Abstract

The geometric characteristics of aberrations of plane-symmetric optical systems are studied in detail with a wave-aberration theory. It is dealt with as an extension of the Seidel aberrations to realize a consistent aberration theory from axially symmetric to plane-symmetric systems. The aberration distribution is analyzed with the spot diagram of a ray and an aberration curve. Moreover, the root-mean-square value and the centroid of aberration distribution are discussed. The numerical results are obtained with the focusing optics of a toroidal mirror at grazing incidence.

© 2009 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. B. Peatman, Gratings, Mirrors and Slits: Beamline Design for Soft X-Ray Synchrotron Radiation Sources (Gordon&Breach , 1997), pp. 71-75.
  2. H. G. Beutler, “The theory of the concave grating,” J. Opt. Soc. Am. 35, 311-350 (1945).
    [CrossRef]
  3. H. Noda, T. Namioka, and M. Seya, “Geometrical theory of the grating,” J. Opt. Soc. Am. 64, 1031-1036 (1974).
    [CrossRef]
  4. T. Namioka, M. Koike, and D. Content, “Geometric theory of the ellipsoidal grating,” Appl. Opt. 33, 7261-7274 (1994).
    [CrossRef]
  5. M. P. Chrisp, “Aberrations of holographic toroidal grating systems,” Appl. Opt. 22, 1508-1518 (1983).
    [CrossRef]
  6. L.-J. Lu, “Aberration theory of plane-symmetric grating systems,” J. Synchrotron Radiat. 15, 399-410 (2008).
  7. L.-J. Lu and D.-L. Lin, “Aberrations of plane-symmetric multi-element optical systems,” Opt. Int. J. Light Electron Opt. , doi:10.1016/j.ijleo.2009.01.016 (in press).
    [CrossRef]
  8. C. Palmer, B. Wheeler, and W. McKinney, “Imaging equations of spectroscopic systems using Lie transformations. I. Theoretical foundations,” Proc. SPIE 3450, 55-66 (1998).
    [CrossRef]
  9. C. Palmer, B. Wheeler, and W. McKinney, “Imaging equations of spectroscopic systems using Lie transformations. II. Multi-element systems,” Proc. SPIE 3450, 67-77 (1998).
    [CrossRef]
  10. K. Goto and T. Kurosaki, “Canonical formulation for the geometrical optics of concave gratings,” J. Opt. Soc. Am. A 10, 452-465 (1993).
    [CrossRef]
  11. S. Masui and T. Namioka, “Geometric aberration theory of double-element optical systems,” J. Opt. Soc. Am. A 16, 2253-2268 (1999).
    [CrossRef]
  12. B. D. Stone and G. W. Forbes, “Second-order design methods for definitive studies of plane-symmetric, two-mirror systems,” J. Opt. Soc. Am. A 11, 3292-3307 (1994).
    [CrossRef]
  13. J. M. Howard and B. D. Stone, “Imaging a point with two spherical mirrors,” J. Opt. Soc. Am. A 15, 3045-3056 (1998).
    [CrossRef]
  14. J. M. Sasian, “How to approach the design of a bilateral symmetric optical system,” Opt. Eng. 33, 2045-2061 (1994).
    [CrossRef]
  15. K. Thompson, “Description of the third-order optical aberrations of near-circular pupil optical systems without symmetry,” J. Opt. Soc. Am. A 22, 1389-1401 (2005).
    [CrossRef]
  16. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 2005).
  17. V. N. Mahajan, Optical Imaging and Aberrations (SPIE Press, 1998).

2005

1999

1998

C. Palmer, B. Wheeler, and W. McKinney, “Imaging equations of spectroscopic systems using Lie transformations. I. Theoretical foundations,” Proc. SPIE 3450, 55-66 (1998).
[CrossRef]

C. Palmer, B. Wheeler, and W. McKinney, “Imaging equations of spectroscopic systems using Lie transformations. II. Multi-element systems,” Proc. SPIE 3450, 67-77 (1998).
[CrossRef]

J. M. Howard and B. D. Stone, “Imaging a point with two spherical mirrors,” J. Opt. Soc. Am. A 15, 3045-3056 (1998).
[CrossRef]

1994

1993

1983

1974

1945

Beutler, H. G.

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 2005).

