. Nicks, Jr., M. Trainer, F. C. Fehsenfeld, and A. R. Ravishankara, “Nitrogen oxides in the nocturnal boundary layer: Simultaneous in situ measurements of NO3, N2O5, NO2, NO, and O3,” J. Geophys. Res. 108(D9), 4299 (2003).
[CrossRef]

Wolfe, D. E.

S. S. Brown, W. P. Dubé, H. D. Osthoff, D. E. Wolfe, W. M. Angevine, and A. R. Ravishankara, “High resolution vertical distributions of NO3 and N2O5 through the nocturnal boundary layer,” Atmos. Chem. Phys. 7, 139-149 (2007).
[CrossRef]

Wollny, A. G.

S. S. Brown, H. D. Osthoff, H. Stark, W. P. Dube, T. B. Ryerson, C. Warneke, J. A. DeGouw, A. G. Wollny, D. D. Parrish, F. C. Fehsenfeld, and A. R. Ravishankara, “Aircraft observations of daytime NO3 and N2O5 and their implications for tropospheric chemistry,” J. Photochem. Photobiol., A 176, 270-278 (2005).
[CrossRef]

Wooldridge, P.

H.-P. Dorn, R. L. Apodaca, S. M. Ball, T. Brauers, S. S. Brown, R. C. Cohen, J. Crowley, W. P. Dube, J. Fry, H. Fuchs, R. Häseler, U. Heitmann, S. Kato, Y. Kajii, I. Labazan, J. Langridge, J. Matsumoto, J. Meinen, S. Nishida, U. Platt, D. Rollins, A. A. Ruth, E. Schlosser, G. Schuster, A. Shillings, W. Simpson, J. Thieser, R. M. Varma, D. S. Venables, A. Wahner, and P. Wooldridge, “Intercomparison of NO3 radical detection techniques in the atmosphere simulation chamber SAPHIR,” Atmos. Chem. Phys. Discuss. (2008), in preparation.

H. Fuchs, R. L. Apodaca, S. M. Ball, T. Brauers, S. S. Brown, R. C. Cohen, J. Crowley, H.-P. Dorn, W. P. Dube, J. Fry, R. Häseler, U. Heitmann, S. Kato, Y. Kajii, A. Kiendler-Scharr, I. Labazan, J. Matsumoto, J. Meinen, S. Nishida, U. Platt, F. Rohrer, A. A. Ruth, E. Schlosser, G. Schuster, A. Shillings, W. Simpson, J. Thieser, R. Tillmann, R. M. Varma, D. S. Venables, R. Wegener, and P. Wooldridge, “Intercomparison of different NO2 measurement techniques at the simulation chamber SAPHIR,” Atmos. Chem. Phys. Discuss. , in preparation.

Ye, J.

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311, 1595-1599 (2006).
[CrossRef] [PubMed]

Yokelson, R. J.

R. J. Yokelson, J. B. Burkholder, R. W. Fox, R. K. Talukdar, and A. R. Ravishankara, “Temperature dependence of the NO3 absorption spectrum,” J. Phys. Chem. 98, 13144-13150 (1994).
[CrossRef]

Zare, R. N.

E. R. Crosson, P. Haar, G. A. Marcus, H. A. Schwettman, B. A. Paldus, T. G. Spence, and R. N. Zare, “Pulse-stacked cavity ring-down spectroscopy,” Rev. Sci. Instrum. 70, 4-10 (1999).
[CrossRef]

Aerosol Sci. Technol.

T. Baynard, E. R. Lovejoy, A. Pettersson, S. S. Brown, D. Lack, H. Osthoff, P. Massoli, S. Ciciora, W. P. Dube, and A. R. Ravishankara, “Design and application of a pulsed cavity ring-down aerosol extinction spectrometer for field measurements,” Aerosol Sci. Technol. 41, 447-462 (2007).
[CrossRef]

H. Moosmüller, R. Varma, and W. P. Arnott, “Cavity ring-down and cavity-enhanced detection techniques for the measurement of aerosol extinction,” Aerosol Sci. Technol. 39, 30-39 (2005).
[CrossRef]

Anal. Chem.

H. Fuchs, W. P. Dubé, S. J. Ciciora, and S. S. Brown, “Determination of inlet transmission and conversion efficiencies for in situ measurements of the nocturnal nitrogen oxides, NO3, N2O5 and NO2, via pulsed cavity ring-down spectroscopy,” Anal. Chem. 80, 6010-6017 (2008).
[CrossRef] [PubMed]

Analyst (Amsterdam)

J. M. Langridge, S. M. Ball, and R. L. Jones, “A compact broadband cavity enhanced absorption spectrometer for detection of atmospheric NO2,” Analyst (Amsterdam) 131, 916-922(2006).

Appl. Opt.

Appl. Phys. B

M. Triki, P. Cermak, G. Méjean, and D. Romanini, “Cavity-enhanced absorption spectroscopy with a red LED source for NOx trace analysis,” Appl. Phys. B 91, 195-201 (2008).
[CrossRef]

S. S. Brown, H. Stark, and A. R. Ravishankara, “Cavity ring-down spectroscopy for atmospheric trace gas detection: application to the nitrate radical (NO3),” Appl. Phys. B 75, 173-182 (2002).
[CrossRef]

A. R. Awtry and J. H. Miller, “Development of a cw-laser-based cavity-ringdown sensor aboard a spacecraft for trace air constituents,” Appl. Phys. B 75, 255-260 (2002).
[CrossRef]

Atmos. Chem. Phys.

S. S. Brown, W. P. Dubé, H. D. Osthoff, D. E. Wolfe, W. M. Angevine, and A. R. Ravishankara, “High resolution vertical distributions of NO3 and N2O5 through the nocturnal boundary layer,” Atmos. Chem. Phys. 7, 139-149 (2007).
[CrossRef]

M. Bitter, S. M. Ball, I. M. Povey, and R. L. Jones, “A broadband cavity ringdown spectrometer for in situ measurements of atmospheric trace gases,” Atmos. Chem. Phys. 5, 2547-2560 (2005).
[CrossRef]

T. Brauers, J. Bossmeyer, H.-P. Dorn, E. Schlosser, R. Tillmann, R. Wegener, and A. Wahner, “Investigation of the formaldehyde differential absorption cross section at high and low spectral resolution in the simulation chamber SAPHIR,” Atmos. Chem. Phys. 7, 3579-3586 (2007).
[CrossRef]

R. Sommariva, M. J. Pilling, W. J. Bloss, D. E. Heard, J. D. Lee, Z. L. Fleming, P. S. Monks, J. M. C. Plane, A. Saiz-Lopez, S. M. Ball, M. Bitter, R. L. Jones, N. Brough, S. A. Penkett, J. R. Hopkins, A. C. Lewis, and K. A. Read, “Night-time radical chemistry during the NAMBLEX campaign,” Atmos. Chem. Phys. 7, 587-598 (2007).
[CrossRef]

Atmos. Chem. Phys. Discuss.

H.-P. Dorn, R. L. Apodaca, S. M. Ball, T. Brauers, S. S. Brown, R. C. Cohen, J. Crowley, W. P. Dube, J. Fry, H. Fuchs, R. Häseler, U. Heitmann, S. Kato, Y. Kajii, I. Labazan, J. Langridge, J. Matsumoto, J. Meinen, S. Nishida, U. Platt, D. Rollins, A. A. Ruth, E. Schlosser, G. Schuster, A. Shillings, W. Simpson, J. Thieser, R. M. Varma, D. S. Venables, A. Wahner, and P. Wooldridge, “Intercomparison of NO3 radical detection techniques in the atmosphere simulation chamber SAPHIR,” Atmos. Chem. Phys. Discuss. (2008), in preparation.

H. Fuchs, R. L. Apodaca, S. M. Ball, T. Brauers, S. S. Brown, R. C. Cohen, J. Crowley, H.-P. Dorn, W. P. Dube, J. Fry, R. Häseler, U. Heitmann, S. Kato, Y. Kajii, A. Kiendler-Scharr, I. Labazan, J. Matsumoto, J. Meinen, S. Nishida, U. Platt, F. Rohrer, A. A. Ruth, E. Schlosser, G. Schuster, A. Shillings, W. Simpson, J. Thieser, R. Tillmann, R. M. Varma, D. S. Venables, R. Wegener, and P. Wooldridge, “Intercomparison of different NO2 measurement techniques at the simulation chamber SAPHIR,” Atmos. Chem. Phys. Discuss. , in preparation.

