Abstract

The noise in photonic true time delay systems based on broadband optical source and dispersion components is investigated. It is found that the beat noise induced by the optical source begins to dominate and grows far larger than other noise terms quickly, as long as the detected optical power is above some certain value Pthr. When the system dispersion is nonzero, the output carrier-to-noise ratio (CNR) will change periodically with the optical bandwidth due to the noise power increment and the dispersion induced radio frequency signal power degradation. The maximum CNR is the peak value of the first period. For a set of specified system conditions, the Pthr is calculated to be 21dBm, and the optimal optical bandwidth is 0.8nm, at which the maximum CNR is 93.3dB by considering the noise in a 1Hz bandwidth. The results are verified experimentally.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Schippers, J. Verpoorte, P. Jorna, A. Hulzinga, A. Meijerink, C. G. H. Roeloffzen, L. Zhuang, D. A. I. Marpaung, W. van Etten, R. G. Heideman, A. Leinse, A. Borreman, M. Hoekman, and M. Wintels, “Broadband conformal phased array with optical beam forming for airborne satellite communication,” in IEEE Aerospace Conference (IEEE, 2008), pp. 1-17.
  2. G. Grosskopf, R. Eggemann, H. Ehlers, A. Kortke, B. Kuhlow, G. Przyrembel, D. Rohde, and S. Zinal, “Maximum directivity beam-former at 60 GHz with optical feeder,” IEEE Trans. Antennas Propag. 51, 3040-3046 (2003).
    [CrossRef]
  3. M. Tadokoro, T. Taniguchi, and N. Sakurai, “Optically-controlled beam forming technique for 60 GHz-ROF system using dispersion of optical fiber and DFWM,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper OWN2.
    [PubMed]
  4. B. Zhou, X. Zheng, X. Yu, H. Zhang, Y. Guo, and B. Zhou, “Optical beamforming networks based on broadband optical source and chirped fiber grating,” IEEE Photon. Technol. Lett. 20, 733-735 (2008).
    [CrossRef]
  5. Z. Liu, X. Zheng, H. Zhang, and Y. Guo, “Photonic true time delay using air-guiding photonic bandgap fibers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CThS1.
    [PubMed]
  6. G. Keiser, Optical Fiber Communications, 3rd ed.(McGraw-Hill, 2002).
  7. William S. C. Chang, RF Photonic Technology in Optical Fiber Links (Cambridge, 2002).
    [CrossRef]
  8. N. A. Olsson, “Lightwave systems with optical amplifiers,” J. Lightwave Technol. 7, 1071-1082 (1989).
    [CrossRef]
  9. D. Guang-Hua and E. Georgiev, “Non-white photodetection noise at the output of an optical amplifier: theory and experiment,” IEEE J. Quantum Electron. 37, 1008-1014 (2001).
    [CrossRef]

2008 (1)

B. Zhou, X. Zheng, X. Yu, H. Zhang, Y. Guo, and B. Zhou, “Optical beamforming networks based on broadband optical source and chirped fiber grating,” IEEE Photon. Technol. Lett. 20, 733-735 (2008).
[CrossRef]

2003 (1)

G. Grosskopf, R. Eggemann, H. Ehlers, A. Kortke, B. Kuhlow, G. Przyrembel, D. Rohde, and S. Zinal, “Maximum directivity beam-former at 60 GHz with optical feeder,” IEEE Trans. Antennas Propag. 51, 3040-3046 (2003).
[CrossRef]

2001 (1)

D. Guang-Hua and E. Georgiev, “Non-white photodetection noise at the output of an optical amplifier: theory and experiment,” IEEE J. Quantum Electron. 37, 1008-1014 (2001).
[CrossRef]

1989 (1)

N. A. Olsson, “Lightwave systems with optical amplifiers,” J. Lightwave Technol. 7, 1071-1082 (1989).
[CrossRef]

Borreman, A.