Chrisp, M. P.

Content, D.

Forbes, G. W.

Goto, K.

Howard, J. M.

Koike, M.

Kurosaki, T.

Lin, D.-L.

L.-J. Lu and D.-L. Lin, “Aberrations of plane-symmetric multi-element optical systems,” Opt. Int. J. Light Electron Opt. , doi:10.1016/j.ijleo.2009.01.016 (in press).
[CrossRef]

Lu, L.-J.

L.-J. Lu and D.-L. Lin, “Aberrations of plane-symmetric multi-element optical systems,” Opt. Int. J. Light Electron Opt. , doi:10.1016/j.ijleo.2009.01.016 (in press).
[CrossRef]

L.-J. Lu, “Aberration theory of plane-symmetric grating systems,” J. Synchrotron Radiat. 15, 399-410 (2008).

Mahajan, V. N.

V. N. Mahajan, Optical Imaging and Aberrations (SPIE Press, 1998).

Masui, S.

McKinney, W.

C. Palmer, B. Wheeler, and W. McKinney, “Imaging equations of spectroscopic systems using Lie transformations. II. Multi-element systems,” Proc. SPIE 3450, 67-77 (1998).
[CrossRef]

C. Palmer, B. Wheeler, and W. McKinney, “Imaging equations of spectroscopic systems using Lie transformations. I. Theoretical foundations,” Proc. SPIE 3450, 55-66 (1998).
[CrossRef]

Namioka, T.

Noda, H.

Palmer, C.

C. Palmer, B. Wheeler, and W. McKinney, “Imaging equations of spectroscopic systems using Lie transformations. II. Multi-element systems,” Proc. SPIE 3450, 67-77 (1998).
[CrossRef]

C. Palmer, B. Wheeler, and W. McKinney, “Imaging equations of spectroscopic systems using Lie transformations. I. Theoretical foundations,” Proc. SPIE 3450, 55-66 (1998).
[CrossRef]

Peatman, W. B.

W. B. Peatman, Gratings, Mirrors and Slits: Beamline Design for Soft X-Ray Synchrotron Radiation Sources (Gordon&Breach , 1997), pp. 71-75.

Sasian, J. M.

J. M. Sasian, “How to approach the design of a bilateral symmetric optical system,” Opt. Eng. 33, 2045-2061 (1994).
[CrossRef]

Seya, M.

Stone, B. D.

Thompson, K.

Wheeler, B.

C. Palmer, B. Wheeler, and W. McKinney, “Imaging equations of spectroscopic systems using Lie transformations. II. Multi-element systems,” Proc. SPIE 3450, 67-77 (1998).
[CrossRef]

C. Palmer, B. Wheeler, and W. McKinney, “Imaging equations of spectroscopic systems using Lie transformations. I. Theoretical foundations,” Proc. SPIE 3450, 55-66 (1998).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 2005).

Appl. Opt.

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Opt. Eng.

J. M. Sasian, “How to approach the design of a bilateral symmetric optical system,” Opt. Eng. 33, 2045-2061 (1994).
[CrossRef]

Opt. Int. J. Light Electron Opt.

L.-J. Lu and D.-L. Lin, “Aberrations of plane-symmetric multi-element optical systems,” Opt. Int. J. Light Electron Opt. , doi:10.1016/j.ijleo.2009.01.016 (in press).
[CrossRef]

Proc. SPIE

C. Palmer, B. Wheeler, and W. McKinney, “Imaging equations of spectroscopic systems using Lie transformations. I. Theoretical foundations,” Proc. SPIE 3450, 55-66 (1998).
[CrossRef]

C. Palmer, B. Wheeler, and W. McKinney, “Imaging equations of spectroscopic systems using Lie transformations. II. Multi-element systems,” Proc. SPIE 3450, 67-77 (1998).
[CrossRef]

Other

W. B. Peatman, Gratings, Mirrors and Slits: Beamline Design for Soft X-Ray Synchrotron Radiation Sources (Gordon&Breach , 1997), pp. 71-75.

L.-J. Lu, “Aberration theory of plane-symmetric grating systems,” J. Synchrotron Radiat. 15, 399-410 (2008).

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 2005).

V. N. Mahajan, Optical Imaging and Aberrations (SPIE Press, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics