Abstract

Multiplexing characteristics of a dc-removed coaxial holographic storage system were evaluated for what is believed to be the first time. Our dc-removed coaxial system achieved 3.5 times higher raw data density than a conventional coaxial system that involved dc recording. The increase of the data density was due not only to less M/# consumption but also to the effects of signal amplification and noise reduction by use of the positive and negative images reconstructed from the same holograms.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. S. Orlov, W. Phillips, E. Bjornson, Y. Takayama, P. Sundaram, L. Hesselink, R. Okas, D. Kwan, and R. Snyder, Appl. Opt. 43, 4902-4914 (2004).
    [CrossRef] [PubMed]
  2. H. Horimai, X. Tan, and J. Li, Appl. Opt. 44, 2575-2579(2005).
    [CrossRef] [PubMed]
  3. F. H. Mok, G. W. Burr, and D. Psaltis, Opt. Lett. 21, 896-898(1996).
    [CrossRef] [PubMed]
  4. S. Yasuda, K. Kawano, J. Minabe, Y. Ogasawara, K. Hayashi, K. Haga, H. Yoshizawa, and M. Furuki, Opt. Lett. 31, 2607-2609 (2006).
    [CrossRef] [PubMed]
  5. K. Kimura, Opt. Lett. 30, 878 (2005).
    [CrossRef] [PubMed]
  6. Z. Kárpáti, K. Bankó, G. Szarvas, S. Kautny, and L. Domján, Jpn. J. Appl. Phys. 46, 3845-3849 (2007).
    [CrossRef]
  7. S. Yasuda, J. Minabe, and K. Kawano, Opt. Lett. 32, 160-162 (2007).
    [CrossRef]
  8. P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, 1993).
  9. H. Kogelnik, Bell Syst. Tech. J. 48, 2909-2947 (1969).
  10. G. W. Burr, J. Ashley, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, and B. Marcus, Opt. Lett. 22, 639-641 (1997).
    [CrossRef] [PubMed]
  11. H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds., Holographic Data Storage, Springer Series in Optical Sciences (Springer-Verlag, Berlin, 2000).
  12. K. Tanaka, M. Hara, K. Tokuyama, K. Hirooka, K. Ishioka, A. Fukumoto, and K. Watanabe, Opt. Exp. 15, 16196-16209(2007).
    [CrossRef]

2007 (3)

Z. Kárpáti, K. Bankó, G. Szarvas, S. Kautny, and L. Domján, Jpn. J. Appl. Phys. 46, 3845-3849 (2007).
[CrossRef]

K. Tanaka, M. Hara, K. Tokuyama, K. Hirooka, K. Ishioka, A. Fukumoto, and K. Watanabe, Opt. Exp. 15, 16196-16209(2007).
[CrossRef]

S. Yasuda, J. Minabe, and K. Kawano, Opt. Lett. 32, 160-162 (2007).
[CrossRef]

2006 (1)

2005 (2)

2004 (1)

1997 (1)

1996 (1)

1969 (1)

H. Kogelnik, Bell Syst. Tech. J. 48, 2909-2947 (1969).

Ashley, J.

Bankó, K.

Z. Kárpáti, K. Bankó, G. Szarvas, S. Kautny, and L. Domján, Jpn. J. Appl. Phys. 46, 3845-3849 (2007).
[CrossRef]

Bjornson, E.

Burr, G. W.

Coufal, H.

Domján, L.

Z. Kárpáti, K. Bankó, G. Szarvas, S. Kautny, and L. Domján, Jpn. J. Appl. Phys. 46, 3845-3849 (2007).
[CrossRef]

Fukumoto, A.

K. Tanaka, M. Hara, K. Tokuyama, K. Hirooka, K. Ishioka, A. Fukumoto, and K. Watanabe, Opt. Exp. 15, 16196-16209(2007).
[CrossRef]

Furuki, M.

Grygier, R. K.

Haga, K.

Hara, M.

K. Tanaka, M. Hara, K. Tokuyama, K. Hirooka, K. Ishioka, A. Fukumoto, and K. Watanabe, Opt. Exp. 15, 16196-16209(2007).
[CrossRef]

Hayashi, K.

Hesselink, L.

Hirooka, K.

K. Tanaka, M. Hara, K. Tokuyama, K. Hirooka, K. Ishioka, A. Fukumoto, and K. Watanabe, Opt. Exp. 15, 16196-16209(2007).
[CrossRef]

Hoffnagle, J. A.

Horimai, H.

Ishioka, K.

K. Tanaka, M. Hara, K. Tokuyama, K. Hirooka, K. Ishioka, A. Fukumoto, and K. Watanabe, Opt. Exp. 15, 16196-16209(2007).
[CrossRef]

Jefferson, C. M.

Kárpáti, Z.

Z. Kárpáti, K. Bankó, G. Szarvas, S. Kautny, and L. Domján, Jpn. J. Appl. Phys. 46, 3845-3849 (2007).
[CrossRef]

Kautny, S.

Z. Kárpáti, K. Bankó, G. Szarvas, S. Kautny, and L. Domján, Jpn. J. Appl. Phys. 46, 3845-3849 (2007).
[CrossRef]

Kawano, K.

Kimura, K.

Kogelnik, H.

H. Kogelnik, Bell Syst. Tech. J. 48, 2909-2947 (1969).

Kwan, D.

Li, J.

Marcus, B.

Minabe, J.

Mok, F. H.

Ogasawara, Y.

Okas, R.

Orlov, S. S.

Phillips, W.

Psaltis, D.

Snyder, R.

Sundaram, P.

Szarvas, G.

