Abstract

From a copper target, laser-ablated plasma was investigated by spectral- and temporal-resolved emission spectroscopy. With the presence of a 0.8T steady magnetic field, the emission of the expanding plasma showed significant enhancements of the spectral lines for all neutral, singly, and doubly ionized species. The relative enhancements for different species have been studied with temporal-resolved measurement by comparing the spectra obtained with and without the magnetic field. The enhanced emission from the plasma plume is attributed to an increase of the radiative recombination rate in the plasma due to magnetic confinement. The temporal evolution of the plasma parameters, including electron temperature and electron density, was deduced and discussed for the cases with and without a magnetic field.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Sturm, L. Peter, and R. Noll, “Steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet,” Appl. Spectrosc. 54, 1275-1278 (2000).
    [CrossRef]
  2. A. P. M. Michel, M. Lawrence-Snyder, S. M. Angel, and A. D. Chave, “Laser-induced breakdown spectroscopy of bulk aqueous solutions at oceanic pressures: evaluation of key measurement parameters,” Appl. Opt. 46, 2507-2515 (2007).
    [CrossRef] [PubMed]
  3. M. Hanafi, M. M. Omar, and Y. D. Gamal, “Study of laser-induced breakdown spectroscopy of gases,” Radiat. Phys. Chem. 57, 11-20 (2000).
    [CrossRef]
  4. D. W. Hahn and M. M. Lunden, “Detection and analysis of aerosol particles by laser-induced breakdown spectroscopy,” Aerosol Sci. Technol. 33, 30-48 (2000).
    [CrossRef]
  5. D. Anglos, S. Couris, and C. Fotakis, “Laser diagnostics of painted artworks: laser-induced breakdown spectroscopy in pigment identification,” Appl. Spectrosc. 51, 1025-1030(1997).
    [CrossRef]
  6. D. A. Cremers, J. E. Barefield, and A. C. Koskelo, “Remote elemental analysis by laser-induced breakdown spectroscopy using a fiber-optic cable,” Appl. Spectrosc. 49, 857-860(1995).
    [CrossRef]
  7. A. K. Rai, F. Y. Yueh, and J. P. Singh, “Laser-induced breakdown spectroscopy of molten aluminum alloy,” Appl. Opt. 42, 2078-2084 (2003).
    [CrossRef] [PubMed]
  8. L. St.-Onge, M. Sabsabi, and P. Cielo, “Analysis of solids using laser induced plasma spectroscopy in double pulse mode,” Spectrochim. Acta Part B 53, 407-415 (1998).
    [CrossRef]
  9. D. N. Stratis, K. L. Eland, and S. M. Angel, “Effect of pulse delay time on a pre-ablation dual-pulse LIBS plasma,” Appl. Spectrosc. 55, 1287-1433 (2001).
    [CrossRef]
  10. R. A. Multari, L. E. Foster, D. A. Cremers, and M. J. Ferris, “Effect of sampling geometry on elemental emissions in laser induced breakdown spectroscopy,” Appl. Spectrosc. 50, 1483-1499 (1996).
    [CrossRef]
  11. Y. Ito, O. Ueki, and S. Nakamura, “Determination of colloidal iron in water by laser-induced breakdown spectroscopy,” Anal. Chim. Acta 299, 401-405 (1995).
    [CrossRef]
