Abstract

We propose a novel approach to designing an optical filter with a flat-top and ultranarrow transmission band by using a sampled fiber Bragg grating (SFBG) having multiple equivalent phase shifts (EPSs). In the proposed approach, multiple EPSs are fabricated by adjusting several sampling periods of the SFBG. The obtained multiple EPSs are then arranged properly to get a flat-top transmission band in the narrow 1st reflection band of the SFBG, leading to the generation of a flat and ultranarrow transmission band. Filters with two or five EPSs are designed by simulation and experiment, with low ripples and ultranarrow 1dB bandwidths observed in transmission bands.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Tanemura, Y. Takushima, and K. Kikuchi, “Narrowband optical filter, with a variable transmission spectrum, using stimulated Brillouin scattering in optical fiber,” Opt. Lett. 27, 1552-1554 (2002).
    [CrossRef]
  2. X. F. Chen, J. P. Yao, F. Zeng, and Z. Deng, “Single-longitudinal-mode fiber ring laser employing an equivalent phase-shifted fiber Bragg grating,” IEEE Photon. Technol. Lett. 17, 1390-1392 (2005).
    [CrossRef]
  3. S. R. Blais and J. P. Yao, “Optical single sideband modulation using an ultranarrow dual-transmission-band fiber Bragg grating,” IEEE Photon. Technol. Lett. 18, 2230 (2006).
    [CrossRef]
  4. Y. T. Dai, X. F. Chen, D. J. Jiang, S. Z. Xie, and C. C. Fan, “Equivalent phase shift in a fiber Bragg grating achieved by changing the sampling period,” IEEE Photon. Technol. Lett. 16, 2284-2286 (2004).
    [CrossRef]
  5. X. Zhu, Y. Lu, G. Zhang, C. Wang, and M. Zhao, “Analytical determination of reflection-peak wavelengths of chirped sampled fiber Bragg gratings,” Appl. Opt. 47, 1135-1140 (2008).
    [CrossRef] [PubMed]
  6. B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, “Long periodic superstructure Bragg gratings in optical fibres,” Electron. Lett. 30, 1620-1622 (1994).
    [CrossRef]
  7. J. Azaña, C. Wang, and L. R. Chen, “Spectral self-imaging phenomena in sampled Bragg gratings,” J. Opt. Soc. Am. B 22, 1829-1841 (2005).
    [CrossRef]
  8. X. H. Zou, W. Pan, B. Luo, M. Y. Wang, and W. L. Zhang, “Spectral Talbot effect in sampled fiber Bragg gratings with super-periodic structures,” Opt. Express 15, 8812-8817(2007).
    [CrossRef] [PubMed]
  9. X. M. Liu, “A novel dual-wavelength DFB fiber laser based on symmetrical FBG structure,” IEEE Photon. Technol. Lett. 19, 632-635 (2007).
    [CrossRef]
  10. M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, “Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation,” IEEE Photon. Technol. Lett. 10, 842-844 (1998).
    [CrossRef]
  11. H. Li, Y. Sheng, Y. Li, and J. E. Rothenberg, “Phase-only sampled fiber Bragg gratings for high-channel-count chromatic dispersion compensation,” J. Lightwave Technol. 21, 2074-2083 (2003).
    [CrossRef]
  12. K. Y. Kolossovski, R. A. Sammut, A. V. Buryak, and D. Y. Stepanov, “Three-step design optimization for multi-channel fiber Bragg gratings,” Opt. Express 11, 1029-1038 (2003).
    [CrossRef] [PubMed]
  13. N. Yusuke and Y. Shinji, “Densification of sampled fiber Bragg gratings using multiple phase shift (MPS) technique,” J. Lightwave Technol. 23, 1808-1817 (2005).
    [CrossRef]
  14. G. P. Agrawal and S. Radic, “Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing,” IEEE Photon. Technol. Lett. 6, 995-997 (1994).
    [CrossRef]
  15. R. Zengerle and O. Leminger, “Phase-shifted Bragg-grating filters with improved transmission characteristics,” J. Lightwave Technol. 13, 2354-2358 (1995).
    [CrossRef]
  16. F. Bakhti and P. Sansonetti, “Design and realization of multiple quarter-wave phase-shifts UV-written bandpass filters in optical fibers,” J. Lightwave Technol. 15, 1433-1437 (1997).
    [CrossRef]
  17. L. Wei and J. W. Y. Lit, “Phase-shifted Bragg grating filters with symmetrical structures,” J. Lightwave Technol. 15, 1405-1410 (1997).
    [CrossRef]
  18. J. Skaar, L. Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron. 37, 165-173 (2001).
    [CrossRef]

