Abstract

A mechanical quartz microresonator (tuning fork) is used to detect electromagnetic radiation. The detection scheme is based on forces created due to the incident electromagnetic radiation on the piezoelectric tuning fork. A force can be created due to the transfer of the photon momentum of the incident electromagnetic radiation. If the surfaces of the tuning fork are nonuniformly heated, a second force acts on it, the so-called photophoretic force. These processes occur for all wavelengths of the incident radiation, making the detector suitable for sensing of ultraviolet, visible, and mid-infrared light, even THz- radiation. Here the detector is characterized in the visible range; noise analysis is performed for 650nm and 5.26μm. A linear power characteristic and the dependence on pulse lengths of the incoming light are shown. Examples for applications for the visible and mid-infrared spectral region are given by 2f and absorption spectroscopy of oxygen and nitric oxide, respectively.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Lebedew, “Untersuchungen über die Druckkräfte des Lichtes,” Ann. Phys. 311, 433-458 (1901).
    [CrossRef]
  2. E. F. Nichols and G. F. Hull, “Über Strahlungsdruck,” Ann. Phys. 317, 225-263 (1903).
    [CrossRef]
  3. F. Zheng, “Thermophoresis of spherical and non-spherical particles: a review of theories and experiments,” Adv. Colloid Interface Sci. 97, 255-278 (2002).
    [CrossRef] [PubMed]
  4. H. Rohatschek, “Semi-empirical model of photophoretic forces for the entire range of pressures,” J. Aerosol Sci. 26, 717-734 (1995).
    [CrossRef]
  5. S. Beresnev, V. Chernyak, and G. Fomyagin, “Photophoresis of a spherical particle in a rarefied gas,” Phys. Fluids A 5, 2043-2052 (1993).
    [CrossRef]
  6. B. Gotsmann and U. Dürig, “Experimental observation of attractive and repulsive thermal forces on microcantilevers,” Appl. Phys. Lett. 87, 194102 (2005).
    [CrossRef]
  7. M. Ota, T. Nakato, and M. Sakamoto, “Effects of environmental gas conditions on laser opto-microengine performance,” Appl. Surf. Sci. 144-145, 480-483 (1999).
    [CrossRef]
  8. O. Krauss and G. Wurm, “Photophoresis and the pile-up of dust in young circumstellar disks,” Astrophys. J. 630, 1088-1092 (2005).
    [CrossRef]
  9. R. D. Grober, J. Acimovic, J. Schuck, D. Hessman, P. J. Kindlemann, J. Hespanha, A. S. Morse, K. Karrai, I. Tiemann, and S. Manus, “Fundamental limits to force detection using quartz tuning forks,“ Rev. Sci. Instrum. 71, 2776-2780 (2000).
    [CrossRef]
  10. K. Karrai and R. D. Grober, “Piezoelectric tip-sample distance control for near field optical microscopes,” Appl. Phys. Lett. 66, 1842-1844 (1995).
    [CrossRef]
  11. J.-M. Friedt and É. Carry, “Introduction to the quartz tuning fork,” Am. J. Phys. 75, 415-422 (2007).
    [CrossRef]
  12. A. A. Kosterev, Yu. A. Bakhirkin, R. F. Curl, and F. K. Tittel, “Quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 27, 1902-1904 (2002).
    [CrossRef]
  13. K. Karraï and R. D. Grober, “Piezo-electric tuning fork tip-sample distance control for near field optical microscopes,” Ultramicroscopy 61, 197-205 (1995).
    [CrossRef]
  14. J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers--comparison of experiment and theory,” Appl. Phys. B 26, 203-210 (1981).
    [CrossRef]

2007 (1)

J.-M. Friedt and É. Carry, “Introduction to the quartz tuning fork,” Am. J. Phys. 75, 415-422 (2007).
[CrossRef]

2005 (2)

B. Gotsmann and U. Dürig, “Experimental observation of attractive and repulsive thermal forces on microcantilevers,” Appl. Phys. Lett. 87, 194102 (2005).
[CrossRef]

