Abstract

The characteristics of tapered lens fibers (TLFs) are analyzed by using a finite-difference time-domain (FDTD) method. Two types of TLFs are considered, namely, a tapered-cladding TLF and a tapered-core TLF. The radial FDTD method is first used to simulate light focusing for these two types of TLFs. It is shown that the tapered-core TLF has a smaller focus spot size and a larger transmission loss than the tapered-cladding TLF. The butt-coupling between a TLF of either type and a Si rib waveguide is then simulated by a three-dimensional FDTD method. The tapered-core TLF has a smaller coupling loss to the Si rib waveguide but a similar total loss (the sum of the coupling loss and the transmission loss), as compared with the tapered-cladding TLF.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si photonic wire waveguide devices,” IEICE Trans. Electron. E90-C, 59-64 (2007).
    [CrossRef]
  2. K. Yamada, T. Tsuchizawa, T. Watanabe, J.-I. Takahashi, H. Fukuda, M. Takahashi, T. Shoji, S. Uchiyama, E. Tamechika, S.-I. Itabashi, and H. Morita, “Silicon wire waveguiding system: fundamental characteristics and applications,” Electron. Commun. Jpn. 2, Electron. 89, 42-55 (2006).
    [CrossRef]
  3. D. Dai, L. Liu, L. Wosinski, and S. He, “Design and fabrication of ultra-small overlapped AWG demultiplexer based on α-Si wire waveguides,” Electron. Lett. 42, 400-402 (2006).
    [CrossRef]
  4. T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibers,” Electron. Lett. 38, 1669-1670 (2002).
    [CrossRef]
  5. D. Dai, S. He, and H. Tsang, “Bilevel mode converter between a silicon nanowire waveguide and a larger waveguide,” J. Lightwave Technol. 24, 2428 (2006).
    [CrossRef]
  6. F. V. Laere, G. Reolkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Krauss, and R. Baets, “Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides,” J. Lightwave Technol. 25, 151-156 (2007).
    [CrossRef]
  7. C. W. Barnard and J. W. Y. Lit, “Single-mode fiber microlens with controllable spot size,” Appl. Opt. 30, 1958-1962 (1991).
    [CrossRef] [PubMed]
  8. M. Kawachi, T. Edahiro, and H. Toba, “Microlens formation on VAD single-mode fibre ends,” Electron. Lett. 18, 71-72 (1982).
    [CrossRef]
  9. A. Malki, R. Bachelot, and F. V. Lauwe, “Two-step process for micro-lens-fibre fabrication using a continuous CO2 laser source,” J. Opt. A Pure Appl. Opt. 3, 291-295 (2001).
    [CrossRef]
  10. S. Mukhopadhyay, S. Gangopadhyay, and S. Sarkar, “Coupling of a laser diode to a monomode elliptic-core fiber via a hyperbolic microlens on the fiber tip: efficiency computation with the ABCD matrix,” Opt. Eng. 46, 025008 (2007).
    [CrossRef]
  11. B. Hermansson, D. Yevick, and J. Saijonmaa, “Propagation-beam-method analysis of two-dimensional microlenses and three-dimmensional taper structures,” J. Opt. Soc. Am. A 1, 663-671 (1984).
    [CrossRef]
  12. N. Axelrod, A. Lewis, N. B. Yosef, R. Dekhter, G. Fish, and A. Kroll, “Small-focus integral fiber lenses: modeling with the segmented beam-propagation method and near-field characterization,” Appl. Opt. 44, 1270-1282 (2005).
    [CrossRef] [PubMed]
  13. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).
  14. L. Liu and S. He, “Design of metal-cladded near-field fiber probes with a dispersive body-of-revolution finite-difference time-domain method,” Appl. Opt. 44, 3429-3437 (2005).
    [CrossRef] [PubMed]

2007 (3)

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si photonic wire waveguide devices,” IEICE Trans. Electron. E90-C, 59-64 (2007).
[CrossRef]

S. Mukhopadhyay, S. Gangopadhyay, and S. Sarkar, “Coupling of a laser diode to a monomode elliptic-core fiber via a hyperbolic microlens on the fiber tip: efficiency computation with the ABCD matrix,” Opt. Eng. 46, 025008 (2007).
[CrossRef]

F. V. Laere, G. Reolkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Krauss, and R. Baets, “Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides,” J. Lightwave Technol. 25, 151-156 (2007).
[CrossRef]

2006 (3)

D. Dai, S. He, and H. Tsang, “Bilevel mode converter between a silicon nanowire waveguide and a larger waveguide,” J. Lightwave Technol. 24, 2428 (2006).
[CrossRef]

K. Yamada, T. Tsuchizawa, T. Watanabe, J.-I. Takahashi, H. Fukuda, M. Takahashi, T. Shoji, S. Uchiyama, E. Tamechika, S.-I. Itabashi, and H. Morita, “Silicon wire waveguiding system: fundamental characteristics and applications,” Electron. Commun. Jpn. 2, Electron. 89, 42-55 (2006).
[CrossRef]

D. Dai, L. Liu, L. Wosinski, and S. He, “Design and fabrication of ultra-small overlapped AWG demultiplexer based on α-Si wire waveguides,” Electron. Lett. 42, 400-402 (2006).
[CrossRef]

2005 (2)

2002 (1)

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibers,” Electron. Lett. 38, 1669-1670 (2002).
[CrossRef]

2001 (1)

A. Malki, R. Bachelot, and F. V. Lauwe, “Two-step process for micro-lens-fibre fabrication using a continuous CO2 laser source,” J. Opt. A Pure Appl. Opt. 3, 291-295 (2001).
[CrossRef]

1991 (1)

1984 (1)

1982 (1)

M. Kawachi, T. Edahiro, and H. Toba, “Microlens formation on VAD single-mode fibre ends,” Electron. Lett. 18, 71-72 (1982).
[CrossRef]

Arakawa, Y.

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si photonic wire waveguide devices,” IEICE Trans. Electron. E90-C, 59-64 (2007).
[CrossRef]

Axelrod, N.

Ayre, M.

Bachelot, R.

A. Malki, R. Bachelot, and F. V. Lauwe, “Two-step process for micro-lens-fibre fabrication using a continuous CO2 laser source,” J. Opt. A Pure Appl. Opt. 3, 291-295 (2001).
[CrossRef]

Baets, R.

Barnard, C. W.

Chu, T.

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si photonic wire waveguide devices,” IEICE Trans. Electron. E90-C, 59-64 (2007).
[CrossRef]

Dai, D.

D. Dai, S. He, and H. Tsang, “Bilevel mode converter between a silicon nanowire waveguide and a larger waveguide,” J. Lightwave Technol. 24, 2428 (2006).
[CrossRef]

D. Dai, L. Liu, L. Wosinski, and S. He, “Design and fabrication of ultra-small overlapped AWG demultiplexer based on α-Si wire waveguides,” Electron. Lett. 42, 400-402 (2006).
[CrossRef]

Dekhter, R.

Edahiro, T.

M. Kawachi, T. Edahiro, and H. Toba, “Microlens formation on VAD single-mode fibre ends,” Electron. Lett. 18, 71-72 (1982).
[CrossRef]

Fish, G.

Fukuda, H.

K. Yamada, T. Tsuchizawa, T. Watanabe, J.-I. Takahashi, H. Fukuda, M. Takahashi, T. Shoji, S. Uchiyama, E. Tamechika, S.-I. Itabashi, and H. Morita, “Silicon wire waveguiding system: fundamental characteristics and applications,” Electron. Commun. Jpn. 2, Electron. 89, 42-55 (2006).
[CrossRef]

Gangopadhyay, S.

S. Mukhopadhyay, S. Gangopadhyay, and S. Sarkar, “Coupling of a laser diode to a monomode elliptic-core fiber via a hyperbolic microlens on the fiber tip: efficiency computation with the ABCD matrix,” Opt. Eng. 46, 025008 (2007).
[CrossRef]

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

He, S.

Hermansson, B.

Ishida, S.

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si photonic wire waveguide devices,” IEICE Trans. Electron. E90-C, 59-64 (2007).
[CrossRef]

Itabashi, S.-I.

K. Yamada, T. Tsuchizawa, T. Watanabe, J.-I. Takahashi, H. Fukuda, M. Takahashi, T. Shoji, S. Uchiyama, E. Tamechika, S.-I. Itabashi, and H. Morita, “Silicon wire waveguiding system: fundamental characteristics and applications,” Electron. Commun. Jpn. 2, Electron. 89, 42-55 (2006).
[CrossRef]

Kawachi, M.

M. Kawachi, T. Edahiro, and H. Toba, “Microlens formation on VAD single-mode fibre ends,” Electron. Lett. 18, 71-72 (1982).
[CrossRef]

Krauss, T. F.

Kroll, A.

Laere, F. V.

Lauwe, F. V.

A. Malki, R. Bachelot, and F. V. Lauwe, “Two-step process for micro-lens-fibre fabrication using a continuous CO2 laser source,” J. Opt. A Pure Appl. Opt. 3, 291-295 (2001).
[CrossRef]

Lewis, A.

Lit, J. W. Y.

Liu, L.

D. Dai, L. Liu, L. Wosinski, and S. He, “Design and fabrication of ultra-small overlapped AWG demultiplexer based on α-Si wire waveguides,” Electron. Lett. 42, 400-402 (2006).
[CrossRef]

L. Liu and S. He, “Design of metal-cladded near-field fiber probes with a dispersive body-of-revolution finite-difference time-domain method,” Appl. Opt. 44, 3429-3437 (2005).
[CrossRef] [PubMed]

Malki, A.

A. Malki, R. Bachelot, and F. V. Lauwe, “Two-step process for micro-lens-fibre fabrication using a continuous CO2 laser source,” J. Opt. A Pure Appl. Opt. 3, 291-295 (2001).
[CrossRef]

Morita, H.

K. Yamada, T. Tsuchizawa, T. Watanabe, J.-I. Takahashi, H. Fukuda, M. Takahashi, T. Shoji, S. Uchiyama, E. Tamechika, S.-I. Itabashi, and H. Morita, “Silicon wire waveguiding system: fundamental characteristics and applications,” Electron. Commun. Jpn. 2, Electron. 89, 42-55 (2006).
[CrossRef]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibers,” Electron. Lett. 38, 1669-1670 (2002).
[CrossRef]

Mukhopadhyay, S.

S. Mukhopadhyay, S. Gangopadhyay, and S. Sarkar, “Coupling of a laser diode to a monomode elliptic-core fiber via a hyperbolic microlens on the fiber tip: efficiency computation with the ABCD matrix,” Opt. Eng. 46, 025008 (2007).
[CrossRef]

Reolkens, G.

Saijonmaa, J.

Sarkar, S.

S. Mukhopadhyay, S. Gangopadhyay, and S. Sarkar, “Coupling of a laser diode to a monomode elliptic-core fiber via a hyperbolic microlens on the fiber tip: efficiency computation with the ABCD matrix,” Opt. Eng. 46, 025008 (2007).
[CrossRef]

Schrauwen, J.

Shoji, T.

K. Yamada, T. Tsuchizawa, T. Watanabe, J.-I. Takahashi, H. Fukuda, M. Takahashi, T. Shoji, S. Uchiyama, E. Tamechika, S.-I. Itabashi, and H. Morita, “Silicon wire waveguiding system: fundamental characteristics and applications,” Electron. Commun. Jpn. 2, Electron. 89, 42-55 (2006).
[CrossRef]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibers,” Electron. Lett. 38, 1669-1670 (2002).
[CrossRef]

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

Taillaert, D.

Takahashi, J.-I.

K. Yamada, T. Tsuchizawa, T. Watanabe, J.-I. Takahashi, H. Fukuda, M. Takahashi, T. Shoji, S. Uchiyama, E. Tamechika, S.-I. Itabashi, and H. Morita, “Silicon wire waveguiding system: fundamental characteristics and applications,” Electron. Commun. Jpn. 2, Electron. 89, 42-55 (2006).
[CrossRef]

Takahashi, M.

K. Yamada, T. Tsuchizawa, T. Watanabe, J.-I. Takahashi, H. Fukuda, M. Takahashi, T. Shoji, S. Uchiyama, E. Tamechika, S.-I. Itabashi, and H. Morita, “Silicon wire waveguiding system: fundamental characteristics and applications,” Electron. Commun. Jpn. 2, Electron. 89, 42-55 (2006).
[CrossRef]

Tamechika, E.

K. Yamada, T. Tsuchizawa, T. Watanabe, J.-I. Takahashi, H. Fukuda, M. Takahashi, T. Shoji, S. Uchiyama, E. Tamechika, S.-I. Itabashi, and H. Morita, “Silicon wire waveguiding system: fundamental characteristics and applications,” Electron. Commun. Jpn. 2, Electron. 89, 42-55 (2006).
[CrossRef]

Toba, H.

M. Kawachi, T. Edahiro, and H. Toba, “Microlens formation on VAD single-mode fibre ends,” Electron. Lett. 18, 71-72 (1982).
[CrossRef]

Tsang, H.

Tsuchizawa, T.

K. Yamada, T. Tsuchizawa, T. Watanabe, J.-I. Takahashi, H. Fukuda, M. Takahashi, T. Shoji, S. Uchiyama, E. Tamechika, S.-I. Itabashi, and H. Morita, “Silicon wire waveguiding system: fundamental characteristics and applications,” Electron. Commun. Jpn. 2, Electron. 89, 42-55 (2006).
[CrossRef]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibers,” Electron. Lett. 38, 1669-1670 (2002).
[CrossRef]

Uchiyama, S.

K. Yamada, T. Tsuchizawa, T. Watanabe, J.-I. Takahashi, H. Fukuda, M. Takahashi, T. Shoji, S. Uchiyama, E. Tamechika, S.-I. Itabashi, and H. Morita, “Silicon wire waveguiding system: fundamental characteristics and applications,” Electron. Commun. Jpn. 2, Electron. 89, 42-55 (2006).
[CrossRef]

Van Thourhout, D.