R. A. Washenfelder, A. O. Langford, H. Fuchs, and S. S. Brown, “Measurement of glyoxal using an incoherent broadband cavity enhanced absorption spectrometer,” Atmos. Chem. Phys. Discuss. 8, 16517-16553 (2008).
[CrossRef]

Atmos. Environ.

T. Nakayama, T. Ide, F. Taketani, M. Kawai, K. Takahashi, and Y. Matsumi, “Nighttime measurements of ambient N2O5, NO2, NO and O3 in a sub-urban area, Toyokawa, Japan,” Atmos. Environ. 42, 1995-2006 (2008).
[CrossRef]

Atmos. Meas. Tech. Discuss.

G. Schuster, I. Labazan, and J. N. Crowley, “A cavity ring down/cavity enhanced absorption device for measurement of ambient NO3 and N2O5,” Atmos. Meas. Tech. Discuss. 1, 67-102 (2008).
[CrossRef]

Can. J. Phys.

B. A. Paldus and A. A. Kachanov, “An historical overview of cavity-enhanced methods,” Can. J. Phys. 83, 975-999 (2005).
[CrossRef]

Chem. Phys. Lett.

J. J. Scherer, “Ringdown spectral photography,” Chem. Phys. Lett. 292, 143-153 (1998).
[CrossRef]

S. M. Ball, I. M. Povey, E. G. Norton, and R. L. Jones, “Broadband cavity ringdown spectroscopy of the NO3 radical,” Chem. Phys. Lett. 342, 113-120 (2001).
[CrossRef]

S. M. Ball, J. M. Langridge, and R. M. Jones, “Broadband cavity enhanced absorption spectroscopy using light emitting diodes,” Chem. Phys. Lett. 398, 68-74 (2004).
[CrossRef]

S. E. Fiedler, A. Hese, and A. A. Ruth, “Incoherent broadband cavity-enhanced absorption spectroscopy,” Chem. Phys. Lett. 371, 284-294 (2003).
[CrossRef]

E. Hamers, D. Schram, and R. Engeln, “Fourier transform phase shift cavity ring down spectroscopy,” Chem. Phys. Lett. 365, 237-243 (2002).
[CrossRef]

Chem. Rev.

S. M. Ball and R. L. Jones, “Broad-band cavity ring-down spectroscopy,” Chem. Rev. 103, 5239-5262 (2003).
[CrossRef] [PubMed]

S. S. Brown, “Absorption spectroscopy in high-finesse cavities for atmospheric studies,” Chem. Rev. 103, 5219-5238 (2003).
[CrossRef] [PubMed]

Crit. Rev. Environ. Sci. Technol.

K. C. Clemitshaw, “A review of instrumentation and measurement techniques for ground-based and airborne field studies of gas-phase tropospheric chemistry,” Crit. Rev. Environ. Sci. Technol. 34, 1-108 (2004).
[CrossRef]

Environ. Sci. Technol.

D. S. Venables, T. Gherman, J. Orphal, J. Wenger, and A. A. Ruth, “High sensitivity in situ monitoring of NO3 in an atmospheric simulation chamber using incoherent broadband cavity-enhanced absorption spectroscopy,” Environ. Sci. Technol. 40, 6758-6763 (2006).
[CrossRef] [PubMed]

T. Gherman, D. S. Venables, S. Vaughan, J. Orphal, and A. A. Ruth, “Incoherent broadband cavity enhanced absorption spectroscopy in the near-ultaviolet: application to HONO and NO2,” Environ. Sci. Technol. 42, 890-895 (2008).
[CrossRef] [PubMed]

Geophys. Res. Lett.