H. Schippers, J. Verpoorte, P. Jorna, A. Hulzinga, A. Meijerink, C. G. H. Roeloffzen, L. Zhuang, D. A. I. Marpaung, W. van Etten, R. G. Heideman, A. Leinse, A. Borreman, M. Hoekman, and M. Wintels, “Broadband conformal phased array with optical beam forming for airborne satellite communication,” in IEEE Aerospace Conference (IEEE, 2008), pp. 1-17.

Chang, William S. C.

William S. C. Chang, RF Photonic Technology in Optical Fiber Links (Cambridge, 2002).
[CrossRef]

Eggemann, R.

G. Grosskopf, R. Eggemann, H. Ehlers, A. Kortke, B. Kuhlow, G. Przyrembel, D. Rohde, and S. Zinal, “Maximum directivity beam-former at 60 GHz with optical feeder,” IEEE Trans. Antennas Propag. 51, 3040-3046 (2003).
[CrossRef]

Ehlers, H.

G. Grosskopf, R. Eggemann, H. Ehlers, A. Kortke, B. Kuhlow, G. Przyrembel, D. Rohde, and S. Zinal, “Maximum directivity beam-former at 60 GHz with optical feeder,” IEEE Trans. Antennas Propag. 51, 3040-3046 (2003).
[CrossRef]

Georgiev, E.

D. Guang-Hua and E. Georgiev, “Non-white photodetection noise at the output of an optical amplifier: theory and experiment,” IEEE J. Quantum Electron. 37, 1008-1014 (2001).
[CrossRef]

Grosskopf, G.

G. Grosskopf, R. Eggemann, H. Ehlers, A. Kortke, B. Kuhlow, G. Przyrembel, D. Rohde, and S. Zinal, “Maximum directivity beam-former at 60 GHz with optical feeder,” IEEE Trans. Antennas Propag. 51, 3040-3046 (2003).
[CrossRef]

Guang-Hua, D.

D. Guang-Hua and E. Georgiev, “Non-white photodetection noise at the output of an optical amplifier: theory and experiment,” IEEE J. Quantum Electron. 37, 1008-1014 (2001).
[CrossRef]

Guo, Y.

B. Zhou, X. Zheng, X. Yu, H. Zhang, Y. Guo, and B. Zhou, “Optical beamforming networks based on broadband optical source and chirped fiber grating,” IEEE Photon. Technol. Lett. 20, 733-735 (2008).
[CrossRef]

Z. Liu, X. Zheng, H. Zhang, and Y. Guo, “Photonic true time delay using air-guiding photonic bandgap fibers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CThS1.
[PubMed]

Heideman, R. G.

H. Schippers, J. Verpoorte, P. Jorna, A. Hulzinga, A. Meijerink, C. G. H. Roeloffzen, L. Zhuang, D. A. I. Marpaung, W. van Etten, R. G. Heideman, A. Leinse, A. Borreman, M. Hoekman, and M. Wintels, “Broadband conformal phased array with optical beam forming for airborne satellite communication,” in IEEE Aerospace Conference (IEEE, 2008), pp. 1-17.

Hoekman, M.

H. Schippers, J. Verpoorte, P. Jorna, A. Hulzinga, A. Meijerink, C. G. H. Roeloffzen, L. Zhuang, D. A. I. Marpaung, W. van Etten, R. G. Heideman, A. Leinse, A. Borreman, M. Hoekman, and M. Wintels, “Broadband conformal phased array with optical beam forming for airborne satellite communication,” in IEEE Aerospace Conference (IEEE, 2008), pp. 1-17.

Hulzinga, A.

H. Schippers, J. Verpoorte, P. Jorna, A. Hulzinga, A. Meijerink, C. G. H. Roeloffzen, L. Zhuang, D. A. I. Marpaung, W. van Etten, R. G. Heideman, A. Leinse, A. Borreman, M. Hoekman, and M. Wintels, “Broadband conformal phased array with optical beam forming for airborne satellite communication,” in IEEE Aerospace Conference (IEEE, 2008), pp. 1-17.

