Abstract

A matched spectral filter set that provides automatic preliminary analyte identification is proposed and analyzed. Each matched spectral filter in the set containing the multiple spectral peaks corresponding to the Raman spectrum of a substance is capable of collecting the specified spectrum into the detector simultaneously. The filter set is implemented by multiplexed volume holographic reflection gratings. The fabrication of a matched spectral filter in an Fe:LiNbO3 crystal is demonstrated to match the Raman spectrum of the sample Rhodamine 6G (R6G). An interference alignment method is proposed and used in the fabrication to ensure that the multiplexed gratings are in the same direction at a high angular accuracy of 0.0025°. Diffused recording beams are used to control the bandwidth of the spectral peaks. The reflection spectrum of the filter is characterized using a modified Raman spectrometer. The result of the filter’s reflection spectrum matches that of the sample R6G. A library of such matched spectral filters will facilitate a fast detection with a higher sensitivity and provide a capability for preliminary molecule identification.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Psaltis, “Holographic filters for spectroscopic identification of substances,” U.S. patent 6,934,060 (23 August 2005).
  2. J. Lipson, “Measuring spectral lines from an analyte using multiplexed holograms and polarization manipulation,” U.S. patent 7,277,210 (2 October 2007).
  3. I. Nee, O. Beyer, M. Müller, and K. Buse, “Multichannel wavelength-division multiplexing with thermally fixed Bragg gratings in photorefractive lithium niobate crystals,” J. Opt. Soc. Am. B 20, 1593-1602 (2003).
    [CrossRef]
  4. O. Beyer, I. Nee, F. Havermeyer, and K. Buse, “Holographic recording of Bragg gratings for wavelength division multiplexing in doped and partially polymerized poly (methyl methacrylate),” Appl. Opt. 42, 30-37 (2003).
    [CrossRef]
  5. R. De Vre and L. Hesselink, “Dynamic multiple wavelength filter using a stratified volume holographic optical element,” U.S. patent 5,640,256 (17 June 1997).
  6. C. Moser, L. Ho, E. Maye, and F. Havermeyer, “Fabrication and applications of volume holographic optical filters in glass,” J. Phys. D 41, 224003 (2008).
  7. K. Buse, F. Havermeyer, W. Liu, C. Moser, and D. Psaltis, “Holographic filters,” in Photorefractive Materials and Their Applications 3, P. Günter and J. -P. Huignard, eds. (Springer, 2007), pp. 295-319.
  8. R. Müller, M. T. Santos, L. Arizmendi, and J. M. Cabrera, “A narrowband interference filter with photorefractive LiNbO3,” J. Phys. D 27, 241-246 (1994).
  9. G. Zhang, G. Montemezzani, and P. Günter, “Narrow-bandwidth holographic reflection filters with photopolymer films,” Appl. Opt. 40, 2423-2427 (2001).
    [CrossRef]
  10. H.-T. Hsieh, Z. Li, and D. Psaltis, “Holographic filters,” Proc. SPIE 5521, 24-28 (2004).
  11. Z. Li, D. Psaltis, W. Liu, W. R. Johnson, and G. Bearman, “Volume holographic spectral imaging,” Proc. SPIE 5694, 33-40 (2005).
  12. R. K. Kostuk, W. Maeda, C.-H. Chen, I. Djordjevic, and B. Vasic, “Cascaded holographic polymer reflection gratings filters for optical-code-division multiple-access applications,” Appl. Opt. 44, 7581-7586 (2005).
    [CrossRef]
  13. S. Riehemann, G. von Bally, B. I. Sturman, and S. G. Odoulov, “Reflection holograms in iron-doped lithium niobate,” Appl. Phys. B 65, 535-539 (1997).
  14. G. J. Steckman, W. Liu, R. Platz, D. Schroeder, C. Moser, and F. Havermeyer, “Volume holographic grating wavelength stabilized laser diodes,” IEEE J. Sel. Top. Quantum Electron. 13, 672-678 (2007).
    [CrossRef]
  15. P. Ye, Introduction to Photorefractive Nonlinear Optics (Wiley, 1993).
  16. C. Shi, C. Lu, C. Gu, L. Tian, R. Newhouse, S. Chen, and J. Z. Zhang, “Compliance properties study of carbon nanofibers (CNFs) array as thermal interface material,” J. Phys. D 41, 155105 (2008).
  17. L. Cao, X. Ma, Q. He, H. Long, M. Wu, and G. Jin, “Imaging spectral device based on multiple volume holographic gratings,” Opt. Eng. 43, 2009-2016 (2004).
  18. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909-2946 (1969).
  19. G. A. Rakuljic and V. Leyva, “Volume holographic narrow-band optical filter,” Opt. Lett. 18, 459-461 (1993).
    [CrossRef]
  20. L. Zeng and L. Li, “Optical mosaic gratings made by consecutive, phase-interlocked, holographic exposures using diffraction from latent fringes,” Opt. Lett. 32, 1081-1083(2007).
    [CrossRef]
  21. http://www.luminitco.com/.

2008

C. Moser, L. Ho, E. Maye, and F. Havermeyer, “Fabrication and applications of volume holographic optical filters in glass,” J. Phys. D 41, 224003 (2008).

C. Shi, C. Lu, C. Gu, L. Tian, R. Newhouse, S. Chen, and J. Z. Zhang, “Compliance properties study of carbon nanofibers (CNFs) array as thermal interface material,” J. Phys. D 41, 155105 (2008).

2007

G. J. Steckman, W. Liu, R. Platz, D. Schroeder, C. Moser, and F. Havermeyer, “Volume holographic grating wavelength stabilized laser diodes,” IEEE J. Sel. Top. Quantum Electron. 13, 672-678 (2007).
[CrossRef]

L. Zeng and L. Li, “Optical mosaic gratings made by consecutive, phase-interlocked, holographic exposures using diffraction from latent fringes,” Opt. Lett. 32, 1081-1083(2007).
[CrossRef]

2005

2004

H.-T. Hsieh, Z. Li, and D. Psaltis, “Holographic filters,” Proc. SPIE 5521, 24-28 (2004).

L. Cao, X. Ma, Q. He, H. Long, M. Wu, and G. Jin, “Imaging spectral device based on multiple volume holographic gratings,” Opt. Eng. 43, 2009-2016 (2004).

2003

2001

1997

S. Riehemann, G. von Bally, B. I. Sturman, and S. G. Odoulov, “Reflection holograms in iron-doped lithium niobate,” Appl. Phys. B 65, 535-539 (1997).

1994

R. Müller, M. T. Santos, L. Arizmendi, and J. M. Cabrera, “A narrowband interference filter with photorefractive LiNbO3,” J. Phys. D 27, 241-246 (1994).

1993

1969

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909-2946 (1969).

Arizmendi, L.

R. Müller, M. T. Santos, L. Arizmendi, and J. M. Cabrera, “A narrowband interference filter with photorefractive LiNbO3,” J. Phys. D 27, 241-246 (1994).

Bearman, G.

Z. Li, D. Psaltis, W. Liu, W. R. Johnson, and G. Bearman, “Volume holographic spectral imaging,” Proc. SPIE 5694, 33-40 (2005).

Beyer, O.

Buse, K.

Cabrera, J. M.

R. Müller, M. T. Santos, L. Arizmendi, and J. M. Cabrera, “A narrowband interference filter with photorefractive LiNbO3,” J. Phys. D 27, 241-246 (1994).

Cao, L.

L. Cao, X. Ma, Q. He, H. Long, M. Wu, and G. Jin, “Imaging spectral device based on multiple volume holographic gratings,” Opt. Eng. 43, 2009-2016 (2004).

Chen, C.-H.

Chen, S.

C. Shi, C. Lu, C. Gu, L. Tian, R. Newhouse, S. Chen, and J. Z. Zhang, “Compliance properties study of carbon nanofibers (CNFs) array as thermal interface material,” J. Phys. D 41, 155105 (2008).