  12. T. Pisarczyk, A. Farynski, H. Fiedorowicz, P. Gogolewski, M. Kusnierz, J. Makowski, R. Miklaszewski, M. Mroczkowski, P. Parys, and M. Szczurek, “Formation of an elongated plasma column by a magnetic confinement of a laser-produced plasma,” Laser Part. Beams 10, 767-776 (1992).
    [CrossRef]
  13. R. Jordan, D. Cole, and J. G. Lunney, “Pulsed laser deposition of particulate-free thin films using a curved magnetic filter,” Appl. Surf. Sci. 110, 403-407 (1997).
    [CrossRef]
  14. F. Kokai, Y. Koga, and R. B. Heimann, “Magnetic field enhanced growth of carbon cluster ions in the laser ablation plume of graphite,” Appl. Surf. Sci. 96-98, 261-266 (1996).
    [CrossRef]
  15. A. Neogi, V. Narayanan, and R. K. Thareja, “Optical emission studies of laser ablated carbon plasma in a curved magnetic field,” Phys. Lett. A 258, 135-140 (1999).
    [CrossRef]
  16. V. N. Rai, A. K. Rai, F. Y. Yueh, and J. P. Singh, “Optical emission from laser-induced breakdown plasma of solid and liquid samples in the presence of a magnetic field,” Appl. Opt. 42, 2085-2093 (2003).
    [CrossRef] [PubMed]
  17. S. S. Harilal, M. S. Tillack, B. O'Shay, C. V. Bindhu, and F. Najmabadi, “Confinement and dynamics of laser-produced plasma expanding across a transverse magnetic field,” Phys. Rev. E 69, 026413 (2004).
    [CrossRef]
  18. M. A. Hafez, “Characteristics of Cu plasma produced by a laser interaction with a solid target,” Plasma Sources Sci. Technol. 12, 185-198 (2003).
    [CrossRef]
  19. J. A. Bittencourt, Fundamentals of Plasma Physics (Pergamon, 1986).
  20. A. Neogi and R. K. Thareja, “Laser-produced carbon plasma expanding in vacuum, low pressure ambient gas and nonuniform magnetic field,” Phys. Plasmas 6, 365-371 (1999).
    [CrossRef]
  21. L. Dirnberger, P. E. Dyer, S. R. Farrar, and P. H. Key, “Observation of magnetic-field-enhanced excitation and ionization in the plume of KRF-laser-ablated magnesium,” Appl. Phys. A 59, 311-316 (1994).
    [CrossRef]
  22. A. Ciucci, M. Corsi, V. Palleschi, S. Rastelli, A. Salvetti, and E. Tognoni, “New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy,” Appl. Spectrosc. 53, 960-964 (1999).
    [CrossRef]
  23. B. Német and L. Kozma, “Time-resolved optical emission spectrometry of Q-switched Nd:YAG laser-induced plasmas from copper targets in air at atmospheric pressure,” Spectrochim. Acta Part B 50, 1869-1888 (1995).
    [CrossRef]
  24. H. R. Griem, Plasma Spectroscopy (Cambridge, 1964).
  25. R. K. Singh and J. Narayan, “Pulsed-laser evaporation technique for deposition of thin films: Physics and theoretical model,” Phys. Rev. B 41, 8843-8852 (1990).
    [CrossRef]
  26. B. Singha, A. Sarma, and J. Chutia, “Influence of magnetic field on plasma sheath and electron temperature,” Rev. Sci. Instrum. 72, 2282-2287 (2001).
    [CrossRef]
  27. M. Sabsabi and P. Cielo, “Quantitative analysis of aluminum alloys by laser-induced breakdown spectroscopy and plasma characterization,” Appl. Spectrosc. 49, 499-507 (1995).
    [CrossRef]