Jorna, P.

H. Schippers, J. Verpoorte, P. Jorna, A. Hulzinga, A. Meijerink, C. G. H. Roeloffzen, L. Zhuang, D. A. I. Marpaung, W. van Etten, R. G. Heideman, A. Leinse, A. Borreman, M. Hoekman, and M. Wintels, “Broadband conformal phased array with optical beam forming for airborne satellite communication,” in IEEE Aerospace Conference (IEEE, 2008), pp. 1-17.

Keiser, G.

G. Keiser, Optical Fiber Communications, 3rd ed.(McGraw-Hill, 2002).

Kortke, A.

G. Grosskopf, R. Eggemann, H. Ehlers, A. Kortke, B. Kuhlow, G. Przyrembel, D. Rohde, and S. Zinal, “Maximum directivity beam-former at 60 GHz with optical feeder,” IEEE Trans. Antennas Propag. 51, 3040-3046 (2003).
[CrossRef]

Kuhlow, B.

G. Grosskopf, R. Eggemann, H. Ehlers, A. Kortke, B. Kuhlow, G. Przyrembel, D. Rohde, and S. Zinal, “Maximum directivity beam-former at 60 GHz with optical feeder,” IEEE Trans. Antennas Propag. 51, 3040-3046 (2003).
[CrossRef]

Leinse, A.

H. Schippers, J. Verpoorte, P. Jorna, A. Hulzinga, A. Meijerink, C. G. H. Roeloffzen, L. Zhuang, D. A. I. Marpaung, W. van Etten, R. G. Heideman, A. Leinse, A. Borreman, M. Hoekman, and M. Wintels, “Broadband conformal phased array with optical beam forming for airborne satellite communication,” in IEEE Aerospace Conference (IEEE, 2008), pp. 1-17.

Liu, Z.

Z. Liu, X. Zheng, H. Zhang, and Y. Guo, “Photonic true time delay using air-guiding photonic bandgap fibers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CThS1.
[PubMed]

Marpaung, D. A. I.

H. Schippers, J. Verpoorte, P. Jorna, A. Hulzinga, A. Meijerink, C. G. H. Roeloffzen, L. Zhuang, D. A. I. Marpaung, W. van Etten, R. G. Heideman, A. Leinse, A. Borreman, M. Hoekman, and M. Wintels, “Broadband conformal phased array with optical beam forming for airborne satellite communication,” in IEEE Aerospace Conference (IEEE, 2008), pp. 1-17.

Meijerink, A.

H. Schippers, J. Verpoorte, P. Jorna, A. Hulzinga, A. Meijerink, C. G. H. Roeloffzen, L. Zhuang, D. A. I. Marpaung, W. van Etten, R. G. Heideman, A. Leinse, A. Borreman, M. Hoekman, and M. Wintels, “Broadband conformal phased array with optical beam forming for airborne satellite communication,” in IEEE Aerospace Conference (IEEE, 2008), pp. 1-17.

Olsson, N. A.

N. A. Olsson, “Lightwave systems with optical amplifiers,” J. Lightwave Technol. 7, 1071-1082 (1989).
[CrossRef]

Przyrembel, G.

G. Grosskopf, R. Eggemann, H. Ehlers, A. Kortke, B. Kuhlow, G. Przyrembel, D. Rohde, and S. Zinal, “Maximum directivity beam-former at 60 GHz with optical feeder,” IEEE Trans. Antennas Propag. 51, 3040-3046 (2003).
[CrossRef]

Roeloffzen, C. G. H.

H. Schippers, J. Verpoorte, P. Jorna, A. Hulzinga, A. Meijerink, C. G. H. Roeloffzen, L. Zhuang, D. A. I. Marpaung, W. van Etten, R. G. Heideman, A. Leinse, A. Borreman, M. Hoekman, and M. Wintels, “Broadband conformal phased array with optical beam forming for airborne satellite communication,” in IEEE Aerospace Conference (IEEE, 2008), pp. 1-17.

