Abstract

A compact real-time three-color reflection holographic interferometer (RCRHI) was developed by Office National d’Etudes et de Recherches Aérospatiales for analyzing high-speed flows. As a classical in-line Lippmann–Denisyuk holographic setup, a reflection panchromatic silver-halide holographic plate is used to simultaneously record three reference holograms. The best results are obtained when the diffraction efficiency of the holographic plate reaches 50% for the three wavelengths used (red-green-blue). For that, problems in gelatin shrinkage due to the hologram treatment had to be solved for the two types of holographic plates used (Slavich and Gentet). This new optical setup was applied to analyze the two- dimensional unsteady wake flow around a circular cylinder at Mach 0.45. Interferograms recorded at a high framing rate exhibit very well saturated colors and high contrast, which eases the quasi- automated interferogram analysis. Finally, the evolution in time of the instantaneous gas density field has been obtained from the analysis of several interferograms covering one period of the phenomenon. In the future, the analysis of three-dimensional flows should be investigated using an optical bench based on RCRHI multidirectional tomography.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Desse, F. Albe, and J. L. Tribillon, “Real-time color holographic interferometry,” Appl. Opt. 41, 5326-5333 (2002).
    [CrossRef] [PubMed]
  2. J. M. Desse, F. Albe, and J. L. Tribillon, “Real-time color holographic interferometry devoted to 2D unsteady wake flow,” J. Visual. 7, 217-224 (2004).
    [CrossRef]
  3. J. Surget, “Etude quantitative d'un écoulement aérodynamique,” Rech. Aérosp. 3, 167-171 (1973).
  4. D. J. Cha and S. S. Cha, “Holographic interferometric tomography for limited data reconstruction,” AIAA J. 34, 1019-1026(1996).
    [CrossRef]
  5. D. Yan and S. S. Cha, “Computational and interferometric system for real-time limited-view tomography of flow fields,” Appl. Opt. 37, 1159-1164 (1998).
    [CrossRef]
  6. N. Fomin, Speckle Photography for Fluid Mechanics Measurements (Springer, 1998).
  7. N. Fomin, E. Lavinskaya, and D. Vitkin, “Speckle tomography of turbulent flows with density fluctuations,” Exp. Fluids 33, 160-169 (2002).
  8. B. J. Pellicia-Kraft and D. W. Watt, “Three-dimensional imaging of a turbulent jet using shearing interferometry and optical tomography,” Exp. Fluids 29, 573-581 (2000).
    [CrossRef]
  9. B. J. Pellicia-Kraft and D. W. Watt, “Visualization of coherent structure in scalar fields of unsteady jet flows with interferometric tomography and proper orthogonal decomposition,” Exp. Fluids 30, 633-644 (2001).
    [CrossRef]
  10. B. Timmerman and D. W. Watt, “Tomographic high-speed digital holographic interferometry,” Meas. Sci. Technol. 6, 1270-1277 (1995).
    [CrossRef]
  11. L. Joannes, O. Dupont, F. Dubois, P. Colinet, and J. C. Legros, “Interferometric optical tomography for 3-dimensional investigation of liquids,” in Proceedings of the 8th International Symposium on Flow Visualization (CD-ROM), G. M. Carlomagno, I. Grant, eds. (2000), paper 428.
  12. G. E. A. Meier, “Computerized background-oriented Schlieren,” Exp. Fluids 33, 181-187 (2002).
  13. G. Pedrini, W. Osten, and M. E. Gusev, “High-speed digital holographic interferometry for vibration measurement,” Appl. Opt. 45, 3456-3462 (2006).
    [CrossRef] [PubMed]
  14. C. Pérez-López, M. H. De la Torre-Ibarra, and F. M. Santoyo, “Very high speed cw digital holographic interferometry,” Opt. Express 14, 9709-9715 (2006).
    [CrossRef] [PubMed]
  15. I. Yamaguchi, T. Matsumura, and J. Kato, “Phase-shifting color digital holography,” Opt. Lett. 27, 1108-1110 (2002).
    [CrossRef]
  16. N. DemoliD. Vukicevic, and M. Torzynski, “Dynamic digital holographic interferometry with three wavelengths,” Opt. Express 11, 767-774 (2003).
    [CrossRef] [PubMed]
  17. J. M. Desse, P. Picart, and P. Tankam, “Digital three-color holographic interferometry for flow analysis,” Opt. Express 16, 5471-5480 (2008).
    [CrossRef] [PubMed]
  18. H. I. Bjelkhagen and E. Mirlis, “Color holography to produce highly realistic three-dimensional images,” Appl. Opt. 47, A123-A133 (2008).
    [CrossRef] [PubMed]
  19. Ts. Petrova, B. Ivanov, K. Zdravkov, D. Nazarova, E. Stoykova, G. Minchev, and V. Sainov, “Basic holographic characteristics of a panchromatic light sensitive material for reflective autostereoscopic 3D display,” EURASIP J. Adv. Signal Process. 2009, 1 (2009).
    [CrossRef]
  20. J. M. Desse, “Recent contribution in color interferometry and applications to high-speed flows,” Opt. Lasers Eng. 44, 304-320 (2006).
    [CrossRef]
  21. J. M. Desse, “Recording and processing of interferograms by spectral characterization of the interferometric setup,” Exp. Fluids 23, 265-271 (1997).
    [CrossRef]