2007 (1)

2004 (1)

S. S. Harilal, M. S. Tillack, B. O'Shay, C. V. Bindhu, and F. Najmabadi, “Confinement and dynamics of laser-produced plasma expanding across a transverse magnetic field,” Phys. Rev. E 69, 026413 (2004).
[CrossRef]

2003 (3)

2001 (2)

B. Singha, A. Sarma, and J. Chutia, “Influence of magnetic field on plasma sheath and electron temperature,” Rev. Sci. Instrum. 72, 2282-2287 (2001).
[CrossRef]

D. N. Stratis, K. L. Eland, and S. M. Angel, “Effect of pulse delay time on a pre-ablation dual-pulse LIBS plasma,” Appl. Spectrosc. 55, 1287-1433 (2001).
[CrossRef]

2000 (3)

M. Hanafi, M. M. Omar, and Y. D. Gamal, “Study of laser-induced breakdown spectroscopy of gases,” Radiat. Phys. Chem. 57, 11-20 (2000).
[CrossRef]

D. W. Hahn and M. M. Lunden, “Detection and analysis of aerosol particles by laser-induced breakdown spectroscopy,” Aerosol Sci. Technol. 33, 30-48 (2000).
[CrossRef]

V. Sturm, L. Peter, and R. Noll, “Steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet,” Appl. Spectrosc. 54, 1275-1278 (2000).
[CrossRef]

1999 (3)

A. Neogi, V. Narayanan, and R. K. Thareja, “Optical emission studies of laser ablated carbon plasma in a curved magnetic field,” Phys. Lett. A 258, 135-140 (1999).
[CrossRef]

A. Ciucci, M. Corsi, V. Palleschi, S. Rastelli, A. Salvetti, and E. Tognoni, “New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy,” Appl. Spectrosc. 53, 960-964 (1999).
[CrossRef]

A. Neogi and R. K. Thareja, “Laser-produced carbon plasma expanding in vacuum, low pressure ambient gas and nonuniform magnetic field,” Phys. Plasmas 6, 365-371 (1999).
[CrossRef]

1998 (1)

L. St.-Onge, M. Sabsabi, and P. Cielo, “Analysis of solids using laser induced plasma spectroscopy in double pulse mode,” Spectrochim. Acta Part B 53, 407-415 (1998).
[CrossRef]

1997 (2)

R. Jordan, D. Cole, and J. G. Lunney, “Pulsed laser deposition of particulate-free thin films using a curved magnetic filter,” Appl. Surf. Sci. 110, 403-407 (1997).
[CrossRef]

D. Anglos, S. Couris, and C. Fotakis, “Laser diagnostics of painted artworks: laser-induced breakdown spectroscopy in pigment identification,” Appl. Spectrosc. 51, 1025-1030(1997).
[CrossRef]

1996 (2)

R. A. Multari, L. E. Foster, D. A. Cremers, and M. J. Ferris, “Effect of sampling geometry on elemental emissions in laser induced breakdown spectroscopy,” Appl. Spectrosc. 50, 1483-1499 (1996).
[CrossRef]

F. Kokai, Y. Koga, and R. B. Heimann, “Magnetic field enhanced growth of carbon cluster ions in the laser ablation plume of graphite,” Appl. Surf. Sci. 96-98, 261-266 (1996).
[CrossRef]

1995 (4)

Y. Ito, O. Ueki, and S. Nakamura, “Determination of colloidal iron in water by laser-induced breakdown spectroscopy,” Anal. Chim. Acta 299, 401-405 (1995).
[CrossRef]

D. A. Cremers, J. E. Barefield, and A. C. Koskelo, “Remote elemental analysis by laser-induced breakdown spectroscopy using a fiber-optic cable,” Appl. Spectrosc. 49, 857-860(1995).
[CrossRef]

B. Német and L. Kozma, “Time-resolved optical emission spectrometry of Q-switched Nd:YAG laser-induced plasmas from copper targets in air at atmospheric pressure,” Spectrochim. Acta Part B 50, 1869-1888 (1995).
[CrossRef]

M. Sabsabi and P. Cielo, “Quantitative analysis of aluminum alloys by laser-induced breakdown spectroscopy and plasma characterization,” Appl. Spectrosc. 49, 499-507 (1995).
[CrossRef]

1994 (1)

L. Dirnberger, P. E. Dyer, S. R. Farrar, and P. H. Key, “Observation of magnetic-field-enhanced excitation and ionization in the plume of KRF-laser-ablated magnesium,” Appl. Phys. A 59, 311-316 (1994).
[CrossRef]

1992 (1)

T. Pisarczyk, A. Farynski, H. Fiedorowicz, P. Gogolewski, M. Kusnierz, J. Makowski, R. Miklaszewski, M. Mroczkowski, P. Parys, and M. Szczurek, “Formation of an elongated plasma column by a magnetic confinement of a laser-produced plasma,” Laser Part. Beams 10, 767-776 (1992).
[CrossRef]

1990 (1)

R. K. Singh and J. Narayan, “Pulsed-laser evaporation technique for deposition of thin films: Physics and theoretical model,” Phys. Rev. B 41, 8843-8852 (1990).
[CrossRef]

Angel, S. M.

Anglos, D.

Barefield, J. E.

Bindhu, C. V.

S. S. Harilal, M. S. Tillack, B. O'Shay, C. V. Bindhu, and F. Najmabadi, “Confinement and dynamics of laser-produced plasma expanding across a transverse magnetic field,” Phys. Rev. E 69, 026413 (2004).
[CrossRef]

Bittencourt, J. A.