Rohde, D.

G. Grosskopf, R. Eggemann, H. Ehlers, A. Kortke, B. Kuhlow, G. Przyrembel, D. Rohde, and S. Zinal, “Maximum directivity beam-former at 60 GHz with optical feeder,” IEEE Trans. Antennas Propag. 51, 3040-3046 (2003).
[CrossRef]

Sakurai, N.

M. Tadokoro, T. Taniguchi, and N. Sakurai, “Optically-controlled beam forming technique for 60 GHz-ROF system using dispersion of optical fiber and DFWM,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper OWN2.
[PubMed]

Schippers, H.

H. Schippers, J. Verpoorte, P. Jorna, A. Hulzinga, A. Meijerink, C. G. H. Roeloffzen, L. Zhuang, D. A. I. Marpaung, W. van Etten, R. G. Heideman, A. Leinse, A. Borreman, M. Hoekman, and M. Wintels, “Broadband conformal phased array with optical beam forming for airborne satellite communication,” in IEEE Aerospace Conference (IEEE, 2008), pp. 1-17.

Tadokoro, M.

M. Tadokoro, T. Taniguchi, and N. Sakurai, “Optically-controlled beam forming technique for 60 GHz-ROF system using dispersion of optical fiber and DFWM,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper OWN2.
[PubMed]

Taniguchi, T.

M. Tadokoro, T. Taniguchi, and N. Sakurai, “Optically-controlled beam forming technique for 60 GHz-ROF system using dispersion of optical fiber and DFWM,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper OWN2.
[PubMed]

van Etten, W.

H. Schippers, J. Verpoorte, P. Jorna, A. Hulzinga, A. Meijerink, C. G. H. Roeloffzen, L. Zhuang, D. A. I. Marpaung, W. van Etten, R. G. Heideman, A. Leinse, A. Borreman, M. Hoekman, and M. Wintels, “Broadband conformal phased array with optical beam forming for airborne satellite communication,” in IEEE Aerospace Conference (IEEE, 2008), pp. 1-17.

Verpoorte, J.

H. Schippers, J. Verpoorte, P. Jorna, A. Hulzinga, A. Meijerink, C. G. H. Roeloffzen, L. Zhuang, D. A. I. Marpaung, W. van Etten, R. G. Heideman, A. Leinse, A. Borreman, M. Hoekman, and M. Wintels, “Broadband conformal phased array with optical beam forming for airborne satellite communication,” in IEEE Aerospace Conference (IEEE, 2008), pp. 1-17.

Wintels, M.

H. Schippers, J. Verpoorte, P. Jorna, A. Hulzinga, A. Meijerink, C. G. H. Roeloffzen, L. Zhuang, D. A. I. Marpaung, W. van Etten, R. G. Heideman, A. Leinse, A. Borreman, M. Hoekman, and M. Wintels, “Broadband conformal phased array with optical beam forming for airborne satellite communication,” in IEEE Aerospace Conference (IEEE, 2008), pp. 1-17.

Yu, X.

B. Zhou, X. Zheng, X. Yu, H. Zhang, Y. Guo, and B. Zhou, “Optical beamforming networks based on broadband optical source and chirped fiber grating,” IEEE Photon. Technol. Lett. 20, 733-735 (2008).
[CrossRef]

Zhang, H.

B. Zhou, X. Zheng, X. Yu, H. Zhang, Y. Guo, and B. Zhou, “Optical beamforming networks based on broadband optical source and chirped fiber grating,” IEEE Photon. Technol. Lett. 20, 733-735 (2008).
[CrossRef]

Z. Liu, X. Zheng, H. Zhang, and Y. Guo, “Photonic true time delay using air-guiding photonic bandgap fibers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CThS1.
[PubMed]

Zheng, X.