2009 (1)

Ts. Petrova, B. Ivanov, K. Zdravkov, D. Nazarova, E. Stoykova, G. Minchev, and V. Sainov, “Basic holographic characteristics of a panchromatic light sensitive material for reflective autostereoscopic 3D display,” EURASIP J. Adv. Signal Process. 2009, 1 (2009).
[CrossRef]

2008 (2)

2006 (3)

2004 (1)

J. M. Desse, F. Albe, and J. L. Tribillon, “Real-time color holographic interferometry devoted to 2D unsteady wake flow,” J. Visual. 7, 217-224 (2004).
[CrossRef]

2003 (1)

2002 (4)

J. M. Desse, F. Albe, and J. L. Tribillon, “Real-time color holographic interferometry,” Appl. Opt. 41, 5326-5333 (2002).
[CrossRef] [PubMed]

N. Fomin, E. Lavinskaya, and D. Vitkin, “Speckle tomography of turbulent flows with density fluctuations,” Exp. Fluids 33, 160-169 (2002).

I. Yamaguchi, T. Matsumura, and J. Kato, “Phase-shifting color digital holography,” Opt. Lett. 27, 1108-1110 (2002).
[CrossRef]

G. E. A. Meier, “Computerized background-oriented Schlieren,” Exp. Fluids 33, 181-187 (2002).

2001 (1)

B. J. Pellicia-Kraft and D. W. Watt, “Visualization of coherent structure in scalar fields of unsteady jet flows with interferometric tomography and proper orthogonal decomposition,” Exp. Fluids 30, 633-644 (2001).
[CrossRef]

2000 (1)

B. J. Pellicia-Kraft and D. W. Watt, “Three-dimensional imaging of a turbulent jet using shearing interferometry and optical tomography,” Exp. Fluids 29, 573-581 (2000).
[CrossRef]

1998 (1)

1997 (1)

J. M. Desse, “Recording and processing of interferograms by spectral characterization of the interferometric setup,” Exp. Fluids 23, 265-271 (1997).
[CrossRef]

1996 (1)

D. J. Cha and S. S. Cha, “Holographic interferometric tomography for limited data reconstruction,” AIAA J. 34, 1019-1026(1996).
[CrossRef]

1995 (1)

B. Timmerman and D. W. Watt, “Tomographic high-speed digital holographic interferometry,” Meas. Sci. Technol. 6, 1270-1277 (1995).
[CrossRef]

1973 (1)

J. Surget, “Etude quantitative d'un écoulement aérodynamique,” Rech. Aérosp. 3, 167-171 (1973).

Albe, F.

J. M. Desse, F. Albe, and J. L. Tribillon, “Real-time color holographic interferometry devoted to 2D unsteady wake flow,” J. Visual. 7, 217-224 (2004).
[CrossRef]

J. M. Desse, F. Albe, and J. L. Tribillon, “Real-time color holographic interferometry,” Appl. Opt. 41, 5326-5333 (2002).
[CrossRef] [PubMed]

Bjelkhagen, H. I.

Cha, D. J.

D. J. Cha and S. S. Cha, “Holographic interferometric tomography for limited data reconstruction,” AIAA J. 34, 1019-1026(1996).
[CrossRef]

Cha, S. S.

D. Yan and S. S. Cha, “Computational and interferometric system for real-time limited-view tomography of flow fields,” Appl. Opt. 37, 1159-1164 (1998).
[CrossRef]

D. J. Cha and S. S. Cha, “Holographic interferometric tomography for limited data reconstruction,” AIAA J. 34, 1019-1026(1996).
[CrossRef]

Colinet, P.

L. Joannes, O. Dupont, F. Dubois, P. Colinet, and J. C. Legros, “Interferometric optical tomography for 3-dimensional investigation of liquids,” in Proceedings of the 8th International Symposium on Flow Visualization (CD-ROM), G. M. Carlomagno, I. Grant, eds. (2000), paper 428.

De la Torre-Ibarra, M. H.

Demoli, N.

Desse, J. M.

J. M. Desse, P. Picart, and P. Tankam, “Digital three-color holographic interferometry for flow analysis,” Opt. Express 16, 5471-5480 (2008).
[CrossRef] [PubMed]

J. M. Desse, “Recent contribution in color interferometry and applications to high-speed flows,” Opt. Lasers Eng. 44, 304-320 (2006).
[CrossRef]

J. M. Desse, F. Albe, and J. L. Tribillon, “Real-time color holographic interferometry devoted to 2D unsteady wake flow,” J. Visual. 7, 217-224 (2004).
[CrossRef]

J. M. Desse, F. Albe, and J. L. Tribillon, “Real-time color holographic interferometry,” Appl. Opt. 41, 5326-5333 (2002).
[CrossRef] [PubMed]

J. M. Desse, “Recording and processing of interferograms by spectral characterization of the interferometric setup,” Exp. Fluids 23, 265-271 (1997).
[CrossRef]

Dubois, F.

L. Joannes, O. Dupont, F. Dubois, P. Colinet, and J. C. Legros, “Interferometric optical tomography for 3-dimensional investigation of liquids,” in Proceedings of the 8th International Symposium on Flow Visualization (CD-ROM), G. M. Carlomagno, I. Grant, eds. (2000), paper 428.

Dupont, O.

L. Joannes, O. Dupont, F. Dubois, P. Colinet, and J. C. Legros, “Interferometric optical tomography for 3-dimensional investigation of liquids,” in Proceedings of the 8th International Symposium on Flow Visualization (CD-ROM), G. M. Carlomagno, I. Grant, eds. (2000), paper 428.

Fomin, N.

N. Fomin, E. Lavinskaya, and D. Vitkin, “Speckle tomography of turbulent flows with density fluctuations,” Exp. Fluids 33, 160-169 (2002).

N. Fomin, Speckle Photography for Fluid Mechanics Measurements (Springer, 1998).

Gusev, M. E.

Ivanov, B.

Ts. Petrova, B. Ivanov, K. Zdravkov, D. Nazarova, E. Stoykova, G. Minchev, and V. Sainov, “Basic holographic characteristics of a panchromatic light sensitive material for reflective autostereoscopic 3D display,” EURASIP J. Adv. Signal Process. 2009, 1 (2009).
[CrossRef]

Joannes, L.

L. Joannes, O. Dupont, F. Dubois, P. Colinet, and J. C. Legros, “Interferometric optical tomography for 3-dimensional investigation of liquids,” in Proceedings of the 8th International Symposium on Flow Visualization (CD-ROM), G. M. Carlomagno, I. Grant, eds. (2000), paper 428.

Kato, J.

Lavinskaya, E.

N. Fomin, E. Lavinskaya, and D. Vitkin, “Speckle tomography of turbulent flows with density fluctuations,” Exp. Fluids 33, 160-169 (2002).

Legros, J. C.

L. Joannes, O. Dupont, F. Dubois, P. Colinet, and J. C. Legros, “Interferometric optical tomography for 3-dimensional investigation of liquids,” in Proceedings of the 8th International Symposium on Flow Visualization (CD-ROM), G. M. Carlomagno, I. Grant, eds. (2000), paper 428.