O. Krauss and G. Wurm, “Photophoresis and the pile-up of dust in young circumstellar disks,” Astrophys. J. 630, 1088-1092 (2005).
[CrossRef]

2002 (2)

F. Zheng, “Thermophoresis of spherical and non-spherical particles: a review of theories and experiments,” Adv. Colloid Interface Sci. 97, 255-278 (2002).
[CrossRef] [PubMed]

A. A. Kosterev, Yu. A. Bakhirkin, R. F. Curl, and F. K. Tittel, “Quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 27, 1902-1904 (2002).
[CrossRef]

2000 (1)

R. D. Grober, J. Acimovic, J. Schuck, D. Hessman, P. J. Kindlemann, J. Hespanha, A. S. Morse, K. Karrai, I. Tiemann, and S. Manus, “Fundamental limits to force detection using quartz tuning forks,“ Rev. Sci. Instrum. 71, 2776-2780 (2000).
[CrossRef]

1999 (1)

M. Ota, T. Nakato, and M. Sakamoto, “Effects of environmental gas conditions on laser opto-microengine performance,” Appl. Surf. Sci. 144-145, 480-483 (1999).
[CrossRef]

1995 (3)

K. Karrai and R. D. Grober, “Piezoelectric tip-sample distance control for near field optical microscopes,” Appl. Phys. Lett. 66, 1842-1844 (1995).
[CrossRef]

H. Rohatschek, “Semi-empirical model of photophoretic forces for the entire range of pressures,” J. Aerosol Sci. 26, 717-734 (1995).
[CrossRef]

K. Karraï and R. D. Grober, “Piezo-electric tuning fork tip-sample distance control for near field optical microscopes,” Ultramicroscopy 61, 197-205 (1995).
[CrossRef]

1993 (1)

S. Beresnev, V. Chernyak, and G. Fomyagin, “Photophoresis of a spherical particle in a rarefied gas,” Phys. Fluids A 5, 2043-2052 (1993).
[CrossRef]

1981 (1)

J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers--comparison of experiment and theory,” Appl. Phys. B 26, 203-210 (1981).
[CrossRef]

1903 (1)

E. F. Nichols and G. F. Hull, “Über Strahlungsdruck,” Ann. Phys. 317, 225-263 (1903).
[CrossRef]

1901 (1)

P. Lebedew, “Untersuchungen über die Druckkräfte des Lichtes,” Ann. Phys. 311, 433-458 (1901).
[CrossRef]

Acimovic, J.

R. D. Grober, J. Acimovic, J. Schuck, D. Hessman, P. J. Kindlemann, J. Hespanha, A. S. Morse, K. Karrai, I. Tiemann, and S. Manus, “Fundamental limits to force detection using quartz tuning forks,“ Rev. Sci. Instrum. 71, 2776-2780 (2000).
[CrossRef]

Bakhirkin, Yu. A.

Beresnev, S.

S. Beresnev, V. Chernyak, and G. Fomyagin, “Photophoresis of a spherical particle in a rarefied gas,” Phys. Fluids A 5, 2043-2052 (1993).
[CrossRef]

Carry, É.

J.-M. Friedt and É. Carry, “Introduction to the quartz tuning fork,” Am. J. Phys. 75, 415-422 (2007).
[CrossRef]

Chernyak, V.

S. Beresnev, V. Chernyak, and G. Fomyagin, “Photophoresis of a spherical particle in a rarefied gas,” Phys. Fluids A 5, 2043-2052 (1993).
[CrossRef]

Curl, R. F.

Dürig, U.

B. Gotsmann and U. Dürig, “Experimental observation of attractive and repulsive thermal forces on microcantilevers,” Appl. Phys. Lett. 87, 194102 (2005).
[CrossRef]

Fomyagin, G.

S. Beresnev, V. Chernyak, and G. Fomyagin, “Photophoresis of a spherical particle in a rarefied gas,” Phys. Fluids A 5, 2043-2052 (1993).
[CrossRef]

Friedt, J. -M.