De Vre, R.

R. De Vre and L. Hesselink, “Dynamic multiple wavelength filter using a stratified volume holographic optical element,” U.S. patent 5,640,256 (17 June 1997).

Djordjevic, I.

Gu, C.

C. Shi, C. Lu, C. Gu, L. Tian, R. Newhouse, S. Chen, and J. Z. Zhang, “Compliance properties study of carbon nanofibers (CNFs) array as thermal interface material,” J. Phys. D 41, 155105 (2008).

Günter, P.

Havermeyer, F.

C. Moser, L. Ho, E. Maye, and F. Havermeyer, “Fabrication and applications of volume holographic optical filters in glass,” J. Phys. D 41, 224003 (2008).

G. J. Steckman, W. Liu, R. Platz, D. Schroeder, C. Moser, and F. Havermeyer, “Volume holographic grating wavelength stabilized laser diodes,” IEEE J. Sel. Top. Quantum Electron. 13, 672-678 (2007).
[CrossRef]

O. Beyer, I. Nee, F. Havermeyer, and K. Buse, “Holographic recording of Bragg gratings for wavelength division multiplexing in doped and partially polymerized poly (methyl methacrylate),” Appl. Opt. 42, 30-37 (2003).
[CrossRef]

K. Buse, F. Havermeyer, W. Liu, C. Moser, and D. Psaltis, “Holographic filters,” in Photorefractive Materials and Their Applications 3, P. Günter and J. -P. Huignard, eds. (Springer, 2007), pp. 295-319.

He, Q.

L. Cao, X. Ma, Q. He, H. Long, M. Wu, and G. Jin, “Imaging spectral device based on multiple volume holographic gratings,” Opt. Eng. 43, 2009-2016 (2004).

Hesselink, L.

R. De Vre and L. Hesselink, “Dynamic multiple wavelength filter using a stratified volume holographic optical element,” U.S. patent 5,640,256 (17 June 1997).

Ho, L.

C. Moser, L. Ho, E. Maye, and F. Havermeyer, “Fabrication and applications of volume holographic optical filters in glass,” J. Phys. D 41, 224003 (2008).

Hsieh, H.-T.

H.-T. Hsieh, Z. Li, and D. Psaltis, “Holographic filters,” Proc. SPIE 5521, 24-28 (2004).

Jin, G.

L. Cao, X. Ma, Q. He, H. Long, M. Wu, and G. Jin, “Imaging spectral device based on multiple volume holographic gratings,” Opt. Eng. 43, 2009-2016 (2004).

Johnson, W. R.

Z. Li, D. Psaltis, W. Liu, W. R. Johnson, and G. Bearman, “Volume holographic spectral imaging,” Proc. SPIE 5694, 33-40 (2005).

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909-2946 (1969).

Kostuk, R. K.

Leyva, V.

Li, L.

Li, Z.

Z. Li, D. Psaltis, W. Liu, W. R. Johnson, and G. Bearman, “Volume holographic spectral imaging,” Proc. SPIE 5694, 33-40 (2005).

H.-T. Hsieh, Z. Li, and D. Psaltis, “Holographic filters,” Proc. SPIE 5521, 24-28 (2004).

Lipson, J.

J. Lipson, “Measuring spectral lines from an analyte using multiplexed holograms and polarization manipulation,” U.S. patent 7,277,210 (2 October 2007).

Liu, W.

G. J. Steckman, W. Liu, R. Platz, D. Schroeder, C. Moser, and F. Havermeyer, “Volume holographic grating wavelength stabilized laser diodes,” IEEE J. Sel. Top. Quantum Electron. 13, 672-678 (2007).
[CrossRef]

Z. Li, D. Psaltis, W. Liu, W. R. Johnson, and G. Bearman, “Volume holographic spectral imaging,” Proc. SPIE 5694, 33-40 (2005).