Z. Kárpáti, K. Bankó, G. Szarvas, S. Kautny, and L. Domján, Jpn. J. Appl. Phys. 46, 3845-3849 (2007).
[CrossRef]

Takayama, Y.

Tan, X.

Tanaka, K.

K. Tanaka, M. Hara, K. Tokuyama, K. Hirooka, K. Ishioka, A. Fukumoto, and K. Watanabe, Opt. Exp. 15, 16196-16209(2007).
[CrossRef]

Tokuyama, K.

K. Tanaka, M. Hara, K. Tokuyama, K. Hirooka, K. Ishioka, A. Fukumoto, and K. Watanabe, Opt. Exp. 15, 16196-16209(2007).
[CrossRef]

Watanabe, K.

K. Tanaka, M. Hara, K. Tokuyama, K. Hirooka, K. Ishioka, A. Fukumoto, and K. Watanabe, Opt. Exp. 15, 16196-16209(2007).
[CrossRef]

Yasuda, S.

Yeh, P.

P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, 1993).

Yoshizawa, H.

Appl. Opt. (2)

Bell Syst. Tech. J. (1)

H. Kogelnik, Bell Syst. Tech. J. 48, 2909-2947 (1969).

Jpn. J. Appl. Phys. (1)

Z. Kárpáti, K. Bankó, G. Szarvas, S. Kautny, and L. Domján, Jpn. J. Appl. Phys. 46, 3845-3849 (2007).
[CrossRef]

Opt. Exp. (1)

K. Tanaka, M. Hara, K. Tokuyama, K. Hirooka, K. Ishioka, A. Fukumoto, and K. Watanabe, Opt. Exp. 15, 16196-16209(2007).
[CrossRef]

Opt. Lett. (5)

Other (2)

P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, 1993).

H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds., Holographic Data Storage, Springer Series in Optical Sciences (Springer-Verlag, Berlin, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Schematics of the amplitude distributions of (a) the original signal pattern s ( x , y ) , and (b) the dc-removed signal pattern s h ( x , y ) that is to be recorded as a hologram.

Fig. 2
Fig. 2

Schematics of the intensity distributions of the (a) positive and (b) negative reconstructed images. Higher order components of both images are π out-of-phase with respect to each other.

Fig. 3
Fig. 3

Schematic of the difference intensity distribution produced by the positive and negative images. This distribution forms a difference image. Only the positive intensity values form a subtraction image.

Fig. 4
Fig. 4

Experimental setup: SH, shutter; HW, half-wave plate; PBS, polarizing beam splitter; SLM, reflective spatial light modulator; L1–L10, lenses; A1–A3, apertures. Focal lengths of L1–L10 in units of mm are 90, 90, 150, 105, 10, 10, 105, 105, 105, and 105, respectively.

Fig. 5
Fig. 5

Patterns used on (a) recording and (b) reading positive reconstructed images and (c) reading negative reconstructed images. The reference patterns in (b) and (c) are contrast reversed to each other while the gray level for the additional dc component is identical.

Fig. 6
Fig. 6

Dc-removed signal pattern that was detected by CMOS camera. This pattern was recorded as a hologram.

Fig. 7
Fig. 7

Multiplexing sequence: the central hologram that was overlapped by all the other holograms was evaluated as a representative.

Fig. 8
Fig. 8

(a) Positive and (b) negative images reconstructed from the same dc-removed hologram.

Fig. 9
Fig. 9

SER dependence on raw data density.

Fig. 10
Fig. 10

Dependence of signal components on raw data density.

Fig. 11
Fig. 11

Variance dependence on raw data density: (a) and (b) are for ON and OFF pixels, respectively.

Fig. 12
Fig. 12

Reconstructed images and their postprocessed images for the case of 8.2 Gbit / in. 2 : (a) positive reconstructed image, (b) negative reconstructed image, (c) difference image, (d) subtraction image.

Fig. 13
Fig. 13

Histograms of the (a) positive reconstructed image, (b) difference image, and (c) subtraction image, respectively. The histograms in (a), (b), and (c) correspond to the images in Figs. 12a, 12c, 12d.

Fig. 14
Fig. 14

SNR dependence of raw data density.

Tables (1)

Tables Icon

Table 1 Experimental Conditions

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

I p ( x , y ) = | | a dc ( Δ φ ) | exp ( i ( Δ φ Δ θ ) ) + t s h ( x , y ) | 2 ,
I p ( x , y ) = | | a dc | + t s h ( x , y ) | 2 ,
I p ON = | | a dc | + t ( 1 γ ) | 2 ,
I p OFF = | | a dc | t γ | 2 ,
Δ μ p = I p ON I p OFF = 2 t | a dc | + t 2 ( 1 2 γ ) .
| a dc | > t ( 2 γ 1 ) / 2.
Δ μ p 2 t | a dc | .
I n ( x , y ) = | | a dc | t s h ( x , y ) | 2 .
I n ON = | | a dc | + t γ | 2 ,
I n OFF = | | a dc | t ( 1 γ ) | 2 .
Δ μ n = I n ON I n OFF = 2 t | a dc | t 2 ( 1 2 γ ) .
| a dc | > t ( 2 γ 1 ) / 2.
Δ μ n 2 t | a dc | .
I diffON = I p ON I n OFF = 4 t | a dc | ( 1 γ ) ,
I diffOFF = I p OFF I n ON = 4 t | a dc | γ .
Δ μ diff = I diffON I diffOFF = 4 t | a dc | .
SNR μ ON μ OFF σ ON 2 + σ OFF 2 ,
Δ μ subt = I diffON = 4 t | a dc | ( 1 γ ) .
| a dc | > t / 2.

Metrics