J. Bossmeyer, T. Brauers, C. Richter, F. Rohrer, R. Wegener, and A. Wahner, “Simulation chamber studies on the NO3 chemistry of atmospheric aldehydes,” Geophys. Res. Lett. 33, L18810 (2006).
[CrossRef]

J. Atmos. Chem.

F. Rohrer, D. Brüning, E. S. Grobler, M. Weber, D. H. Ehhalt, R. Neubert, W. Schübler, and L. Levin, “Mixing ratios and photostationary state of NO and NO2 observed during the POPCORN field campaign at a rural site in Germany,” J. Atmos. Chem. 31, 119-137 (1998).
[CrossRef]

R. Wada, J. M. Beames, and A. J. Orr-Ewing, “Measurement of IO radical concentrations in the marine boundary layer using a cavity ring-down spectrometer,” J. Atmos. Chem. 58, 69-87 (2007).
[CrossRef]

J. Geophys. Res.

S. S. Brown, H. Stark, T. B. Ryerson, E. J. Williams, D. K. Nicks, Jr., M. Trainer, F. C. Fehsenfeld, and A. R. Ravishankara, “Nitrogen oxides in the nocturnal boundary layer: Simultaneous in situ measurements of NO3, N2O5, NO2, NO, and O3,” J. Geophys. Res. 108(D9), 4299 (2003).
[CrossRef]

S. S. Brown, H. Stark, and A. R. Ravishankara, “Applicability of the steady state approximation to the interpretation of atmospheric observations of NO3 and N2O5,” J. Geophys. Res. 108(D17), 4539 (2003).
[CrossRef]

J. Orphal, C. E. Fellows, and P. M. Flaud, “The visible absorption spectrum of NO3 measured by high-resolution Fourier transform spectroscopy,” J. Geophys. Res. 108(D3), 4077-4087 (2003).
[CrossRef]

J. Opt. Soc. Am.

J. Photochem. Photobiol. A

S. Voigt, J. P. Orphal, and J. P. Burrows, “The temperature and pressure dependence of the absorption cross sections of NO2 in the 250-800 nm region measured by Fourier-transform spectroscopy,” J. Photochem. Photobiol. A 149, 1-7 (2002).
[CrossRef]

J. Photochem. Photobiol., A

S. S. Brown, H. D. Osthoff, H. Stark, W. P. Dube, T. B. Ryerson, C. Warneke, J. A. DeGouw, A. G. Wollny, D. D. Parrish, F. C. Fehsenfeld, and A. R. Ravishankara, “Aircraft observations of daytime NO3 and N2O5 and their implications for tropospheric chemistry,” J. Photochem. Photobiol., A 176, 270-278 (2005).
[CrossRef]

J. Phys. Chem.

R. J. Yokelson, J. B. Burkholder, R. W. Fox, R. K. Talukdar, and A. R. Ravishankara, “Temperature dependence of the NO3 absorption spectrum,” J. Phys. Chem. 98, 13144-13150 (1994).
[CrossRef]

J. Quant. Spectrosc. Radiat. Trans.

J. P. Burrows, A. Dehn, B. Deters, S. Himmelmann, A. Richter, S. Voigt, and J. Orphal, “Atmospheric remote-sensing reference data from GOME: 1. Temperature-dependent absorption cross-sections of NO2 in the 231-794 nm range,” J. Quant. Spectrosc. Radiat. Trans. 60, 1025-1031 (1998).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian Jr., K. V. Chance, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Opt. Commun.

A. Czyżewski, S. Chudzyński, K. Ernst, G. Karasiński, Ł. Kilianek, A. Pietruczuk, W. Skubiszak, T. Stacewicz, K. Stelmaszczyk, B. Koch, and P. Rairoux, “Cavity ring-down spectrography,” Opt. Commun. 191, 271-275 (2001).
[CrossRef]

Opt. Express

Phys. Chem. Chem. Phys.

S. Vaughan, T. Gherman, A. A. Ruth, and J. Orphal, “Incoherent broadband cavity-enhanced absorption spectroscopy of the marine boundary layer species I2, IO and OIO,” Phys. Chem. Chem. Phys. 10, 4471-4477 (2008).
[CrossRef] [PubMed]

U. Platt, “Modern methods of the measurement of atmospheric trace gases,” Phys. Chem. Chem. Phys. 1, 5409-5415(1999).
[CrossRef]

Rev. Sci. Instrum.

