Abstract

A fiber-optic dipping liquid analyzer (FDLA) is developed for measuring liquid properties such as concentration, refractive index, surface tension, and viscosity. An important feature of the FDLA is that a liquid drop is introduced on the end face of a fiber probe, and the drop can be regarded as a planar-convex lens. The light transmitting path and receiving power are affected by the refractive index of the liquid drop. We present a theoretical and experimental analysis of the light transmission. A mathematical model of receiving power is established based on paraxial refraction imaging and fiber reflective intensity modulation methods. Sucrose-water solutions were tested with the FDLA. The experimental results agree well with the theoretical analysis.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Faria, “A theoretical analysis of the bifurcated fiber bundle displacement sensor,” IEEE Trans. Instrum. Meas. 47, 742-747 (1998).
    [CrossRef]
  2. P. B. Buchade and A. D. Shaligram, “Simulation and experimental studies of inclined two fiber displacement sensor,” Sens. Actuators A, Phys. 128, 312-316 (2006).
    [CrossRef]
  3. C. Wu, “Fiber optic angular displacement sensor,” Rev. Sci. Instrum. 66, 3672-3675 (1995).
    [CrossRef]
  4. D. Sagrario and P. Mead, “Axial and angular displacement fiber-optic sensor,” Appl. Opt. 37, 6748-6754 (1998).
    [CrossRef]
  5. H. Wang, “Collimated beam fiber optic position sensor: effects of sample rotations on modulation functions,” Opt. Eng. 36, 8-14 (1997).
    [CrossRef]
  6. M. Johnson, “Fiber displacement sensors for metrology and control,” Opt. Eng. 24, 961-965 (1985).
  7. M. G. Xu and J. P. Dakin, “Novel hollow-glass microsphere sensor for monitoring high hydrostatic pressure,” Proc. SPIE 1795, 2-7 (1992).
    [CrossRef]
  8. S. Binu, V. P. Mahadevan Pillai, and N. Chandrasekaran, “Fibre optic displacement sensor for the measurement of amplitude and frequency of vibration,” Opt. Laser Technol. 39, 1537-1543 (2007).
    [CrossRef]
  9. A. Mendez, T. F. Morse, and K. A. Ramsey, “Fiber optic-electric field micro sensor,” Proc. SPIE 1795, 153-164(1993).
    [CrossRef]
  10. A. Zhou, J. Yang, B. Liu, and L. Yuan, “A fiber-optic liquid sensor for simultaneously measuring refractive index, surface tension, contact angle and viscosity,” Proc. SPIE 7503, 75033B (2009).
    [CrossRef]
  11. M. H. Freeman and C. C. Hull, Optics, 11th ed. (Elsevier, 2005).

2009

A. Zhou, J. Yang, B. Liu, and L. Yuan, “A fiber-optic liquid sensor for simultaneously measuring refractive index, surface tension, contact angle and viscosity,” Proc. SPIE 7503, 75033B (2009).
[CrossRef]

2007

S. Binu, V. P. Mahadevan Pillai, and N. Chandrasekaran, “Fibre optic displacement sensor for the measurement of amplitude and frequency of vibration,” Opt. Laser Technol. 39, 1537-1543 (2007).
[CrossRef]

2006

P. B. Buchade and A. D. Shaligram, “Simulation and experimental studies of inclined two fiber displacement sensor,” Sens. Actuators A, Phys. 128, 312-316 (2006).
[CrossRef]

1998

J. B. Faria, “A theoretical analysis of the bifurcated fiber bundle displacement sensor,” IEEE Trans. Instrum. Meas. 47, 742-747 (1998).
[CrossRef]

D. Sagrario and P. Mead, “Axial and angular displacement fiber-optic sensor,” Appl. Opt. 37, 6748-6754 (1998).
[CrossRef]

1997

H. Wang, “Collimated beam fiber optic position sensor: effects of sample rotations on modulation functions,” Opt. Eng. 36, 8-14 (1997).
[CrossRef]

1995

C. Wu, “Fiber optic angular displacement sensor,” Rev. Sci. Instrum. 66, 3672-3675 (1995).
[CrossRef]

1993

A. Mendez, T. F. Morse, and K. A. Ramsey, “Fiber optic-electric field micro sensor,” Proc. SPIE 1795, 153-164(1993).
[CrossRef]

1992

M. G. Xu and J. P. Dakin, “Novel hollow-glass microsphere sensor for monitoring high hydrostatic pressure,” Proc. SPIE 1795, 2-7 (1992).
[CrossRef]

1985

M. Johnson, “Fiber displacement sensors for metrology and control,” Opt. Eng. 24, 961-965 (1985).

Binu, S.