Matsumura, T.

Meier, G. E. A.

G. E. A. Meier, “Computerized background-oriented Schlieren,” Exp. Fluids 33, 181-187 (2002).

Minchev, G.

Ts. Petrova, B. Ivanov, K. Zdravkov, D. Nazarova, E. Stoykova, G. Minchev, and V. Sainov, “Basic holographic characteristics of a panchromatic light sensitive material for reflective autostereoscopic 3D display,” EURASIP J. Adv. Signal Process. 2009, 1 (2009).
[CrossRef]

Mirlis, E.

Nazarova, D.

Ts. Petrova, B. Ivanov, K. Zdravkov, D. Nazarova, E. Stoykova, G. Minchev, and V. Sainov, “Basic holographic characteristics of a panchromatic light sensitive material for reflective autostereoscopic 3D display,” EURASIP J. Adv. Signal Process. 2009, 1 (2009).
[CrossRef]

Osten, W.

Pedrini, G.

Pellicia-Kraft, B. J.

B. J. Pellicia-Kraft and D. W. Watt, “Visualization of coherent structure in scalar fields of unsteady jet flows with interferometric tomography and proper orthogonal decomposition,” Exp. Fluids 30, 633-644 (2001).
[CrossRef]

B. J. Pellicia-Kraft and D. W. Watt, “Three-dimensional imaging of a turbulent jet using shearing interferometry and optical tomography,” Exp. Fluids 29, 573-581 (2000).
[CrossRef]

Pérez-López, C.

Petrova, Ts.

Ts. Petrova, B. Ivanov, K. Zdravkov, D. Nazarova, E. Stoykova, G. Minchev, and V. Sainov, “Basic holographic characteristics of a panchromatic light sensitive material for reflective autostereoscopic 3D display,” EURASIP J. Adv. Signal Process. 2009, 1 (2009).
[CrossRef]

Picart, P.

Sainov, V.

Ts. Petrova, B. Ivanov, K. Zdravkov, D. Nazarova, E. Stoykova, G. Minchev, and V. Sainov, “Basic holographic characteristics of a panchromatic light sensitive material for reflective autostereoscopic 3D display,” EURASIP J. Adv. Signal Process. 2009, 1 (2009).
[CrossRef]

Santoyo, F. M.

Stoykova, E.

Ts. Petrova, B. Ivanov, K. Zdravkov, D. Nazarova, E. Stoykova, G. Minchev, and V. Sainov, “Basic holographic characteristics of a panchromatic light sensitive material for reflective autostereoscopic 3D display,” EURASIP J. Adv. Signal Process. 2009, 1 (2009).
[CrossRef]

Surget, J.

J. Surget, “Etude quantitative d'un écoulement aérodynamique,” Rech. Aérosp. 3, 167-171 (1973).

Tankam, P.

Timmerman, B.

B. Timmerman and D. W. Watt, “Tomographic high-speed digital holographic interferometry,” Meas. Sci. Technol. 6, 1270-1277 (1995).
[CrossRef]

Torzynski, M.

Tribillon, J. L.

J. M. Desse, F. Albe, and J. L. Tribillon, “Real-time color holographic interferometry devoted to 2D unsteady wake flow,” J. Visual. 7, 217-224 (2004).
[CrossRef]

J. M. Desse, F. Albe, and J. L. Tribillon, “Real-time color holographic interferometry,” Appl. Opt. 41, 5326-5333 (2002).
[CrossRef] [PubMed]

Vitkin, D.

N. Fomin, E. Lavinskaya, and D. Vitkin, “Speckle tomography of turbulent flows with density fluctuations,” Exp. Fluids 33, 160-169 (2002).

Vukicevic, D.

Watt, D. W.

B. J. Pellicia-Kraft and D. W. Watt, “Visualization of coherent structure in scalar fields of unsteady jet flows with interferometric tomography and proper orthogonal decomposition,” Exp. Fluids 30, 633-644 (2001).
[CrossRef]

B. J. Pellicia-Kraft and D. W. Watt, “Three-dimensional imaging of a turbulent jet using shearing interferometry and optical tomography,” Exp. Fluids 29, 573-581 (2000).
[CrossRef]

B. Timmerman and D. W. Watt, “Tomographic high-speed digital holographic interferometry,” Meas. Sci. Technol. 6, 1270-1277 (1995).
[CrossRef]

Yamaguchi, I.