E. R. Crosson, P. Haar, G. A. Marcus, H. A. Schwettman, B. A. Paldus, T. G. Spence, and R. N. Zare, “Pulse-stacked cavity ring-down spectroscopy,” Rev. Sci. Instrum. 70, 4-10 (1999).
[CrossRef]

S. S. Brown, H. Stark, S. J. Ciciora, R. J. McLaughlin, and A. R. Ravishankara, “Simultaneous in situ detection of atmospheric NO3 and N2O5 via cavity ring-down spectroscopy,” Rev. Sci. Instrum. 73, 3291-3301 (2002).
[CrossRef]

W. P. Dubé, S. S. Brown, H. D. Osthoff, M. R. Nunley, S. J. Ciciora, M. W. Paris, R. J. McLaughlin, and A. R. Ravishankara, “Aircraft instrument for simultaneous, in situ measurement of NO3 and N2O5 via pulsed cavity ring-down spectroscopy,” Rev. Sci. Instrum. 77, 034101 (2006).
[CrossRef]

Science

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311, 1595-1599 (2006).
[CrossRef] [PubMed]

Other

S. G. Kraus, “DOASIS--A framework design for DOAS,” Ph.D. thesis (University of Mannheim, 2006).

B. Welz, H. Becker-Ross, S. Florek, and U. Heitmann, High-Resolution Continuum Source AAS: The Better Way to Do Atomic Absorption Spectrometry (Wiley VCH, 2005).
[CrossRef]

W. H. Press, T. S. Flannery, and W. T. Vetterling, Numerical Recipes: The Art of Scientific Computing (Cambridge U. Press, 1986), pp. 51 and 670.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Transmitter unit: 1, short-arc Xe lamp; 2, piezo-mounted plane mirror; 3,4, off-axis parabolic mirrors; 5, interference filter; 6, quadrant detector and control electronics; 7, telescope; 8, highly reflective cavity mirror; 9, low-loss optic assembly on translation stage; 10,11, stainless steel pipes for broadband beam and He–Ne laser beam, respectively. (b) Receiver unit; 12,13, stainless steel pipes for broadband beam and He–Ne laser beam, respectively; 14, highly reflective cavity mirror; 15, Teflon film joint; 16, movable mirror to couple in He–Ne laser beam; 17, color filter (RG630); 18, focusing lens; 19, short-pass filter (cutoff 700 nm ); 20, fiber bundle holder; 21, fiber bundle; 22, monochromator and CCD detector.

Fig. 2
Fig. 2

(a) Typical transmission spectra of the cavity (in units of 10 6 counts) containing clean air only ( I 0 ), and with a low loss substrate in the cavity ( I 1 ). The spectra represent the average of 100 spectra, each having a 5 s acquisition time. The γ- and B-band of O 2 at around 624 nm and 687 nm , respectively, are the only absorption features in this spectrum. (b) Loss spectrum L ( λ ) of the antireflection-coated substrate measured with pulsed cavity ring-down spectroscopy in a 2 m cavity. The error bars correspond to the 1 σ standard deviation of seven measurements of loss L ( λ ) . (c) Average mirror reflectivity, R , of 11 individual reflectivity measurements taken on each day of the campaign. The error bars represent the corresponding 1 σ standard deviation.

Fig. 3
Fig. 3

Black: absorption spectrum of water vapor calculated by convoluting HITRAN cross sections [46] with the spectrometer’s resolution of 0.6 nm . Thick lower trace: spectrum of the concentration-corrected H 2 O cross sections calculated with Eq. (1) as outlined in the text using a number density of water of 2.72 × 10 17 molecules cm 3 , an 18.27 m cavity length, a 0.6 nm spectrometer resolution, and the reflectivity spectrum measured on 15 June 2007.

Fig. 4
Fig. 4

(a) Typical cavity transmission spectra (in units of 10 6 counts) in the absence (thin upper trace) and presence of water vapor and NO 3 (lower trace). Measurement taken with 5 s acquisition time at 9:58 a.m. on 15 June 2007. (b) Corresponding measured extinction (solid circles) in the region between 658 nm and 668 nm . The solid and dashed curves represent SVD fits of Eq. (4) to the experimental spectrum with and without using concentration-corrected H 2 O cross sections, respectively (see Fig. 3). (b) and (c) show the corresponding fit residuals Δ (axis units given in 10 8 cm 1 ). (c) Extinction (filled circles) from (b) after removing the water vapor absorption; the contribution of NO 3 absorption to the fit is shown as a solid curve. The mixing ratio of NO 3 was determined to be approximately 20.7 pptv . The lower panel shows the corresponding fit residuals, Δ in units of 10 8 cm 1 .