S. Binu, V. P. Mahadevan Pillai, and N. Chandrasekaran, “Fibre optic displacement sensor for the measurement of amplitude and frequency of vibration,” Opt. Laser Technol. 39, 1537-1543 (2007).
[CrossRef]

Buchade, P. B.

P. B. Buchade and A. D. Shaligram, “Simulation and experimental studies of inclined two fiber displacement sensor,” Sens. Actuators A, Phys. 128, 312-316 (2006).
[CrossRef]

Chandrasekaran, N.

S. Binu, V. P. Mahadevan Pillai, and N. Chandrasekaran, “Fibre optic displacement sensor for the measurement of amplitude and frequency of vibration,” Opt. Laser Technol. 39, 1537-1543 (2007).
[CrossRef]

Dakin, J. P.

M. G. Xu and J. P. Dakin, “Novel hollow-glass microsphere sensor for monitoring high hydrostatic pressure,” Proc. SPIE 1795, 2-7 (1992).
[CrossRef]

Faria, J. B.

J. B. Faria, “A theoretical analysis of the bifurcated fiber bundle displacement sensor,” IEEE Trans. Instrum. Meas. 47, 742-747 (1998).
[CrossRef]

Freeman, M. H.

M. H. Freeman and C. C. Hull, Optics, 11th ed. (Elsevier, 2005).

Hull, C. C.

M. H. Freeman and C. C. Hull, Optics, 11th ed. (Elsevier, 2005).

Johnson, M.

M. Johnson, “Fiber displacement sensors for metrology and control,” Opt. Eng. 24, 961-965 (1985).

Liu, B.

A. Zhou, J. Yang, B. Liu, and L. Yuan, “A fiber-optic liquid sensor for simultaneously measuring refractive index, surface tension, contact angle and viscosity,” Proc. SPIE 7503, 75033B (2009).
[CrossRef]

Mahadevan Pillai, V. P.

S. Binu, V. P. Mahadevan Pillai, and N. Chandrasekaran, “Fibre optic displacement sensor for the measurement of amplitude and frequency of vibration,” Opt. Laser Technol. 39, 1537-1543 (2007).
[CrossRef]

Mead, P.

Mendez, A.

A. Mendez, T. F. Morse, and K. A. Ramsey, “Fiber optic-electric field micro sensor,” Proc. SPIE 1795, 153-164(1993).
[CrossRef]

Morse, T. F.

A. Mendez, T. F. Morse, and K. A. Ramsey, “Fiber optic-electric field micro sensor,” Proc. SPIE 1795, 153-164(1993).
[CrossRef]

Ramsey, K. A.

A. Mendez, T. F. Morse, and K. A. Ramsey, “Fiber optic-electric field micro sensor,” Proc. SPIE 1795, 153-164(1993).
[CrossRef]

Sagrario, D.

Shaligram, A. D.

P. B. Buchade and A. D. Shaligram, “Simulation and experimental studies of inclined two fiber displacement sensor,” Sens. Actuators A, Phys. 128, 312-316 (2006).
[CrossRef]

Wang, H.

H. Wang, “Collimated beam fiber optic position sensor: effects of sample rotations on modulation functions,” Opt. Eng. 36, 8-14 (1997).
[CrossRef]

Wu, C.

C. Wu, “Fiber optic angular displacement sensor,” Rev. Sci. Instrum. 66, 3672-3675 (1995).
[CrossRef]

Xu, M. G.

M. G. Xu and J. P. Dakin, “Novel hollow-glass microsphere sensor for monitoring high hydrostatic pressure,” Proc. SPIE 1795, 2-7 (1992).
[CrossRef]

Yang, J.

A. Zhou, J. Yang, B. Liu, and L. Yuan, “A fiber-optic liquid sensor for simultaneously measuring refractive index, surface tension, contact angle and viscosity,” Proc. SPIE 7503, 75033B (2009).
[CrossRef]

Yuan, L.

A. Zhou, J. Yang, B. Liu, and L. Yuan, “A fiber-optic liquid sensor for simultaneously measuring refractive index, surface tension, contact angle and viscosity,” Proc. SPIE 7503, 75033B (2009).
[CrossRef]

Zhou, A.