K. Buse, F. Havermeyer, W. Liu, C. Moser, and D. Psaltis, “Holographic filters,” in Photorefractive Materials and Their Applications 3, P. Günter and J. -P. Huignard, eds. (Springer, 2007), pp. 295-319.

Long, H.

L. Cao, X. Ma, Q. He, H. Long, M. Wu, and G. Jin, “Imaging spectral device based on multiple volume holographic gratings,” Opt. Eng. 43, 2009-2016 (2004).

Lu, C.

C. Shi, C. Lu, C. Gu, L. Tian, R. Newhouse, S. Chen, and J. Z. Zhang, “Compliance properties study of carbon nanofibers (CNFs) array as thermal interface material,” J. Phys. D 41, 155105 (2008).

Ma, X.

L. Cao, X. Ma, Q. He, H. Long, M. Wu, and G. Jin, “Imaging spectral device based on multiple volume holographic gratings,” Opt. Eng. 43, 2009-2016 (2004).

Maeda, W.

Maye, E.

C. Moser, L. Ho, E. Maye, and F. Havermeyer, “Fabrication and applications of volume holographic optical filters in glass,” J. Phys. D 41, 224003 (2008).

Montemezzani, G.

Moser, C.

C. Moser, L. Ho, E. Maye, and F. Havermeyer, “Fabrication and applications of volume holographic optical filters in glass,” J. Phys. D 41, 224003 (2008).

G. J. Steckman, W. Liu, R. Platz, D. Schroeder, C. Moser, and F. Havermeyer, “Volume holographic grating wavelength stabilized laser diodes,” IEEE J. Sel. Top. Quantum Electron. 13, 672-678 (2007).
[CrossRef]

K. Buse, F. Havermeyer, W. Liu, C. Moser, and D. Psaltis, “Holographic filters,” in Photorefractive Materials and Their Applications 3, P. Günter and J. -P. Huignard, eds. (Springer, 2007), pp. 295-319.

Müller, M.

Müller, R.

R. Müller, M. T. Santos, L. Arizmendi, and J. M. Cabrera, “A narrowband interference filter with photorefractive LiNbO3,” J. Phys. D 27, 241-246 (1994).

Nee, I.

Newhouse, R.

C. Shi, C. Lu, C. Gu, L. Tian, R. Newhouse, S. Chen, and J. Z. Zhang, “Compliance properties study of carbon nanofibers (CNFs) array as thermal interface material,” J. Phys. D 41, 155105 (2008).

Odoulov, S. G.

S. Riehemann, G. von Bally, B. I. Sturman, and S. G. Odoulov, “Reflection holograms in iron-doped lithium niobate,” Appl. Phys. B 65, 535-539 (1997).

Platz, R.

G. J. Steckman, W. Liu, R. Platz, D. Schroeder, C. Moser, and F. Havermeyer, “Volume holographic grating wavelength stabilized laser diodes,” IEEE J. Sel. Top. Quantum Electron. 13, 672-678 (2007).
[CrossRef]

Psaltis, D.

Z. Li, D. Psaltis, W. Liu, W. R. Johnson, and G. Bearman, “Volume holographic spectral imaging,” Proc. SPIE 5694, 33-40 (2005).

H.-T. Hsieh, Z. Li, and D. Psaltis, “Holographic filters,” Proc. SPIE 5521, 24-28 (2004).

K. Buse, F. Havermeyer, W. Liu, C. Moser, and D. Psaltis, “Holographic filters,” in Photorefractive Materials and Their Applications 3, P. Günter and J. -P. Huignard, eds. (Springer, 2007), pp. 295-319.

D. Psaltis, “Holographic filters for spectroscopic identification of substances,” U.S. patent 6,934,060 (23 August 2005).

Rakuljic, G. A.

Riehemann, S.

S. Riehemann, G. von Bally, B. I. Sturman, and S. G. Odoulov, “Reflection holograms in iron-doped lithium niobate,” Appl. Phys. B 65, 535-539 (1997).