2008 (1)

2007 (2)

2006 (1)

S. R. Blais and J. P. Yao, “Optical single sideband modulation using an ultranarrow dual-transmission-band fiber Bragg grating,” IEEE Photon. Technol. Lett. 18, 2230 (2006).
[CrossRef]

2005 (3)

2004 (1)

Y. T. Dai, X. F. Chen, D. J. Jiang, S. Z. Xie, and C. C. Fan, “Equivalent phase shift in a fiber Bragg grating achieved by changing the sampling period,” IEEE Photon. Technol. Lett. 16, 2284-2286 (2004).
[CrossRef]

2003 (2)

2002 (1)

2001 (1)

J. Skaar, L. Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron. 37, 165-173 (2001).
[CrossRef]

1998 (1)

M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, “Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation,” IEEE Photon. Technol. Lett. 10, 842-844 (1998).
[CrossRef]

1997 (2)

F. Bakhti and P. Sansonetti, “Design and realization of multiple quarter-wave phase-shifts UV-written bandpass filters in optical fibers,” J. Lightwave Technol. 15, 1433-1437 (1997).
[CrossRef]

L. Wei and J. W. Y. Lit, “Phase-shifted Bragg grating filters with symmetrical structures,” J. Lightwave Technol. 15, 1405-1410 (1997).
[CrossRef]

1995 (1)

R. Zengerle and O. Leminger, “Phase-shifted Bragg-grating filters with improved transmission characteristics,” J. Lightwave Technol. 13, 2354-2358 (1995).
[CrossRef]

1994 (2)

G. P. Agrawal and S. Radic, “Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing,” IEEE Photon. Technol. Lett. 6, 995-997 (1994).
[CrossRef]

B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, “Long periodic superstructure Bragg gratings in optical fibres,” Electron. Lett. 30, 1620-1622 (1994).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal and S. Radic, “Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing,” IEEE Photon. Technol. Lett. 6, 995-997 (1994).
[CrossRef]

Azaña, J.

Bakhti, F.

F. Bakhti and P. Sansonetti, “Design and realization of multiple quarter-wave phase-shifts UV-written bandpass filters in optical fibers,” J. Lightwave Technol. 15, 1433-1437 (1997).
[CrossRef]

Blais, S. R.

S. R. Blais and J. P. Yao, “Optical single sideband modulation using an ultranarrow dual-transmission-band fiber Bragg grating,” IEEE Photon. Technol. Lett. 18, 2230 (2006).
[CrossRef]

Buryak, A. V.

Chen, L. R.

Chen, X. F.

X. F. Chen, J. P. Yao, F. Zeng, and Z. Deng, “Single-longitudinal-mode fiber ring laser employing an equivalent phase-shifted fiber Bragg grating,” IEEE Photon. Technol. Lett. 17, 1390-1392 (2005).
[CrossRef]

Y. T. Dai, X. F. Chen, D. J. Jiang, S. Z. Xie, and C. C. Fan, “Equivalent phase shift in a fiber Bragg grating achieved by changing the sampling period,” IEEE Photon. Technol. Lett. 16, 2284-2286 (2004).
[CrossRef]

Cole, M. J.

M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, “Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation,” IEEE Photon. Technol. Lett. 10, 842-844 (1998).
[CrossRef]

Dai, Y. T.

Y. T. Dai, X. F. Chen, D. J. Jiang, S. Z. Xie, and C. C. Fan, “Equivalent phase shift in a fiber Bragg grating achieved by changing the sampling period,” IEEE Photon. Technol. Lett. 16, 2284-2286 (2004).
[CrossRef]

Deng, Z.

X. F. Chen, J. P. Yao, F. Zeng, and Z. Deng, “Single-longitudinal-mode fiber ring laser employing an equivalent phase-shifted fiber Bragg grating,” IEEE Photon. Technol. Lett. 17, 1390-1392 (2005).
[CrossRef]

Durkin, M. K.

M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, “Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation,” IEEE Photon. Technol. Lett. 10, 842-844 (1998).
[CrossRef]

Eggleton, B. J.

B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, “Long periodic superstructure Bragg gratings in optical fibres,” Electron. Lett. 30, 1620-1622 (1994).
[CrossRef]

Erdogan, T.

