Abstract

An all-solid-state, gain-switched, green laser is developed using a side diode-array pumped Nd:YAG laser and a KTiOPO4 (KTP) crystal as an intracavity frequency doubler. The effect of nonlinear coupling on the pulse width of the fundamental is studied and is found to be in good agreement with the experimental measurement. In this preliminary experiment, a peak power of 40W at 532nm corresponding to a pulse width of 409ns is obtained for an average pump power of 2W. Compared to a Q-switched laser, it is simple and does not require a high voltage RF driver or saturable absorbers in its operation. The laser may be useful where relatively longer nanosecond pulses are required such as eye surgery, micromachining, and underwater communication.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Owyoung, G. R. Hadley, P. Esherick, R. L. Schmitt, and L. A. Rahn, “Gain switching of a monolithic single-frequency laser-diode-excited Nd: YAG laser,” Opt. Lett. 10, 484-486(1985).
    [CrossRef] [PubMed]
  2. L. A. Zenteno, E. Snitzer, H. Po, R. Tumminelli, and F. Hakimi, “Gain switching of a Nd3+-doped fiber laser,” Opt. Lett. 14, 671-673 (1989).
    [CrossRef] [PubMed]
  3. C. Larat, G. Feugnet, M. Schwarz, and J. P. Pocholle, “Gain-switched solid state-laser pumped by high brightness laser diodes,” in Conference on Lasers and Electro-Optics Europe, 1996, Vol. ? of 1996 OSA Technical Digest Series (Optical Society of America, 1996), p. 57.
  4. F. Sheng, J. Chen, and J. H. Ge, “Controllable high repetition rate gain-switched Nd:YVO4 microchip laser,” J. of Zhejiang Univ. SCIENCE Lett. 6, 79-82 (2005).
    [CrossRef]
  5. J. E. Murray and S. E. Harris, “Pulse lengthening via overcoupled internal second-harmonic generation,” J. Appl. Phys. 41, 609-613 (1970).
    [CrossRef]
  6. J. F. Young, J. E. Murray, R. B. Miles, and S. E. Harris, “Q-switched laser with controllable pulse width,” Appl. Phys. Lett. 18, 129-130 (1971).
    [CrossRef]
  7. D. Kracht and R. Brinkmann, “Green Q-switched microsecond laser pulses by overcoupled intracavity second harmonic generation,” Opt. Commun. 231, 319-324 (2004).
    [CrossRef]
  8. A. Yariv, Optical Electronics (Holt, Rinehart and Winston, 1985).
  9. W. Koechner, Solid-State Laser Engineering (Springer, 1999).

2005

F. Sheng, J. Chen, and J. H. Ge, “Controllable high repetition rate gain-switched Nd:YVO4 microchip laser,” J. of Zhejiang Univ. SCIENCE Lett. 6, 79-82 (2005).
[CrossRef]

2004

D. Kracht and R. Brinkmann, “Green Q-switched microsecond laser pulses by overcoupled intracavity second harmonic generation,” Opt. Commun. 231, 319-324 (2004).
[CrossRef]

1989

1985

1971

J. F. Young, J. E. Murray, R. B. Miles, and S. E. Harris, “Q-switched laser with controllable pulse width,” Appl. Phys. Lett. 18, 129-130 (1971).
[CrossRef]

1970

J. E. Murray and S. E. Harris, “Pulse lengthening via overcoupled internal second-harmonic generation,” J. Appl. Phys. 41, 609-613 (1970).
[CrossRef]

Brinkmann, R.

D. Kracht and R. Brinkmann, “Green Q-switched microsecond laser pulses by overcoupled intracavity second harmonic generation,” Opt. Commun. 231, 319-324 (2004).
[CrossRef]

Chen, J.

F. Sheng, J. Chen, and J. H. Ge, “Controllable high repetition rate gain-switched Nd:YVO4 microchip laser,” J. of Zhejiang Univ. SCIENCE Lett. 6, 79-82 (2005).
[CrossRef]

Esherick, P.

Feugnet, G.

C. Larat, G. Feugnet, M. Schwarz, and J. P. Pocholle, “Gain-switched solid state-laser pumped by high brightness laser diodes,” in Conference on Lasers and Electro-Optics Europe, 1996, Vol. ? of 1996 OSA Technical Digest Series (Optical Society of America, 1996), p. 57.

Ge, J. H.

F. Sheng, J. Chen, and J. H. Ge, “Controllable high repetition rate gain-switched Nd:YVO4 microchip laser,” J. of Zhejiang Univ. SCIENCE Lett. 6, 79-82 (2005).
[CrossRef]

Hadley, G. R.

Hakimi, F.

Harris, S. E.

J. F. Young, J. E. Murray, R. B. Miles, and S. E. Harris, “Q-switched laser with controllable pulse width,” Appl. Phys. Lett. 18, 129-130 (1971).
[CrossRef]

J. E. Murray and S. E. Harris, “Pulse lengthening via overcoupled internal second-harmonic generation,” J. Appl. Phys. 41, 609-613 (1970).
[CrossRef]

Koechner, W.

W. Koechner, Solid-State Laser Engineering (Springer, 1999).

Kracht, D.

D. Kracht and R. Brinkmann, “Green Q-switched microsecond laser pulses by overcoupled intracavity second harmonic generation,” Opt. Commun. 231, 319-324 (2004).
[CrossRef]

Larat, C.

C. Larat, G. Feugnet, M. Schwarz, and J. P. Pocholle, “Gain-switched solid state-laser pumped by high brightness laser diodes,” in Conference on Lasers and Electro-Optics Europe, 1996, Vol. ? of 1996 OSA Technical Digest Series (Optical Society of America, 1996), p. 57.