Santos, M. T.

R. Müller, M. T. Santos, L. Arizmendi, and J. M. Cabrera, “A narrowband interference filter with photorefractive LiNbO3,” J. Phys. D 27, 241-246 (1994).

Schroeder, D.

G. J. Steckman, W. Liu, R. Platz, D. Schroeder, C. Moser, and F. Havermeyer, “Volume holographic grating wavelength stabilized laser diodes,” IEEE J. Sel. Top. Quantum Electron. 13, 672-678 (2007).
[CrossRef]

Shi, C.

C. Shi, C. Lu, C. Gu, L. Tian, R. Newhouse, S. Chen, and J. Z. Zhang, “Compliance properties study of carbon nanofibers (CNFs) array as thermal interface material,” J. Phys. D 41, 155105 (2008).

Steckman, G. J.

G. J. Steckman, W. Liu, R. Platz, D. Schroeder, C. Moser, and F. Havermeyer, “Volume holographic grating wavelength stabilized laser diodes,” IEEE J. Sel. Top. Quantum Electron. 13, 672-678 (2007).
[CrossRef]

Sturman, B. I.

S. Riehemann, G. von Bally, B. I. Sturman, and S. G. Odoulov, “Reflection holograms in iron-doped lithium niobate,” Appl. Phys. B 65, 535-539 (1997).

Tian, L.

C. Shi, C. Lu, C. Gu, L. Tian, R. Newhouse, S. Chen, and J. Z. Zhang, “Compliance properties study of carbon nanofibers (CNFs) array as thermal interface material,” J. Phys. D 41, 155105 (2008).

Vasic, B.

von Bally, G.

S. Riehemann, G. von Bally, B. I. Sturman, and S. G. Odoulov, “Reflection holograms in iron-doped lithium niobate,” Appl. Phys. B 65, 535-539 (1997).

Wu, M.

L. Cao, X. Ma, Q. He, H. Long, M. Wu, and G. Jin, “Imaging spectral device based on multiple volume holographic gratings,” Opt. Eng. 43, 2009-2016 (2004).

Ye, P.

P. Ye, Introduction to Photorefractive Nonlinear Optics (Wiley, 1993).

Zeng, L.

Zhang, G.

Zhang, J. Z.

C. Shi, C. Lu, C. Gu, L. Tian, R. Newhouse, S. Chen, and J. Z. Zhang, “Compliance properties study of carbon nanofibers (CNFs) array as thermal interface material,” J. Phys. D 41, 155105 (2008).

Appl. Opt.

Appl. Phys. B

S. Riehemann, G. von Bally, B. I. Sturman, and S. G. Odoulov, “Reflection holograms in iron-doped lithium niobate,” Appl. Phys. B 65, 535-539 (1997).

Bell Syst. Tech. J.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909-2946 (1969).

IEEE J. Sel. Top. Quantum Electron.

G. J. Steckman, W. Liu, R. Platz, D. Schroeder, C. Moser, and F. Havermeyer, “Volume holographic grating wavelength stabilized laser diodes,” IEEE J. Sel. Top. Quantum Electron. 13, 672-678 (2007).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. D

R. Müller, M. T. Santos, L. Arizmendi, and J. M. Cabrera, “A narrowband interference filter with photorefractive LiNbO3,” J. Phys. D 27, 241-246 (1994).

C. Moser, L. Ho, E. Maye, and F. Havermeyer, “Fabrication and applications of volume holographic optical filters in glass,” J. Phys. D 41, 224003 (2008).

C. Shi, C. Lu, C. Gu, L. Tian, R. Newhouse, S. Chen, and J. Z. Zhang, “Compliance properties study of carbon nanofibers (CNFs) array as thermal interface material,” J. Phys. D 41, 155105 (2008).

Opt. Eng.

L. Cao, X. Ma, Q. He, H. Long, M. Wu, and G. Jin, “Imaging spectral device based on multiple volume holographic gratings,” Opt. Eng. 43, 2009-2016 (2004).