J. Skaar, L. Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron. 37, 165-173 (2001).
[CrossRef]

Fan, C. C.

Y. T. Dai, X. F. Chen, D. J. Jiang, S. Z. Xie, and C. C. Fan, “Equivalent phase shift in a fiber Bragg grating achieved by changing the sampling period,” IEEE Photon. Technol. Lett. 16, 2284-2286 (2004).
[CrossRef]

Ibsen, M.

M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, “Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation,” IEEE Photon. Technol. Lett. 10, 842-844 (1998).
[CrossRef]

Jiang, D. J.

Y. T. Dai, X. F. Chen, D. J. Jiang, S. Z. Xie, and C. C. Fan, “Equivalent phase shift in a fiber Bragg grating achieved by changing the sampling period,” IEEE Photon. Technol. Lett. 16, 2284-2286 (2004).
[CrossRef]

Kikuchi, K.

Kolossovski, K. Y.

Krug, P. A.

B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, “Long periodic superstructure Bragg gratings in optical fibres,” Electron. Lett. 30, 1620-1622 (1994).
[CrossRef]

Laming, R. I.

M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, “Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation,” IEEE Photon. Technol. Lett. 10, 842-844 (1998).
[CrossRef]

Leminger, O.

R. Zengerle and O. Leminger, “Phase-shifted Bragg-grating filters with improved transmission characteristics,” J. Lightwave Technol. 13, 2354-2358 (1995).
[CrossRef]

Li, H.

Li, Y.

Lit, J. W. Y.

L. Wei and J. W. Y. Lit, “Phase-shifted Bragg grating filters with symmetrical structures,” J. Lightwave Technol. 15, 1405-1410 (1997).
[CrossRef]

Liu, X. M.

X. M. Liu, “A novel dual-wavelength DFB fiber laser based on symmetrical FBG structure,” IEEE Photon. Technol. Lett. 19, 632-635 (2007).
[CrossRef]

Lu, Y.

Luo, B.

Ouellette, F.

B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, “Long periodic superstructure Bragg gratings in optical fibres,” Electron. Lett. 30, 1620-1622 (1994).
[CrossRef]

Pan, W.

Poladian, L.

B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, “Long periodic superstructure Bragg gratings in optical fibres,” Electron. Lett. 30, 1620-1622 (1994).
[CrossRef]

Radic, S.

G. P. Agrawal and S. Radic, “Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing,” IEEE Photon. Technol. Lett. 6, 995-997 (1994).
[CrossRef]

Rothenberg, J. E.

Sammut, R. A.

Sansonetti, P.

F. Bakhti and P. Sansonetti, “Design and realization of multiple quarter-wave phase-shifts UV-written bandpass filters in optical fibers,” J. Lightwave Technol. 15, 1433-1437 (1997).
[CrossRef]

Sheng, Y.

Shinji, Y.

Skaar, J.

J. Skaar, L. Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron. 37, 165-173 (2001).
[CrossRef]

Stepanov, D. Y.

Takushima, Y.

Tanemura, T.

Wang, C.

Wang, L.

J. Skaar, L. Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron. 37, 165-173 (2001).
[CrossRef]

Wang, M. Y.

Wei, L.

L. Wei and J. W. Y. Lit, “Phase-shifted Bragg grating filters with symmetrical structures,” J. Lightwave Technol. 15, 1405-1410 (1997).
[CrossRef]

Xie, S. Z.

Y. T. Dai, X. F. Chen, D. J. Jiang, S. Z. Xie, and C. C. Fan, “Equivalent phase shift in a fiber Bragg grating achieved by changing the sampling period,” IEEE Photon. Technol. Lett. 16, 2284-2286 (2004).
[CrossRef]

Yao, J. P.

S. R. Blais and J. P. Yao, “Optical single sideband modulation using an ultranarrow dual-transmission-band fiber Bragg grating,” IEEE Photon. Technol. Lett. 18, 2230 (2006).
[CrossRef]

X. F. Chen, J. P. Yao, F. Zeng, and Z. Deng, “Single-longitudinal-mode fiber ring laser employing an equivalent phase-shifted fiber Bragg grating,” IEEE Photon. Technol. Lett. 17, 1390-1392 (2005).
[CrossRef]

Yusuke, N.

Zeng, F.