J. A. Bittencourt, Fundamentals of Plasma Physics (Pergamon, 1986).

Chave, A. D.

Chutia, J.

B. Singha, A. Sarma, and J. Chutia, “Influence of magnetic field on plasma sheath and electron temperature,” Rev. Sci. Instrum. 72, 2282-2287 (2001).
[CrossRef]

Cielo, P.

L. St.-Onge, M. Sabsabi, and P. Cielo, “Analysis of solids using laser induced plasma spectroscopy in double pulse mode,” Spectrochim. Acta Part B 53, 407-415 (1998).
[CrossRef]

M. Sabsabi and P. Cielo, “Quantitative analysis of aluminum alloys by laser-induced breakdown spectroscopy and plasma characterization,” Appl. Spectrosc. 49, 499-507 (1995).
[CrossRef]

Ciucci, A.

Cole, D.

R. Jordan, D. Cole, and J. G. Lunney, “Pulsed laser deposition of particulate-free thin films using a curved magnetic filter,” Appl. Surf. Sci. 110, 403-407 (1997).
[CrossRef]

Corsi, M.

Couris, S.

Cremers, D. A.

Dirnberger, L.

L. Dirnberger, P. E. Dyer, S. R. Farrar, and P. H. Key, “Observation of magnetic-field-enhanced excitation and ionization in the plume of KRF-laser-ablated magnesium,” Appl. Phys. A 59, 311-316 (1994).
[CrossRef]

Dyer, P. E.

L. Dirnberger, P. E. Dyer, S. R. Farrar, and P. H. Key, “Observation of magnetic-field-enhanced excitation and ionization in the plume of KRF-laser-ablated magnesium,” Appl. Phys. A 59, 311-316 (1994).
[CrossRef]

Eland, K. L.

Farrar, S. R.

L. Dirnberger, P. E. Dyer, S. R. Farrar, and P. H. Key, “Observation of magnetic-field-enhanced excitation and ionization in the plume of KRF-laser-ablated magnesium,” Appl. Phys. A 59, 311-316 (1994).
[CrossRef]

Farynski, A.

T. Pisarczyk, A. Farynski, H. Fiedorowicz, P. Gogolewski, M. Kusnierz, J. Makowski, R. Miklaszewski, M. Mroczkowski, P. Parys, and M. Szczurek, “Formation of an elongated plasma column by a magnetic confinement of a laser-produced plasma,” Laser Part. Beams 10, 767-776 (1992).
[CrossRef]

Ferris, M. J.

Fiedorowicz, H.

T. Pisarczyk, A. Farynski, H. Fiedorowicz, P. Gogolewski, M. Kusnierz, J. Makowski, R. Miklaszewski, M. Mroczkowski, P. Parys, and M. Szczurek, “Formation of an elongated plasma column by a magnetic confinement of a laser-produced plasma,” Laser Part. Beams 10, 767-776 (1992).
[CrossRef]

Foster, L. E.

Fotakis, C.

Gamal, Y. D.

M. Hanafi, M. M. Omar, and Y. D. Gamal, “Study of laser-induced breakdown spectroscopy of gases,” Radiat. Phys. Chem. 57, 11-20 (2000).
[CrossRef]

Gogolewski, P.

T. Pisarczyk, A. Farynski, H. Fiedorowicz, P. Gogolewski, M. Kusnierz, J. Makowski, R. Miklaszewski, M. Mroczkowski, P. Parys, and M. Szczurek, “Formation of an elongated plasma column by a magnetic confinement of a laser-produced plasma,” Laser Part. Beams 10, 767-776 (1992).
[CrossRef]

Griem, H. R.

H. R. Griem, Plasma Spectroscopy (Cambridge, 1964).

Hafez, M. A.

M. A. Hafez, “Characteristics of Cu plasma produced by a laser interaction with a solid target,” Plasma Sources Sci. Technol. 12, 185-198 (2003).
[CrossRef]

Hahn, D. W.

D. W. Hahn and M. M. Lunden, “Detection and analysis of aerosol particles by laser-induced breakdown spectroscopy,” Aerosol Sci. Technol. 33, 30-48 (2000).
[CrossRef]

Hanafi, M.