Opt. Lett.

Proc. SPIE

H.-T. Hsieh, Z. Li, and D. Psaltis, “Holographic filters,” Proc. SPIE 5521, 24-28 (2004).

Z. Li, D. Psaltis, W. Liu, W. R. Johnson, and G. Bearman, “Volume holographic spectral imaging,” Proc. SPIE 5694, 33-40 (2005).

Other

P. Ye, Introduction to Photorefractive Nonlinear Optics (Wiley, 1993).

K. Buse, F. Havermeyer, W. Liu, C. Moser, and D. Psaltis, “Holographic filters,” in Photorefractive Materials and Their Applications 3, P. Günter and J. -P. Huignard, eds. (Springer, 2007), pp. 295-319.

R. De Vre and L. Hesselink, “Dynamic multiple wavelength filter using a stratified volume holographic optical element,” U.S. patent 5,640,256 (17 June 1997).

D. Psaltis, “Holographic filters for spectroscopic identification of substances,” U.S. patent 6,934,060 (23 August 2005).

J. Lipson, “Measuring spectral lines from an analyte using multiplexed holograms and polarization manipulation,” U.S. patent 7,277,210 (2 October 2007).

http://www.luminitco.com/.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Comparison between the SERS spectrum of R6G (upper) and the reflection spectrum of a filter (lower) designed using multiple chirped and tapered gratings.

Fig. 2
Fig. 2

Experimental setup for recording the volume holographic gratings. Mirror 1 and Mirror 2 can be rotated, and the Fe : Li Nb O 3 crystal can be translated and rotated. The CCD is used to monitor the interference rings of the beams. The shutter and the powermeter are used to control and monitor the grating recording process.

Fig. 3
Fig. 3

Interference rings between (a) the beam coming from Mirror 1 and then reflected by the crystal surface, and the beam coming from Mirror 2 and then transmitted through the crystal, before holographic exposure. (b) The beam reflected by the crystal surface and the beam diffracted by the grating during the holographic exposure when the shutter in Fig. 2 is blocked.

Fig. 4
Fig. 4

Diffused recording waves are used to increase the bandwidth of the recorded holographic gratings: (a) generation of diffused waves with a band-limited diffuser; (b) corresponding wave-vector space diagram for the diffused waves.

Fig. 5
Fig. 5

Spectral response of gratings recorded by plane waves and by diffused waves, respectively.

Fig. 6
Fig. 6

Experimental setup for measuring the reflection spectrum of the matched spectral filter.

Fig. 7
Fig. 7

Measured reflection spectrum of the matched spectral filter. The R6G SERS spectrum is shown as a reference.

Tables (1)

Tables Icon

Table 1 Parameters of the Seven Spectral Peaks in the R6G SERS Spectrum and the Corresponding Recording Angles of the Recording Beams

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

n ( z ) = n 0 + p = 1 N n p ( z ) cos [ 2 π Λ p ( 1 + ε p z / L ) z + φ p ] ,
n p ( z ) = n p ( 0 ) + n p ( 1 ) z L + n p ( 2 ) z 2 L 2
E = A ( z ) e i ( ω t k z ) + B ( z ) e i ( ω t + k z ) ,
d A d z = i p π n p ( z ) λ e i [ ( 2 k K p ) z φ p ] B ,
d B d z = i p π n p ( z ) λ e i [ ( K p 2 k ) z + φ p ] A ,
1 Λ = 2 n 1 λ 1 ( 1 ( sin θ 1 n 1 ) 2 ) 1 2 = 2 n 2 λ 2 ( 1 ( sin θ 2 n 2 ) 2 ) 1 2 ,
d λ w = n w sin 2 θ 1 2 n r 3 [ 1 ( sin θ 1 n r ) 2 ] 3 2 λ r d θ 1 ,
δ θ = λ / 2 D ,
Δ K = Δ K 1 + Δ K 2 8 π n r sin θ 1 c sin δ c λ r .

Metrics