B. Zhou, X. Zheng, X. Yu, H. Zhang, Y. Guo, and B. Zhou, “Optical beamforming networks based on broadband optical source and chirped fiber grating,” IEEE Photon. Technol. Lett. 20, 733-735 (2008).
[CrossRef]

Z. Liu, X. Zheng, H. Zhang, and Y. Guo, “Photonic true time delay using air-guiding photonic bandgap fibers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CThS1.
[PubMed]

Zhou, B.

B. Zhou, X. Zheng, X. Yu, H. Zhang, Y. Guo, and B. Zhou, “Optical beamforming networks based on broadband optical source and chirped fiber grating,” IEEE Photon. Technol. Lett. 20, 733-735 (2008).
[CrossRef]

B. Zhou, X. Zheng, X. Yu, H. Zhang, Y. Guo, and B. Zhou, “Optical beamforming networks based on broadband optical source and chirped fiber grating,” IEEE Photon. Technol. Lett. 20, 733-735 (2008).
[CrossRef]

Zhuang, L.

H. Schippers, J. Verpoorte, P. Jorna, A. Hulzinga, A. Meijerink, C. G. H. Roeloffzen, L. Zhuang, D. A. I. Marpaung, W. van Etten, R. G. Heideman, A. Leinse, A. Borreman, M. Hoekman, and M. Wintels, “Broadband conformal phased array with optical beam forming for airborne satellite communication,” in IEEE Aerospace Conference (IEEE, 2008), pp. 1-17.

Zinal, S.

G. Grosskopf, R. Eggemann, H. Ehlers, A. Kortke, B. Kuhlow, G. Przyrembel, D. Rohde, and S. Zinal, “Maximum directivity beam-former at 60 GHz with optical feeder,” IEEE Trans. Antennas Propag. 51, 3040-3046 (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. Guang-Hua and E. Georgiev, “Non-white photodetection noise at the output of an optical amplifier: theory and experiment,” IEEE J. Quantum Electron. 37, 1008-1014 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

B. Zhou, X. Zheng, X. Yu, H. Zhang, Y. Guo, and B. Zhou, “Optical beamforming networks based on broadband optical source and chirped fiber grating,” IEEE Photon. Technol. Lett. 20, 733-735 (2008).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

G. Grosskopf, R. Eggemann, H. Ehlers, A. Kortke, B. Kuhlow, G. Przyrembel, D. Rohde, and S. Zinal, “Maximum directivity beam-former at 60 GHz with optical feeder,” IEEE Trans. Antennas Propag. 51, 3040-3046 (2003).
[CrossRef]

J. Lightwave Technol. (1)

N. A. Olsson, “Lightwave systems with optical amplifiers,” J. Lightwave Technol. 7, 1071-1082 (1989).
[CrossRef]

Other (5)

H. Schippers, J. Verpoorte, P. Jorna, A. Hulzinga, A. Meijerink, C. G. H. Roeloffzen, L. Zhuang, D. A. I. Marpaung, W. van Etten, R. G. Heideman, A. Leinse, A. Borreman, M. Hoekman, and M. Wintels, “Broadband conformal phased array with optical beam forming for airborne satellite communication,” in IEEE Aerospace Conference (IEEE, 2008), pp. 1-17.

M. Tadokoro, T. Taniguchi, and N. Sakurai, “Optically-controlled beam forming technique for 60 GHz-ROF system using dispersion of optical fiber and DFWM,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper OWN2.
[PubMed]

Z. Liu, X. Zheng, H. Zhang, and Y. Guo, “Photonic true time delay using air-guiding photonic bandgap fibers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CThS1.
[PubMed]

G. Keiser, Optical Fiber Communications, 3rd ed.(McGraw-Hill, 2002).

William S. C. Chang, RF Photonic Technology in Optical Fiber Links (Cambridge, 2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of OBFNs based on a BS and dispersion component.