M. Hanafi, M. M. Omar, and Y. D. Gamal, “Study of laser-induced breakdown spectroscopy of gases,” Radiat. Phys. Chem. 57, 11-20 (2000).
[CrossRef]

Harilal, S. S.

S. S. Harilal, M. S. Tillack, B. O'Shay, C. V. Bindhu, and F. Najmabadi, “Confinement and dynamics of laser-produced plasma expanding across a transverse magnetic field,” Phys. Rev. E 69, 026413 (2004).
[CrossRef]

Heimann, R. B.

F. Kokai, Y. Koga, and R. B. Heimann, “Magnetic field enhanced growth of carbon cluster ions in the laser ablation plume of graphite,” Appl. Surf. Sci. 96-98, 261-266 (1996).
[CrossRef]

Ito, Y.

Y. Ito, O. Ueki, and S. Nakamura, “Determination of colloidal iron in water by laser-induced breakdown spectroscopy,” Anal. Chim. Acta 299, 401-405 (1995).
[CrossRef]

Jordan, R.

R. Jordan, D. Cole, and J. G. Lunney, “Pulsed laser deposition of particulate-free thin films using a curved magnetic filter,” Appl. Surf. Sci. 110, 403-407 (1997).
[CrossRef]

Key, P. H.

L. Dirnberger, P. E. Dyer, S. R. Farrar, and P. H. Key, “Observation of magnetic-field-enhanced excitation and ionization in the plume of KRF-laser-ablated magnesium,” Appl. Phys. A 59, 311-316 (1994).
[CrossRef]

Koga, Y.

F. Kokai, Y. Koga, and R. B. Heimann, “Magnetic field enhanced growth of carbon cluster ions in the laser ablation plume of graphite,” Appl. Surf. Sci. 96-98, 261-266 (1996).
[CrossRef]

Kokai, F.

F. Kokai, Y. Koga, and R. B. Heimann, “Magnetic field enhanced growth of carbon cluster ions in the laser ablation plume of graphite,” Appl. Surf. Sci. 96-98, 261-266 (1996).
[CrossRef]

Koskelo, A. C.

Kozma, L.

B. Német and L. Kozma, “Time-resolved optical emission spectrometry of Q-switched Nd:YAG laser-induced plasmas from copper targets in air at atmospheric pressure,” Spectrochim. Acta Part B 50, 1869-1888 (1995).
[CrossRef]

Kusnierz, M.

T. Pisarczyk, A. Farynski, H. Fiedorowicz, P. Gogolewski, M. Kusnierz, J. Makowski, R. Miklaszewski, M. Mroczkowski, P. Parys, and M. Szczurek, “Formation of an elongated plasma column by a magnetic confinement of a laser-produced plasma,” Laser Part. Beams 10, 767-776 (1992).
[CrossRef]

Lawrence-Snyder, M.

Lunden, M. M.

D. W. Hahn and M. M. Lunden, “Detection and analysis of aerosol particles by laser-induced breakdown spectroscopy,” Aerosol Sci. Technol. 33, 30-48 (2000).
[CrossRef]

Lunney, J. G.

R. Jordan, D. Cole, and J. G. Lunney, “Pulsed laser deposition of particulate-free thin films using a curved magnetic filter,” Appl. Surf. Sci. 110, 403-407 (1997).
[CrossRef]

Makowski, J.

T. Pisarczyk, A. Farynski, H. Fiedorowicz, P. Gogolewski, M. Kusnierz, J. Makowski, R. Miklaszewski, M. Mroczkowski, P. Parys, and M. Szczurek, “Formation of an elongated plasma column by a magnetic confinement of a laser-produced plasma,” Laser Part. Beams 10, 767-776 (1992).
[CrossRef]

Michel, A. P. M.

Miklaszewski, R.

T. Pisarczyk, A. Farynski, H. Fiedorowicz, P. Gogolewski, M. Kusnierz, J. Makowski, R. Miklaszewski, M. Mroczkowski, P. Parys, and M. Szczurek, “Formation of an elongated plasma column by a magnetic confinement of a laser-produced plasma,” Laser Part. Beams 10, 767-776 (1992).
[CrossRef]

Mroczkowski, M.