J.-M. Friedt and É. Carry, “Introduction to the quartz tuning fork,” Am. J. Phys. 75, 415-422 (2007).
[CrossRef]

Gotsmann, B.

B. Gotsmann and U. Dürig, “Experimental observation of attractive and repulsive thermal forces on microcantilevers,” Appl. Phys. Lett. 87, 194102 (2005).
[CrossRef]

Grober, R. D.

R. D. Grober, J. Acimovic, J. Schuck, D. Hessman, P. J. Kindlemann, J. Hespanha, A. S. Morse, K. Karrai, I. Tiemann, and S. Manus, “Fundamental limits to force detection using quartz tuning forks,“ Rev. Sci. Instrum. 71, 2776-2780 (2000).
[CrossRef]

K. Karraï and R. D. Grober, “Piezo-electric tuning fork tip-sample distance control for near field optical microscopes,” Ultramicroscopy 61, 197-205 (1995).
[CrossRef]

K. Karrai and R. D. Grober, “Piezoelectric tip-sample distance control for near field optical microscopes,” Appl. Phys. Lett. 66, 1842-1844 (1995).
[CrossRef]

Hespanha, J.

R. D. Grober, J. Acimovic, J. Schuck, D. Hessman, P. J. Kindlemann, J. Hespanha, A. S. Morse, K. Karrai, I. Tiemann, and S. Manus, “Fundamental limits to force detection using quartz tuning forks,“ Rev. Sci. Instrum. 71, 2776-2780 (2000).
[CrossRef]

Hessman, D.

R. D. Grober, J. Acimovic, J. Schuck, D. Hessman, P. J. Kindlemann, J. Hespanha, A. S. Morse, K. Karrai, I. Tiemann, and S. Manus, “Fundamental limits to force detection using quartz tuning forks,“ Rev. Sci. Instrum. 71, 2776-2780 (2000).
[CrossRef]

Hull, G. F.

E. F. Nichols and G. F. Hull, “Über Strahlungsdruck,” Ann. Phys. 317, 225-263 (1903).
[CrossRef]

Karrai, K.

R. D. Grober, J. Acimovic, J. Schuck, D. Hessman, P. J. Kindlemann, J. Hespanha, A. S. Morse, K. Karrai, I. Tiemann, and S. Manus, “Fundamental limits to force detection using quartz tuning forks,“ Rev. Sci. Instrum. 71, 2776-2780 (2000).
[CrossRef]

K. Karrai and R. D. Grober, “Piezoelectric tip-sample distance control for near field optical microscopes,” Appl. Phys. Lett. 66, 1842-1844 (1995).
[CrossRef]

Karraï, K.

K. Karraï and R. D. Grober, “Piezo-electric tuning fork tip-sample distance control for near field optical microscopes,” Ultramicroscopy 61, 197-205 (1995).
[CrossRef]

Kindlemann, P. J.

R. D. Grober, J. Acimovic, J. Schuck, D. Hessman, P. J. Kindlemann, J. Hespanha, A. S. Morse, K. Karrai, I. Tiemann, and S. Manus, “Fundamental limits to force detection using quartz tuning forks,“ Rev. Sci. Instrum. 71, 2776-2780 (2000).
[CrossRef]

Kosterev, A. A.

Krauss, O.

O. Krauss and G. Wurm, “Photophoresis and the pile-up of dust in young circumstellar disks,” Astrophys. J. 630, 1088-1092 (2005).
[CrossRef]

Labrie, D.

J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers--comparison of experiment and theory,” Appl. Phys. B 26, 203-210 (1981).
[CrossRef]

Lebedew, P.

P. Lebedew, “Untersuchungen über die Druckkräfte des Lichtes,” Ann. Phys. 311, 433-458 (1901).
[CrossRef]

Manus, S.