X. F. Chen, J. P. Yao, F. Zeng, and Z. Deng, “Single-longitudinal-mode fiber ring laser employing an equivalent phase-shifted fiber Bragg grating,” IEEE Photon. Technol. Lett. 17, 1390-1392 (2005).
[CrossRef]

Zengerle, R.

R. Zengerle and O. Leminger, “Phase-shifted Bragg-grating filters with improved transmission characteristics,” J. Lightwave Technol. 13, 2354-2358 (1995).
[CrossRef]

Zhang, G.

Zhang, W. L.

Zhao, M.

Zhu, X.

Zou, X. H.

Appl. Opt. (1)

Electron. Lett. (1)

B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, “Long periodic superstructure Bragg gratings in optical fibres,” Electron. Lett. 30, 1620-1622 (1994).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. Skaar, L. Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron. 37, 165-173 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (6)

X. F. Chen, J. P. Yao, F. Zeng, and Z. Deng, “Single-longitudinal-mode fiber ring laser employing an equivalent phase-shifted fiber Bragg grating,” IEEE Photon. Technol. Lett. 17, 1390-1392 (2005).
[CrossRef]

S. R. Blais and J. P. Yao, “Optical single sideband modulation using an ultranarrow dual-transmission-band fiber Bragg grating,” IEEE Photon. Technol. Lett. 18, 2230 (2006).
[CrossRef]

Y. T. Dai, X. F. Chen, D. J. Jiang, S. Z. Xie, and C. C. Fan, “Equivalent phase shift in a fiber Bragg grating achieved by changing the sampling period,” IEEE Photon. Technol. Lett. 16, 2284-2286 (2004).
[CrossRef]

X. M. Liu, “A novel dual-wavelength DFB fiber laser based on symmetrical FBG structure,” IEEE Photon. Technol. Lett. 19, 632-635 (2007).
[CrossRef]

M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, “Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation,” IEEE Photon. Technol. Lett. 10, 842-844 (1998).
[CrossRef]

G. P. Agrawal and S. Radic, “Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing,” IEEE Photon. Technol. Lett. 6, 995-997 (1994).
[CrossRef]

J. Lightwave Technol. (5)

R. Zengerle and O. Leminger, “Phase-shifted Bragg-grating filters with improved transmission characteristics,” J. Lightwave Technol. 13, 2354-2358 (1995).
[CrossRef]

F. Bakhti and P. Sansonetti, “Design and realization of multiple quarter-wave phase-shifts UV-written bandpass filters in optical fibers,” J. Lightwave Technol. 15, 1433-1437 (1997).
[CrossRef]

L. Wei and J. W. Y. Lit, “Phase-shifted Bragg grating filters with symmetrical structures,” J. Lightwave Technol. 15, 1405-1410 (1997).
[CrossRef]

H. Li, Y. Sheng, Y. Li, and J. E. Rothenberg, “Phase-only sampled fiber Bragg gratings for high-channel-count chromatic dispersion compensation,” J. Lightwave Technol. 21, 2074-2083 (2003).
[CrossRef]

N. Yusuke and Y. Shinji, “Densification of sampled fiber Bragg gratings using multiple phase shift (MPS) technique,” J. Lightwave Technol. 23, 1808-1817 (2005).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (2)

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of the distribution of multiple EPSs: (a) SFBG with increments in several sampling periods and (b) the corresponding 1 st ghost grating with multiple EPSs.

Fig. 2
Fig. 2

Simulated transmission spectra of three designed filters: (a) a 20-sample-period SFBG with two EPSs, (b) a 32-sample-period SFBG with five EPSs, and (c) a 76-sample-period SFBG with five EPSs.

Fig. 3
Fig. 3

Impact of Δ n on the 1 dB bandwidth and the peak-to-notch contrast ratio.

Fig. 4
Fig. 4

Measured transmission bands of the designed filter with five EPSs: (a) the transmission band in the 1 st reflection band and (b) the transmission band in the + 1 st reflection band.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ n ( z ) = 1 2 Δ n exp [ j ( 2 π Λ z ) ] × s ( z ) + c . c ,
Δ n m ( z ) = { 1 2 Δ n F m exp [ j ( 2 π z Λ + 2 m π z P ) ] + c . c , z z 0 1 2 Δ n F m exp [ j ( 2 π z Λ + 2 m π z P Δ Φ ) ] + c . c , z > z 0 ,
Δ Φ = 2 m π Δ P P , m = , 2 , 1 , 0 , + 1 , + 2 , ,

Metrics