T. Pisarczyk, A. Farynski, H. Fiedorowicz, P. Gogolewski, M. Kusnierz, J. Makowski, R. Miklaszewski, M. Mroczkowski, P. Parys, and M. Szczurek, “Formation of an elongated plasma column by a magnetic confinement of a laser-produced plasma,” Laser Part. Beams 10, 767-776 (1992).
[CrossRef]

Multari, R. A.

Najmabadi, F.

S. S. Harilal, M. S. Tillack, B. O'Shay, C. V. Bindhu, and F. Najmabadi, “Confinement and dynamics of laser-produced plasma expanding across a transverse magnetic field,” Phys. Rev. E 69, 026413 (2004).
[CrossRef]

Nakamura, S.

Y. Ito, O. Ueki, and S. Nakamura, “Determination of colloidal iron in water by laser-induced breakdown spectroscopy,” Anal. Chim. Acta 299, 401-405 (1995).
[CrossRef]

Narayan, J.

R. K. Singh and J. Narayan, “Pulsed-laser evaporation technique for deposition of thin films: Physics and theoretical model,” Phys. Rev. B 41, 8843-8852 (1990).
[CrossRef]

Narayanan, V.

A. Neogi, V. Narayanan, and R. K. Thareja, “Optical emission studies of laser ablated carbon plasma in a curved magnetic field,” Phys. Lett. A 258, 135-140 (1999).
[CrossRef]

Német, B.

B. Német and L. Kozma, “Time-resolved optical emission spectrometry of Q-switched Nd:YAG laser-induced plasmas from copper targets in air at atmospheric pressure,” Spectrochim. Acta Part B 50, 1869-1888 (1995).
[CrossRef]

Neogi, A.

A. Neogi, V. Narayanan, and R. K. Thareja, “Optical emission studies of laser ablated carbon plasma in a curved magnetic field,” Phys. Lett. A 258, 135-140 (1999).
[CrossRef]

A. Neogi and R. K. Thareja, “Laser-produced carbon plasma expanding in vacuum, low pressure ambient gas and nonuniform magnetic field,” Phys. Plasmas 6, 365-371 (1999).
[CrossRef]

Noll, R.

Omar, M. M.

M. Hanafi, M. M. Omar, and Y. D. Gamal, “Study of laser-induced breakdown spectroscopy of gases,” Radiat. Phys. Chem. 57, 11-20 (2000).
[CrossRef]

O'Shay, B.

S. S. Harilal, M. S. Tillack, B. O'Shay, C. V. Bindhu, and F. Najmabadi, “Confinement and dynamics of laser-produced plasma expanding across a transverse magnetic field,” Phys. Rev. E 69, 026413 (2004).
[CrossRef]

Palleschi, V.

Parys, P.

T. Pisarczyk, A. Farynski, H. Fiedorowicz, P. Gogolewski, M. Kusnierz, J. Makowski, R. Miklaszewski, M. Mroczkowski, P. Parys, and M. Szczurek, “Formation of an elongated plasma column by a magnetic confinement of a laser-produced plasma,” Laser Part. Beams 10, 767-776 (1992).
[CrossRef]

Peter, L.

Pisarczyk, T.

T. Pisarczyk, A. Farynski, H. Fiedorowicz, P. Gogolewski, M. Kusnierz, J. Makowski, R. Miklaszewski, M. Mroczkowski, P. Parys, and M. Szczurek, “Formation of an elongated plasma column by a magnetic confinement of a laser-produced plasma,” Laser Part. Beams 10, 767-776 (1992).
[CrossRef]

Rai, A. K.

Rai, V. N.

Rastelli, S.

Sabsabi, M.

L. St.-Onge, M. Sabsabi, and P. Cielo, “Analysis of solids using laser induced plasma spectroscopy in double pulse mode,” Spectrochim. Acta Part B 53, 407-415 (1998).
[CrossRef]

M. Sabsabi and P. Cielo, “Quantitative analysis of aluminum alloys by laser-induced breakdown spectroscopy and plasma characterization,” Appl. Spectrosc. 49, 499-507 (1995).
[CrossRef]

Salvetti, A.

Sarma, A.

B. Singha, A. Sarma, and J. Chutia, “Influence of magnetic field on plasma sheath and electron temperature,” Rev. Sci. Instrum. 72, 2282-2287 (2001).
[CrossRef]

Singh, J. P.

Singh, R. K.

R. K. Singh and J. Narayan, “Pulsed-laser evaporation technique for deposition of thin films: Physics and theoretical model,” Phys. Rev. B 41, 8843-8852 (1990).
[CrossRef]

Singha, B.

B. Singha, A. Sarma, and J. Chutia, “Influence of magnetic field on plasma sheath and electron temperature,” Rev. Sci. Instrum. 72, 2282-2287 (2001).
[CrossRef]

St.-Onge, L.

L. St.-Onge, M. Sabsabi, and P. Cielo, “Analysis of solids using laser induced plasma spectroscopy in double pulse mode,” Spectrochim. Acta Part B 53, 407-415 (1998).
[CrossRef]

Stratis, D. N.

Sturm, V.

Szczurek, M.

T. Pisarczyk, A. Farynski, H. Fiedorowicz, P. Gogolewski, M. Kusnierz, J. Makowski, R. Miklaszewski, M. Mroczkowski, P. Parys, and M. Szczurek, “Formation of an elongated plasma column by a magnetic confinement of a laser-produced plasma,” Laser Part. Beams 10, 767-776 (1992).
[CrossRef]

Thareja, R. K.

A. Neogi and R. K. Thareja, “Laser-produced carbon plasma expanding in vacuum, low pressure ambient gas and nonuniform magnetic field,” Phys. Plasmas 6, 365-371 (1999).
[CrossRef]

A. Neogi, V. Narayanan, and R. K. Thareja, “Optical emission studies of laser ablated carbon plasma in a curved magnetic field,” Phys. Lett. A 258, 135-140 (1999).
[CrossRef]

Tillack, M. S.

S. S. Harilal, M. S. Tillack, B. O'Shay, C. V. Bindhu, and F. Najmabadi, “Confinement and dynamics of laser-produced plasma expanding across a transverse magnetic field,” Phys. Rev. E 69, 026413 (2004).
[CrossRef]

Tognoni, E.

Ueki, O.

Y. Ito, O. Ueki, and S. Nakamura, “Determination of colloidal iron in water by laser-induced breakdown spectroscopy,” Anal. Chim. Acta 299, 401-405 (1995).
[CrossRef]

Yueh, F. Y.

Aerosol Sci. Technol. (1)

D. W. Hahn and M. M. Lunden, “Detection and analysis of aerosol particles by laser-induced breakdown spectroscopy,” Aerosol Sci. Technol. 33, 30-48 (2000).
[CrossRef]

Anal. Chim. Acta (1)

Y. Ito, O. Ueki, and S. Nakamura, “Determination of colloidal iron in water by laser-induced breakdown spectroscopy,” Anal. Chim. Acta 299, 401-405 (1995).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. A (1)

L. Dirnberger, P. E. Dyer, S. R. Farrar, and P. H. Key, “Observation of magnetic-field-enhanced excitation and ionization in the plume of KRF-laser-ablated magnesium,” Appl. Phys. A 59, 311-316 (1994).
[CrossRef]

Appl. Spectrosc. (7)

Appl. Surf. Sci. (2)

R. Jordan, D. Cole, and J. G. Lunney, “Pulsed laser deposition of particulate-free thin films using a curved magnetic filter,” Appl. Surf. Sci. 110, 403-407 (1997).
[CrossRef]

F. Kokai, Y. Koga, and R. B. Heimann, “Magnetic field enhanced growth of carbon cluster ions in the laser ablation plume of graphite,” Appl. Surf. Sci. 96-98, 261-266 (1996).
[CrossRef]

Laser Part. Beams (1)

T. Pisarczyk, A. Farynski, H. Fiedorowicz, P. Gogolewski, M. Kusnierz, J. Makowski, R. Miklaszewski, M. Mroczkowski, P. Parys, and M. Szczurek, “Formation of an elongated plasma column by a magnetic confinement of a laser-produced plasma,” Laser Part. Beams 10, 767-776 (1992).
[CrossRef]

Phys. Lett. A (1)

A. Neogi, V. Narayanan, and R. K. Thareja, “Optical emission studies of laser ablated carbon plasma in a curved magnetic field,” Phys. Lett. A 258, 135-140 (1999).
[CrossRef]

Phys. Plasmas (1)

A. Neogi and R. K. Thareja, “Laser-produced carbon plasma expanding in vacuum, low pressure ambient gas and nonuniform magnetic field,” Phys. Plasmas 6, 365-371 (1999).
[CrossRef]

Phys. Rev. B (1)

R. K. Singh and J. Narayan, “Pulsed-laser evaporation technique for deposition of thin films: Physics and theoretical model,” Phys. Rev. B 41, 8843-8852 (1990).
[CrossRef]

Phys. Rev. E (1)

S. S. Harilal, M. S. Tillack, B. O'Shay, C. V. Bindhu, and F. Najmabadi, “Confinement and dynamics of laser-produced plasma expanding across a transverse magnetic field,” Phys. Rev. E 69, 026413 (2004).
[CrossRef]

Plasma Sources Sci. Technol. (1)

M. A. Hafez, “Characteristics of Cu plasma produced by a laser interaction with a solid target,” Plasma Sources Sci. Technol. 12, 185-198 (2003).
[CrossRef]

Radiat. Phys. Chem. (1)

M. Hanafi, M. M. Omar, and Y. D. Gamal, “Study of laser-induced breakdown spectroscopy of gases,” Radiat. Phys. Chem. 57, 11-20 (2000).
[CrossRef]

Rev. Sci. Instrum. (1)

B. Singha, A. Sarma, and J. Chutia, “Influence of magnetic field on plasma sheath and electron temperature,” Rev. Sci. Instrum. 72, 2282-2287 (2001).
[CrossRef]

Spectrochim. Acta Part B (2)

B. Német and L. Kozma, “Time-resolved optical emission spectrometry of Q-switched Nd:YAG laser-induced plasmas from copper targets in air at atmospheric pressure,” Spectrochim. Acta Part B 50, 1869-1888 (1995).
[CrossRef]

L. St.-Onge, M. Sabsabi, and P. Cielo, “Analysis of solids using laser induced plasma spectroscopy in double pulse mode,” Spectrochim. Acta Part B 53, 407-415 (1998).
[CrossRef]

Other (2)

J. A. Bittencourt, Fundamentals of Plasma Physics (Pergamon, 1986).

H. R. Griem, Plasma Spectroscopy (Cambridge, 1964).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup for laser-produced copper plasma. PD, photodiode.

Fig. 2
Fig. 2

Arrangement of the location of the sample between two magnets.

Fig. 3
Fig. 3

LIBS spectra of Cu recorded at 1 mm from the surface of the target in the presence and absence of a magnetic field: (a) Cu atomic lines and (b) Cu singly and doubly ionized lines.

Fig. 4
Fig. 4

Enhancement factors of three Cu atomic spectral lines as a function of laser energies (a)  510.32 nm , (b)  515.25 nm , (c)  521.96 nm .

Fig. 5
Fig. 5

Temporal evolution of Cu spectral lines at 510.32 nm without B and with B.

Fig. 6
Fig. 6

Temporal evolution of singly ionized Cu spectral lines at 507.73 nm without B and with B.

Fig. 7
Fig. 7

Temporal evolution of doubly ionized Cu spectral lines at 437.66 nm without B and with B.

Fig. 8
Fig. 8

Variation of electron temperature at different delay time (a) without and (b) with a magnetic field.

Fig. 9
Fig. 9

Variation of electron density evaluated from the Cu 521.96 nm line at different delay time (a) with and (b) without a magnetic field.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

β = 8 π n k T e / B 2 ,
E + V × B = J / σ 0 + ( J × B ) / n e e ,
ln λ m n I m n g m A m n = ln ( N ( T ) U ( T ) ) E m κ T ,
Δ λ 1 / 2 = 2 ω ( N e / 10 16 ) ,
N e 1.6 × 10 12 T 1 / 2 ( E m E n ) 3 .

Metrics