R. D. Grober, J. Acimovic, J. Schuck, D. Hessman, P. J. Kindlemann, J. Hespanha, A. S. Morse, K. Karrai, I. Tiemann, and S. Manus, “Fundamental limits to force detection using quartz tuning forks,“ Rev. Sci. Instrum. 71, 2776-2780 (2000).
[CrossRef]

Morse, A. S.

R. D. Grober, J. Acimovic, J. Schuck, D. Hessman, P. J. Kindlemann, J. Hespanha, A. S. Morse, K. Karrai, I. Tiemann, and S. Manus, “Fundamental limits to force detection using quartz tuning forks,“ Rev. Sci. Instrum. 71, 2776-2780 (2000).
[CrossRef]

Nakato, T.

M. Ota, T. Nakato, and M. Sakamoto, “Effects of environmental gas conditions on laser opto-microengine performance,” Appl. Surf. Sci. 144-145, 480-483 (1999).
[CrossRef]

Nichols, E. F.

E. F. Nichols and G. F. Hull, “Über Strahlungsdruck,” Ann. Phys. 317, 225-263 (1903).
[CrossRef]

Ota, M.

M. Ota, T. Nakato, and M. Sakamoto, “Effects of environmental gas conditions on laser opto-microengine performance,” Appl. Surf. Sci. 144-145, 480-483 (1999).
[CrossRef]

Reid, J.

J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers--comparison of experiment and theory,” Appl. Phys. B 26, 203-210 (1981).
[CrossRef]

Rohatschek, H.

H. Rohatschek, “Semi-empirical model of photophoretic forces for the entire range of pressures,” J. Aerosol Sci. 26, 717-734 (1995).
[CrossRef]

Sakamoto, M.

M. Ota, T. Nakato, and M. Sakamoto, “Effects of environmental gas conditions on laser opto-microengine performance,” Appl. Surf. Sci. 144-145, 480-483 (1999).
[CrossRef]

Schuck, J.

R. D. Grober, J. Acimovic, J. Schuck, D. Hessman, P. J. Kindlemann, J. Hespanha, A. S. Morse, K. Karrai, I. Tiemann, and S. Manus, “Fundamental limits to force detection using quartz tuning forks,“ Rev. Sci. Instrum. 71, 2776-2780 (2000).
[CrossRef]

Tiemann, I.

R. D. Grober, J. Acimovic, J. Schuck, D. Hessman, P. J. Kindlemann, J. Hespanha, A. S. Morse, K. Karrai, I. Tiemann, and S. Manus, “Fundamental limits to force detection using quartz tuning forks,“ Rev. Sci. Instrum. 71, 2776-2780 (2000).
[CrossRef]

Tittel, F. K.

Wurm, G.

O. Krauss and G. Wurm, “Photophoresis and the pile-up of dust in young circumstellar disks,” Astrophys. J. 630, 1088-1092 (2005).
[CrossRef]

Zheng, F.

F. Zheng, “Thermophoresis of spherical and non-spherical particles: a review of theories and experiments,” Adv. Colloid Interface Sci. 97, 255-278 (2002).
[CrossRef] [PubMed]

Adv. Colloid Interface Sci. (1)

F. Zheng, “Thermophoresis of spherical and non-spherical particles: a review of theories and experiments,” Adv. Colloid Interface Sci. 97, 255-278 (2002).
[CrossRef] [PubMed]

Am. J. Phys. (1)

J.-M. Friedt and É. Carry, “Introduction to the quartz tuning fork,” Am. J. Phys. 75, 415-422 (2007).
[CrossRef]

Ann. Phys. (2)

P. Lebedew, “Untersuchungen über die Druckkräfte des Lichtes,” Ann. Phys. 311, 433-458 (1901).
[CrossRef]

E. F. Nichols and G. F. Hull, “Über Strahlungsdruck,” Ann. Phys. 317, 225-263 (1903).
[CrossRef]

Appl. Phys. B (1)

J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers--comparison of experiment and theory,” Appl. Phys. B 26, 203-210 (1981).
[CrossRef]

Appl. Phys. Lett. (2)