A. Zhou, J. Yang, B. Liu, and L. Yuan, “A fiber-optic liquid sensor for simultaneously measuring refractive index, surface tension, contact angle and viscosity,” Proc. SPIE 7503, 75033B (2009).
[CrossRef]

Appl. Opt.

IEEE Trans. Instrum. Meas.

J. B. Faria, “A theoretical analysis of the bifurcated fiber bundle displacement sensor,” IEEE Trans. Instrum. Meas. 47, 742-747 (1998).
[CrossRef]

Opt. Eng.

H. Wang, “Collimated beam fiber optic position sensor: effects of sample rotations on modulation functions,” Opt. Eng. 36, 8-14 (1997).
[CrossRef]

M. Johnson, “Fiber displacement sensors for metrology and control,” Opt. Eng. 24, 961-965 (1985).

Opt. Laser Technol.

S. Binu, V. P. Mahadevan Pillai, and N. Chandrasekaran, “Fibre optic displacement sensor for the measurement of amplitude and frequency of vibration,” Opt. Laser Technol. 39, 1537-1543 (2007).
[CrossRef]

Proc. SPIE

A. Mendez, T. F. Morse, and K. A. Ramsey, “Fiber optic-electric field micro sensor,” Proc. SPIE 1795, 153-164(1993).
[CrossRef]

A. Zhou, J. Yang, B. Liu, and L. Yuan, “A fiber-optic liquid sensor for simultaneously measuring refractive index, surface tension, contact angle and viscosity,” Proc. SPIE 7503, 75033B (2009).
[CrossRef]

M. G. Xu and J. P. Dakin, “Novel hollow-glass microsphere sensor for monitoring high hydrostatic pressure,” Proc. SPIE 1795, 2-7 (1992).
[CrossRef]

Rev. Sci. Instrum.

C. Wu, “Fiber optic angular displacement sensor,” Rev. Sci. Instrum. 66, 3672-3675 (1995).
[CrossRef]

Sens. Actuators A, Phys.

P. B. Buchade and A. D. Shaligram, “Simulation and experimental studies of inclined two fiber displacement sensor,” Sens. Actuators A, Phys. 128, 312-316 (2006).
[CrossRef]

Other

M. H. Freeman and C. C. Hull, Optics, 11th ed. (Elsevier, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Image and schematic illustration of a fiber probe with a drop of distilled water.

Fig. 2
Fig. 2

Scheme of light transmission and reflection.

Fig. 3
Fig. 3

Schematic illustration of fiber imaging with the liquid drop.

Fig. 4
Fig. 4

Receiving light power curves from a fiber probe with and without a liquid drop: (a) theoretical results and (b) experimental results.

Fig. 5
Fig. 5

Collecting power versus displacement from the reflective interface of the undisturbed liquid: (a) theoretical results and (b) experimental results.

Fig. 6
Fig. 6

(a) Normalized characteristic curves of sucrose-water mixtures at different concentrations; (b) normalized peak width at half-peak versus refractive indices of sucrose-water mixtures at different concentrations.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

T = 1 2 ( 4 n 2 cos θ cos θ t ( n 2 cos θ + cos θ t ) 2 + 4 n 2 cos θ cos θ t ( n 2 cos θ t + cos θ ) 2 ) ,
R 1 = 1 2 ( [ cos θ 1 n 2 cos θ t 1 cos θ 1 + n 2 cos θ t 1 ] 2 + [ cos θ t 1 n 2 cos θ 1 cos θ t 1 + n 2 cos θ 1 ] 2 ) ,
T 2 = 1 2 ( 4 n 2 cos θ 2 cos θ t 2 ( cos θ 2 + n 2 cos θ t 2 ) 2 + 4 n 2 cos θ 2 cos θ t 2 ( cos θ t 2 + n 2 cos θ 2 ) 2 ) .
a 1 _ effect = U 1 L 1 ¯ cos ( ε 1 + α 1 ) / 2 ,
a 2 _ effect = U 2 L 2 ¯ cos ( ε 2 + α 2 ) / 2.
I ( ρ , z ) = I 0 ( ω 0 ω ( z ) ) 2 exp ( 2 ρ 2 ω ( z ) 2 ) ,
ω ( z ) = ω 0 1 + [ λ ( d 10 + d 20 ) / cos α 1 π ω 0 2 ] 2 ,
P = s T 2 · R 1 · T · I ( ρ , z ) d s .
P = T 2 · R 1 · T · I ( p , z ) · π a 2 _ effect 2 .

Metrics