Watanabe, T.

K. Yamada, T. Tsuchizawa, T. Watanabe, J.-I. Takahashi, H. Fukuda, M. Takahashi, T. Shoji, S. Uchiyama, E. Tamechika, S.-I. Itabashi, and H. Morita, “Silicon wire waveguiding system: fundamental characteristics and applications,” Electron. Commun. Jpn. 2, Electron. 89, 42-55 (2006).
[CrossRef]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibers,” Electron. Lett. 38, 1669-1670 (2002).
[CrossRef]

Wosinski, L.

D. Dai, L. Liu, L. Wosinski, and S. He, “Design and fabrication of ultra-small overlapped AWG demultiplexer based on α-Si wire waveguides,” Electron. Lett. 42, 400-402 (2006).
[CrossRef]

Yamada, H.

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si photonic wire waveguide devices,” IEICE Trans. Electron. E90-C, 59-64 (2007).
[CrossRef]

Yamada, K.

K. Yamada, T. Tsuchizawa, T. Watanabe, J.-I. Takahashi, H. Fukuda, M. Takahashi, T. Shoji, S. Uchiyama, E. Tamechika, S.-I. Itabashi, and H. Morita, “Silicon wire waveguiding system: fundamental characteristics and applications,” Electron. Commun. Jpn. 2, Electron. 89, 42-55 (2006).
[CrossRef]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibers,” Electron. Lett. 38, 1669-1670 (2002).
[CrossRef]

Yevick, D.

Yosef, N. B.

Appl. Opt. (3)

Electron. Commun. Jpn. 2, Electron. (1)

K. Yamada, T. Tsuchizawa, T. Watanabe, J.-I. Takahashi, H. Fukuda, M. Takahashi, T. Shoji, S. Uchiyama, E. Tamechika, S.-I. Itabashi, and H. Morita, “Silicon wire waveguiding system: fundamental characteristics and applications,” Electron. Commun. Jpn. 2, Electron. 89, 42-55 (2006).
[CrossRef]

Electron. Lett. (3)

D. Dai, L. Liu, L. Wosinski, and S. He, “Design and fabrication of ultra-small overlapped AWG demultiplexer based on α-Si wire waveguides,” Electron. Lett. 42, 400-402 (2006).
[CrossRef]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibers,” Electron. Lett. 38, 1669-1670 (2002).
[CrossRef]

M. Kawachi, T. Edahiro, and H. Toba, “Microlens formation on VAD single-mode fibre ends,” Electron. Lett. 18, 71-72 (1982).
[CrossRef]

IEICE Trans. Electron. (1)

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si photonic wire waveguide devices,” IEICE Trans. Electron. E90-C, 59-64 (2007).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. A Pure Appl. Opt. (1)

A. Malki, R. Bachelot, and F. V. Lauwe, “Two-step process for micro-lens-fibre fabrication using a continuous CO2 laser source,” J. Opt. A Pure Appl. Opt. 3, 291-295 (2001).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Eng. (1)

S. Mukhopadhyay, S. Gangopadhyay, and S. Sarkar, “Coupling of a laser diode to a monomode elliptic-core fiber via a hyperbolic microlens on the fiber tip: efficiency computation with the ABCD matrix,” Opt. Eng. 46, 025008 (2007).
[CrossRef]

Other (1)

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Structures of two types of TLFs: (a) tapered-cladding TLF; (b) tapered-core TLF.

Fig. 2
Fig. 2

Butt-coupling system with a TLF and a Si rib waveguide.

Fig. 3
Fig. 3

Light propagation in (a) tapered-cladding TLF and (b) tapered-core TLF with θ = 90 ° and R = 7 μm ( @ λ = 1.55 μm ).

Fig. 4
Fig. 4

Influence of the conic angle on the characteristics of these two types of TLFs with R = 7 μm : (a) focus distance and focus spot diameter; (b) transmission loss.

Fig. 5
Fig. 5

Influence of the microlens radius on the characteristics of these two types of TLFs with θ = 90 ° : (a) focus distance and focus spot diameter; (b) transmission loss.

Fig. 6
Fig. 6

Wavelength dependence of (a) focus distance and (b) spot diameter for the cases of (i)  θ = 90 ° , R = 7 μm , (ii)  θ = 90 ° , R = 8 μm , and (iii)  θ = 100 ° , R = 7 μm .

Fig. 7
Fig. 7

Coupling loss and total loss of the butt- coupling system as the parameters vary: (a) conic angle θ; (b) microlens radius R.

Metrics