Abstract

Simulations on Kolmogorov phase screens are employed to compare the relative performance of an astigmatic hybrid wavefront sensor (AHS) to that of a Shack–Hartmann sensor (SHS). The AHS is shown to improve phase reconstruction accuracy when the subaperture phase contains significant energy in curvature modes and a moderate to high number of photons are collected. Dual use of the AHS and SHS may extend enhanced reconstruction to low signal levels. The AHS is also shown to have a small benefit for tilt-only reconstruction when the beam has sufficient power.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Paterson and J. Dainty, “Hybrid curvature and gradient wave-front sensor,” Opt. Lett. 25, 1687-1689 (2000).
    [CrossRef]
  2. S. Barbero, J. Rubinstein, and L. Thibos, “Wavefront sensing and reconstruction from gradient and Laplacian data measured with a Hartmann-Shack sensor,” Opt. Lett. 31, 1845-1847 (2006).
    [CrossRef] [PubMed]
  3. W. Zou, K. Thompson, and J. Rolland, “Differential Shack-Hartmann curvature sensor: local principal curvature measurements,” J. Opt. Soc. Am. A 25, 2331-2337 (2008).
    [CrossRef]
  4. S. Barwick, “Detecting higher-order wavefront aberrations with an astigmatic hybrid wavefront sensor,” Opt. Lett. 34, 1690-1692 (2009).
    [CrossRef] [PubMed]
  5. E. Johansson and D. Gavel, “Simulation of stellar speckle imaging,” Proc. SPIE 1237, 372-383 (1994).
    [CrossRef]
  6. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).
  7. S. Barwick, “Least-squares reconstruction for hybrid curvature wavefront sensors,” J. Opt. Soc. Am. A (to be published).
  8. H. Barrett, C. Dainty, and D. Lara, “Maximum-likelihood methods in wavefront sensing: stochastic models and likelihood functions,” J. Opt. Soc. Am. A 24, 391-414 (2007).
    [CrossRef]
  9. M. A. van Dam and R. G. Lane, “Tip/tilt estimation from defocused images,” J. Opt. Soc. Am. A 19, 745-752 (2002).
    [CrossRef]
  10. R. Marks, D. Mathine, J. Schwiegerling, G. Peyman, and N. Peyghambarian, “Astigmatism and defocus wavefront correction via Zernike modes produced with fluidic lenses,” Appl. Opt. 48, 3580-3587 (2009).
    [CrossRef] [PubMed]

2009 (2)

2008 (1)

2007 (1)

2006 (1)

2002 (1)

2000 (1)

1994 (1)

E. Johansson and D. Gavel, “Simulation of stellar speckle imaging,” Proc. SPIE 1237, 372-383 (1994).
[CrossRef]

Barbero, S.

Barrett, H.

Barwick, S.

S. Barwick, “Detecting higher-order wavefront aberrations with an astigmatic hybrid wavefront sensor,” Opt. Lett. 34, 1690-1692 (2009).
[CrossRef] [PubMed]

S. Barwick, “Least-squares reconstruction for hybrid curvature wavefront sensors,” J. Opt. Soc. Am. A (to be published).

Dainty, C.

Dainty, J.

Gavel, D.

E. Johansson and D. Gavel, “Simulation of stellar speckle imaging,” Proc. SPIE 1237, 372-383 (1994).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).

Johansson, E.

E. Johansson and D. Gavel, “Simulation of stellar speckle imaging,” Proc. SPIE 1237, 372-383 (1994).
[CrossRef]

Lane, R. G.

Lara, D.

Marks, R.

Mathine, D.

Paterson, C.

Peyghambarian, N.

Peyman, G.

Rolland, J.

Rubinstein, J.

Schwiegerling, J.

Thibos, L.

Thompson, K.

van Dam, M. A.

Zou, W.

Appl. Opt. (1)

J. Opt. Soc. Am. A (4)

Opt. Lett. (3)

Proc. SPIE (1)

E. Johansson and D. Gavel, “Simulation of stellar speckle imaging,” Proc. SPIE 1237, 372-383 (1994).
[CrossRef]

Other (1)

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Mean of the RRMSE over 100 phase screens versus P sub is plotted for AHS weighted reconstruction (AHS-W), AHS tilt-only reconstruction (AHS-TO), and SHS reconstruction.

Fig. 2
Fig. 2

Mean of c over 256 subaperture FIs with least-squares tilt removed versus normalized radius is plotted for the AHS and SHS.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ϕ ( r , θ ) = q r 2 cos ( 2 θ θ 0 ) ,
W ( x , y ) τ p + τ x x + τ y y + τ x x x 2 + τ y y y 2 + τ x y x y ,
F j k = m 1 g m ( τ c , q , p ) g m ( τ c , q , p ) τ j g m ( τ c , q , p ) τ k
Var { τ ^ j } [ F 1 ] j j ,
RRMSE = m n ( W m n W ^ m n ) 2 m n W m n 2 .
c ( r 0 ) = r 0 ( max r > r 0 { F ( r ) } ) P sub ,

Metrics