Yan, D.

Zdravkov, K.

Ts. Petrova, B. Ivanov, K. Zdravkov, D. Nazarova, E. Stoykova, G. Minchev, and V. Sainov, “Basic holographic characteristics of a panchromatic light sensitive material for reflective autostereoscopic 3D display,” EURASIP J. Adv. Signal Process. 2009, 1 (2009).
[CrossRef]

AIAA J. (1)

D. J. Cha and S. S. Cha, “Holographic interferometric tomography for limited data reconstruction,” AIAA J. 34, 1019-1026(1996).
[CrossRef]

Appl. Opt. (4)

EURASIP J. Adv. Signal Process. (1)

Ts. Petrova, B. Ivanov, K. Zdravkov, D. Nazarova, E. Stoykova, G. Minchev, and V. Sainov, “Basic holographic characteristics of a panchromatic light sensitive material for reflective autostereoscopic 3D display,” EURASIP J. Adv. Signal Process. 2009, 1 (2009).
[CrossRef]

Exp. Fluids (5)

G. E. A. Meier, “Computerized background-oriented Schlieren,” Exp. Fluids 33, 181-187 (2002).

J. M. Desse, “Recording and processing of interferograms by spectral characterization of the interferometric setup,” Exp. Fluids 23, 265-271 (1997).
[CrossRef]

N. Fomin, E. Lavinskaya, and D. Vitkin, “Speckle tomography of turbulent flows with density fluctuations,” Exp. Fluids 33, 160-169 (2002).

B. J. Pellicia-Kraft and D. W. Watt, “Three-dimensional imaging of a turbulent jet using shearing interferometry and optical tomography,” Exp. Fluids 29, 573-581 (2000).
[CrossRef]

B. J. Pellicia-Kraft and D. W. Watt, “Visualization of coherent structure in scalar fields of unsteady jet flows with interferometric tomography and proper orthogonal decomposition,” Exp. Fluids 30, 633-644 (2001).
[CrossRef]

J. Visual. (1)

J. M. Desse, F. Albe, and J. L. Tribillon, “Real-time color holographic interferometry devoted to 2D unsteady wake flow,” J. Visual. 7, 217-224 (2004).
[CrossRef]

Meas. Sci. Technol. (1)

B. Timmerman and D. W. Watt, “Tomographic high-speed digital holographic interferometry,” Meas. Sci. Technol. 6, 1270-1277 (1995).
[CrossRef]

Opt. Express (3)

Opt. Lasers Eng. (1)

J. M. Desse, “Recent contribution in color interferometry and applications to high-speed flows,” Opt. Lasers Eng. 44, 304-320 (2006).
[CrossRef]

Opt. Lett. (1)

Rech. Aérosp. (1)

J. Surget, “Etude quantitative d'un écoulement aérodynamique,” Rech. Aérosp. 3, 167-171 (1973).

Other (2)

N. Fomin, Speckle Photography for Fluid Mechanics Measurements (Springer, 1998).

L. Joannes, O. Dupont, F. Dubois, P. Colinet, and J. C. Legros, “Interferometric optical tomography for 3-dimensional investigation of liquids,” in Proceedings of the 8th International Symposium on Flow Visualization (CD-ROM), G. M. Carlomagno, I. Grant, eds. (2000), paper 428.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Real-time three-color reflection holographic interferometer.

Fig. 2
Fig. 2

Photography of the mean optical pieces.

Fig. 3
Fig. 3

Principle of color interference fringes in RCDHI setup.

Fig. 4
Fig. 4

Evaluation of diffraction efficiency of Gentet plate.

Fig. 5
Fig. 5

Comparison between experimental and modeled fringe colors.

Fig. 6
Fig. 6

Interferogram analysis: instantaneous and average gas density field.

Tables (1)

Tables Icon

Table 1 Energy Ratios of Each Wavelength Applied at First Exposure

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ λ = λ e Δ e ,

Metrics