K. Karrai and R. D. Grober, “Piezoelectric tip-sample distance control for near field optical microscopes,” Appl. Phys. Lett. 66, 1842-1844 (1995).
[CrossRef]

B. Gotsmann and U. Dürig, “Experimental observation of attractive and repulsive thermal forces on microcantilevers,” Appl. Phys. Lett. 87, 194102 (2005).
[CrossRef]

Appl. Surf. Sci. (1)

M. Ota, T. Nakato, and M. Sakamoto, “Effects of environmental gas conditions on laser opto-microengine performance,” Appl. Surf. Sci. 144-145, 480-483 (1999).
[CrossRef]

Astrophys. J. (1)

O. Krauss and G. Wurm, “Photophoresis and the pile-up of dust in young circumstellar disks,” Astrophys. J. 630, 1088-1092 (2005).
[CrossRef]

J. Aerosol Sci. (1)

H. Rohatschek, “Semi-empirical model of photophoretic forces for the entire range of pressures,” J. Aerosol Sci. 26, 717-734 (1995).
[CrossRef]

Opt. Lett. (1)

Phys. Fluids A (1)

S. Beresnev, V. Chernyak, and G. Fomyagin, “Photophoresis of a spherical particle in a rarefied gas,” Phys. Fluids A 5, 2043-2052 (1993).
[CrossRef]

Rev. Sci. Instrum. (1)

R. D. Grober, J. Acimovic, J. Schuck, D. Hessman, P. J. Kindlemann, J. Hespanha, A. S. Morse, K. Karrai, I. Tiemann, and S. Manus, “Fundamental limits to force detection using quartz tuning forks,“ Rev. Sci. Instrum. 71, 2776-2780 (2000).
[CrossRef]

Ultramicroscopy (1)

K. Karraï and R. D. Grober, “Piezo-electric tuning fork tip-sample distance control for near field optical microscopes,” Ultramicroscopy 61, 197-205 (1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the setup of the detector and geometric dimensions of the tuning fork.

Fig. 2
Fig. 2

Power characteristics of the detector.

Fig. 3
Fig. 3

Dependence of the efficiency of driving the tuning fork on the duty cycle of the rectangular laser pulses. The dots indicate the measurement and the curve the result of a simulation of a damped driven harmonic oscillator.

Fig. 4
Fig. 4

(a) Resonance curve of the tuning fork: the dots depict the measurement; the curve a numerical fit with a Lorentzian. (b) Temporal response behavior: the dots depict the measurement; the curve indicates the numerical fit of an exponential decay.

Fig. 5
Fig. 5

Normalized 2 f signal of an oxygen absorption line ( 30 cm cell with 950 mbars pressure). The tuning fork detector measurement is given as circles; the measurement with a photodiode as a curve.

Fig. 6
Fig. 6

Calibration of the sensing system. The area of a Voigt profile fitted to the twice numerically integrated 2 f absorption signals is plotted.

Fig. 7
Fig. 7

Transmission measurement through an absorption cell filled with 35 mbars NO. The dots depict the measurement with the new radiation pressure based detector; the curve refers to a reference measurement with a commercial mid- infrared detector.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

F = Φ c · P .
F photophoresis F radiation   pressure = c · a 6 k T p = 11.9 p .
p ( x , y ) = d 12 σ ( x , y ) = d 11 σ ( x , y ) .
σ ( x , y ) = 3 · d 12 · E · x L ( L y ) · x / L 3 .
I = 2 i ω W / 2 W / 2 d z 0 L d y p ( T / 2 , y ) .
I x L = i · 2 π f 0 3 d 12 · E · T · W L .
x L = F k Q .
x ( t ) ω 2 + γ x ˙ ( t ) + x ¨ ( t ) = 1 m F ( t ) .
F ( t ) = A ( Ω · τ + j = 1 2 j · π sin ( j · π · τ · Ω ) cos ( 2 π · Ω · ( t 1 2 Ω ) · j ) ) .

Metrics