Fig. 2
Fig. 2

Experimental configuration for testing the output CNR of the TTD system based on BS and CFG. PC, polarization controller; PD, photodiode; LNA, low-noise amplifier.

Fig. 3
Fig. 3

Equivalent circuit of a BS-based TTD link including the noise sources.

Fig. 4
Fig. 4

Representation of BS and modulation.

Fig. 5
Fig. 5

Various noises versus optical power in PD: (a) fixed optical bandwidth 1 nm with the optical PSD ranging from 40 to 10 dBm / nm ; (b) fixed optical PSD 2 dBm / nm with the optical bandwidth ranging from 0.2 to 10 nm .

Fig. 6
Fig. 6

Measured CNR versus modulation index using two different optical filters.

Fig. 7
Fig. 7

Bandwidth-variable filter.

Fig. 8
Fig. 8

CNR versus optical bandwidth. (a)  f e = 10 GHz ; (b)  f e = 5 GHz .

Tables (1)

Tables Icon

Table 1 Definitions of Mathematical Symbols

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

Δ τ = D Δ λ ,
i n 2 ¯ = G v ts 2 ¯ 4 R m 2 + i the 2 ¯ + i dn 2 ¯ + i sn 2 ¯ + i bn 2 ¯ = k T R m BG + 4 k T R L BF A + 2 q i d B + 2 q i ¯ p B + i bn 2 ¯ .
δ i s = { R [ 1 2 ( m 2 S o H ( ν j ) δ ν ) 1 / 2 e j ( ϕ i + ϕ e ) ] × [ ( S o H ( ν i ) δ ν ) 1 / 2 e j ϕ i ] * + R [ ( S o H ( ν j ) δ ν ) 1 / 2 e j ϕ j ] × [ 1 2 ( m 2 S o H ( ν i ) δ ν ) 1 / 2 e j ( ϕ j ϕ e ) ] * } × e j 2 π f e [ D ν ( ν i ν 0 ) + τ 0 ] = e j { [ 2 π f e D ν ( ν ν 0 ) + τ 0 ] ϕ e } × R m S o [ H ( ν ) H ( ν + f e ) ] 1 / 2 δ ν ν = ν i ,
i s = Σ δ i s = R m S o 0 + { e j { [ 2 π f e D ν ( ν ν 0 ) + τ 0 ] ϕ e } × [ H ( ν ) H ( ν + f e ) ] 1 / 2 d ν } .
P bn ( f ) = R 2 S o 2 2 0 + H ( ν ) H ( ν + f ) d ν ,
H ( ν ) = { 1 | ν ν c | B o / 2 0 otherwise ,
P s = i s · i s * 2 = R 2 m 2 S o 2 ( B o f e ) 2 2 sinc 2 ( ϕ 2 ) ,
ϕ = 2 π f e D ν ( B o f e ) .
G = P s / ( V s 2 2 R m 2 ) = [ π R R m S o ( B o f e ) ] 2 4 V π 2 sinc 2 ( ϕ 2 ) .
P bn ( f ) = R 2 S o 2 ( B o f ) 2 .
i bn 2 ¯ = P bn ( f e ) = 2 R 2 P d 2 ( B o f e ) B o 2 ,
P d = S o B o 2 .
P d = t o S o B o 2 .
i en 2 ¯ = k T R L { [ π R R m P d ( B o f e ) V π B o ] 2 + 4 F A } + 2 q i d .
i sn 2 ¯ = 2 q R P d .
F = 1 + i bn 2 ¯ R L G k T 2 V π 2 π 2 k T R L ( B o f e ) sinc 2 ( ϕ / 2 ) .
CNR = P s P bn ( f e ) = m 2 ( B o f e ) sinc 2 ( ϕ 2 ) .
B o , opt = 1.1656 π f e D ν + f e ,
F min = 2.8 V π 2 f e D ν π k T R L ,
CNR max = 0.18 π V s 2 f e D ν V π 2 .

Metrics