Miles, R. B.

J. F. Young, J. E. Murray, R. B. Miles, and S. E. Harris, “Q-switched laser with controllable pulse width,” Appl. Phys. Lett. 18, 129-130 (1971).
[CrossRef]

Murray, J. E.

J. F. Young, J. E. Murray, R. B. Miles, and S. E. Harris, “Q-switched laser with controllable pulse width,” Appl. Phys. Lett. 18, 129-130 (1971).
[CrossRef]

J. E. Murray and S. E. Harris, “Pulse lengthening via overcoupled internal second-harmonic generation,” J. Appl. Phys. 41, 609-613 (1970).
[CrossRef]

Owyoung, A.

Po, H.

Pocholle, J. P.

C. Larat, G. Feugnet, M. Schwarz, and J. P. Pocholle, “Gain-switched solid state-laser pumped by high brightness laser diodes,” in Conference on Lasers and Electro-Optics Europe, 1996, Vol. ? of 1996 OSA Technical Digest Series (Optical Society of America, 1996), p. 57.

Rahn, L. A.

Schmitt, R. L.

Schwarz, M.

C. Larat, G. Feugnet, M. Schwarz, and J. P. Pocholle, “Gain-switched solid state-laser pumped by high brightness laser diodes,” in Conference on Lasers and Electro-Optics Europe, 1996, Vol. ? of 1996 OSA Technical Digest Series (Optical Society of America, 1996), p. 57.

Sheng, F.

F. Sheng, J. Chen, and J. H. Ge, “Controllable high repetition rate gain-switched Nd:YVO4 microchip laser,” J. of Zhejiang Univ. SCIENCE Lett. 6, 79-82 (2005).
[CrossRef]

Snitzer, E.

Tumminelli, R.

Yariv, A.

A. Yariv, Optical Electronics (Holt, Rinehart and Winston, 1985).

Young, J. F.

J. F. Young, J. E. Murray, R. B. Miles, and S. E. Harris, “Q-switched laser with controllable pulse width,” Appl. Phys. Lett. 18, 129-130 (1971).
[CrossRef]

Zenteno, L. A.

Appl. Phys. Lett.

J. F. Young, J. E. Murray, R. B. Miles, and S. E. Harris, “Q-switched laser with controllable pulse width,” Appl. Phys. Lett. 18, 129-130 (1971).
[CrossRef]

J. Appl. Phys.

J. E. Murray and S. E. Harris, “Pulse lengthening via overcoupled internal second-harmonic generation,” J. Appl. Phys. 41, 609-613 (1970).
[CrossRef]

J. of Zhejiang Univ. SCIENCE Lett.

F. Sheng, J. Chen, and J. H. Ge, “Controllable high repetition rate gain-switched Nd:YVO4 microchip laser,” J. of Zhejiang Univ. SCIENCE Lett. 6, 79-82 (2005).
[CrossRef]

Opt. Commun.

D. Kracht and R. Brinkmann, “Green Q-switched microsecond laser pulses by overcoupled intracavity second harmonic generation,” Opt. Commun. 231, 319-324 (2004).
[CrossRef]

Opt. Lett.

Other

C. Larat, G. Feugnet, M. Schwarz, and J. P. Pocholle, “Gain-switched solid state-laser pumped by high brightness laser diodes,” in Conference on Lasers and Electro-Optics Europe, 1996, Vol. ? of 1996 OSA Technical Digest Series (Optical Society of America, 1996), p. 57.

A. Yariv, Optical Electronics (Holt, Rinehart and Winston, 1985).

W. Koechner, Solid-State Laser Engineering (Springer, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the experimental setup: L, Nd:YAG rod; LDA, laser diode array; M1, rear mirror (HR@ 1064 nm ); M2, concave mirror (HR@ 1064 nm , ROC = 200 mm ); M3, plane mirror (HR@ 532 nm ); M4, plane mirror (HR@ 1064 nm ).

Fig. 2
Fig. 2

Oscilloscope trace of the green output for different pump pulse widths: (a)  200 μs , (b)  40 μs , (c)  100 μs , multisubpulse output.

Fig. 3
Fig. 3

Predicted pulse width of the fundamental radiation with diode current.

Fig. 4
Fig. 4

Calculated variation of the width of SH pulse for different nonlinear coupling (β).

Fig. 5
Fig. 5

Calculated and experimental pulse width of the SH output with different pump current.

Fig. 6
Fig. 6

Pulse width (in units of cavity decay time) of the SH pulses as a function of the detuning of KTP crystal from the exact phase matching for initial inversion n = 3 , 4, and 5 and with fixed value of 2 for the maximum coupling parameter (β).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

T R 2 π [ τ C T M { ( P / P t h ) 1 } 1 ] 1 / 2 .
T R 2 π [ ( η L / c ) ( A / σ ) ( h ν P / P ) ] 1 / 2 .
d n / d T = ϕ . n ,
d ϕ / d T = ϕ ( n 1 ) β ϕ 2 .
n = N / N th = ( σ c / L A ) τ C N , ϕ = ( σ c / L A ) τ C u , T = t / τ C and     β = ( L A / σ c ) K ,
K = h ν ( c / L ) 2 ( P S H / P F 2 ) = ( 8 π h / ω 2 ) ( η ν ) 3 ( d l ) 2 ( c / L ) 2 [ sin 2 ( Δ k l / 2 ) / ( Δ k l / 2 ) 2 ] .
n ( t ) = n ( n n f ) exp ( t / τ c ) .

Metrics