Fig. 5
Fig. 5

(a) Time series of NO 3 mixing ratios measured by IBBCEAS (black data) and long path DOAS (red data). (b) Time series of NO 2 mixing ratios measured by IBBCEAS (black data) and the chemiluminescence analyzer (red data). (c) Time series of H 2 O number densities measured with a dew point hygrometer. (d) Cavity transmission (in units of 10 6 counts) at 685 nm (black) and cubic spline through data (blue). The SAPHIR chamber event sequence on 15 June 2007 was: 6:11–fan on, 6:15– 180 ppbv of O 3 added, 06:22– 1.5 ppbv of NO 2 added, 8:33–fan off (1), 8:52–fan on (2), 8:55–flushing of chamber with clean humid air started (2), 9:52–flushing of chamber ended (3), 9:53– 80 ppbv of O 3 added (3), 9:53– 2 ppb of NO 2 added (3), 9:56– 9 ppbv of NO 2 added (3), 10:45–addition of ( NH 4 ) 2 S O 4 aerosol started (4), 11:25–addition of aerosol ended ( 5 μg m 3 ) (5), 12:12– 9 ppbv of NO 2 added (6), 12:30–addition of ( NH 4 ) 2 S O 4 aerosol started (7), 14:30– addition of aerosol ended ( 12 μg m 3 ) (8).

Fig. 6
Fig. 6

Background extinction loss at 687 nm on 15 June 2007, retrieved by the procedure outlined in the text. 1, addition of ( NH 4 ) 2 S O 4 aerosol started (10:45); 2, addition of aerosol ended ( 5 μg m 3 ) (11:25); 3, addition of ( NH 4 ) 2 S O 4 aerosol started (12:30); 4, addition of aerosol ended ( 12 μg m 3 ) (14:30).

Fig. 7
Fig. 7

Photograph of the open-path IBBCEA setup on the roof of the Met Éireann weather station at Roches Point (Ireland). The transmitter and receiver units are also shown as insets. The effective cavity length was 6.7 m . The instrument was in this field trial between 29 November and 11 December 2007.

Fig. 8
Fig. 8

Typical cavity transmission spectra (in units of 10 4 counts) measured at Roches Point (Ireland) on 10 December 2007. Despite fair weather conditions on this day there was no evidence for NO 3 absorption above the detection limit. This figure demonstrates the stability of the system in the field [compare with Figs. 2a, 4a. Lower trace: open-path measurement. Black line: I 0 measurement with a long PVC tube between transmitter and receiver unit that was continuously purged with dry N 2 .

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

ε ( λ ) = i σ i ( λ ) 0 L n i ( x ) d x = 1 L ( I 0 I 1 ) ( 1 R ) ,
R ( λ ) = 1 [ I 1 ( λ ) I 0 ( λ ) I 1 ( λ ) L ( λ ) ] ,
L ( λ ) = d c ( 1 τ 2 ( λ ) 1 τ 1 ( λ ) )
ε ( λ ) = a 0 + a 1 λ + a 2 λ 2 + a 3 σ H 2 O ( λ ) + a 4 σ NO 3 ( λ ) + a 5 σ NO 2 ( λ ) ,
Δ ε 2 = | d n i d ( 1 R ) | 2 Δ ( 1 R ) 2 + | d n i d L | 2 Δ L eff 2 + | d n i d I 0 | 2 Δ I 0 2 ,
Δ n i , fit 2 = Δ ( range ) 2 + | d n i d ε | 2 Δ ε 2 + | d n i d σ i | 2 Δ σ i 2 .
ε B = ( I 0 I B I B ) ( 1 R L ) = ( Δ I B I B ) ( 1 R L ) ,
ε T = ε B + α = ( I 0 I I ) ( 1 R L ) = ( Δ I B + Δ I A I ) ( 1 R L ) ,
α = ( Δ I A I ) ( 1 R L ) ( 1 + ε B L 1 R ) = ( Δ I A I ) ( 1 L eff ) ( 1 + ε B L eff ) .
L eff = L eff / ( 1 + ε B L eff ) .
ε B = α ( I Δ I A ) ( 1 R L ) .

Metrics