Abstract

We report on magnetorheological finishing (MRF) spotting experiments performed on glasses and ceramics using a zirconia-coated carbonyl-iron (CI)-particle-based magnetorheological (MR) fluid. The zirconia-coated magnetic CI particles were prepared via sol-gel synthesis in kilogram quantities. The coating layer was 50100nm thick, faceted in surface structure, and well adhered. Coated particles showed long-term stability against aqueous corrosion. “Free” nanocrystalline zirconia polishing abrasives were cogenerated in the coating process, resulting in an abrasive-charged powder for MRF. A viable MR fluid was prepared simply by adding water. Spot polishing tests were performed on a variety of optical glasses and ceramics over a period of nearly three weeks with no signs of MR fluid degradation or corrosion. Stable material removal rates and smooth surfaces inside spots were obtained.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. J. Cumbo, D. Fairhurst, S. D. Jacobs, and B. E. Puchebner, “Slurry particle size evolution during the polishing of optical glass,” Appl. Opt. 34, 3743-3755 (1995).
    [CrossRef]
  2. D. Towery and M. A. Fury, “Chemical mechanical polishing of polymer films,” J. Electron. Mater. 27, 1088-1094 (1998).
    [CrossRef]
  3. D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. A. Nichols, M. Dovik, R. Raether, and I. M. Thomas, “Subsurface damage and polishing compound affect the 355 nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356-367 (1998).
    [CrossRef]
  4. M. A. Nichols, D. M. Aikens, D. W. Camp, I. M. Thomas, C. Kiikka, L. M. Sheehan, and M. R. Kozlowski, “Fabrication of an optical component,” U.S. patent 6,099,389 (8 August 2000).
  5. S-W. Park, Y-J. Seo, and W-S. Lee, “A study on the chemical mechanical polishing of oxide film using a zirconia (ZrO2)-mixed abrasive slurry (MAS),” Microelectron. Eng. 85, 682-688 (2008).
    [CrossRef]
  6. J. A. Menapace, J. E. Peterson, B. M. Penetrante, P. E. Miller, T. G. Parham, and M. A. Nichols, “Combined advanced finishing and UV laser conditioning process for pordusing damage resistant optics,” U.S. patent 6,920,765 B2 (26 July 2005).
  7. QED Technologies, Rochester, New York, USA.
  8. J. D. T. Kruschwitz, “Technology boost in precision optics: the story of QED Technologies Inc.,” Opt. Photon. News 10-13(2006).
  9. W. Kordonski and D. Golini, “Progress update in magnetorheological finishing,” in 6th International Conference on Electro-Rheological Fluid, Magnetorheological Suspensions and Their Applications, M. Nakano and K. Koyama, eds. (World Scientific, 1997), pp. 837-844.
  10. W. Kordonski, D. Golini, P. Dumas, S. Hogan, and S. Jacobs, “Magnetorheological suspension-based finishing technology,” Proc. SPIE 3326, 527-535 (1998).
    [CrossRef]
  11. S. D. Jacobs, W. Kordonski, I. V. Prokhorov, D. Golini, G. R. Gorodkin, and T. D. Strafford, “Magnetorheological fluid composition,” U.S. patent 5,804,095 (8 September 1998).
  12. J. E. DeGroote, A. E. Marino, J. P. Wilson, A. L. Bishop, J. C. Lambropoulos, and S. D. Jacobs, “Removal rate model for magnetorheological finishing of glass,” Appl. Opt. 46, 7927-7941(2007).
    [CrossRef]
  13. A. B. Shorey, S. D. Jacobs, W. E. Kordonski, and R. F. Gans, “Experiments and observations regarding the mechanisms of glass removal in magnetorheological finishing,” Appl. Opt. 40, 20-33 (2001).
    [CrossRef]
  14. C. Miao, S. N. Shafrir, J. C. Lambropoulos, J. Mici, and S. D. Jacobs, “Shear stress in magnetorheological finishing for glasses,” Appl. Opt. 48, 2585-2594 (2009).
    [CrossRef]
  15. For a medium hardness polyurethane polishing pad (SUBA X pads) on a double-sided polishing machine, the useful lifetime is within the range of 100-110 hr. Pads on a single-sided polishing machine last considerably longer, approximately three to four months. From personal communication with M. Naselaris, Sydor Optics, Rochester, New York, USA (2009).
  16. T. S. Izumitani, Optical Glass, Translation series (American Institute of Physics, 1986), p. 197.
  17. M. Schinhaerl, E. Pitschke, R. Rascher, P. Sperber, R. Stamj, L. Smith, and G. Smith, “Temporal stability and performance of MR polishing fluid,” Proc. SPIE 5523, 273-280 (2004).
    [CrossRef]
  18. M. Schinhaerl, E. Pitschke, A. Geiss, R. Rascher, P. Sperber, R. Stamp, L. Smith, and G. Smith, “Comparison of different magnetorheological polishing fluids,” Proc. SPIE 5965, 659-670 (2005).
  19. P. A. Barata and M. L. Serrano, “Thermodynamic representation of the solubility of potassium dihydrogen phosphate (KDP) + water + alcohols systems,” Fluid Phase Equilib. 141, 247-263 (1997).
    [CrossRef]
  20. S. Arrasmith, S. D. Jacobs, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, D. Golini, W. E. Kordonski, S. Hogan, and P. Dumas, “Studies of material removal in magnetorheological finishing (MRF) from polishing spots,” in Finishing of Advanced Ceramics and Glasses Symposium at the 101st Annual Meeting of the American Ceramic Society, R. Sabia, V. A. Greenhunt, and C. G. Pantano, eds. (American Ceramic Society, 1999), Vol. 96, pp. 201-210.
  21. J. E. DeGroote, H. J. Romanofsky, I. A. Kozhinova, J. M. Schoen, and S. D. Jacobs, “Polishing PMMA and other optical polymers with magnetorheological finishing,” Proc. SPIE 5180, 123-134 (2004).
    [CrossRef]
  22. I. A. Kozhinova, H. J. Romanofsky, A. Maltsev, S. D. Jacobs, W. E. Kordonski, and S. Gorodkin, “Minimizing artifact formation in magnetorheological finishing of chemical vapor deposition ZnS flats,” Appl. Opt. 44, 4671-4677(2005).
    [CrossRef]
  23. B. M. Kavlicoglu, F. Gordaninejad, C. A. Evrensel, N. Cobanoglu, Y. Liu, and A. Fuchs, “A high-torque magneto-rheological fluid clutch,” Proc. SPIE 4697, 393-400 (2002).
    [CrossRef]
  24. W. Zhou, C-M. Chew, and G-S. Hong, “Inverse dynamics control for series damper actuator based on mr fluid damper,” in International Conference on Advanced Intelligent Mechatronics (IEEE/ASME, 2005), pp. 473-478.
  25. I. B. Jang, H. B. Kim, J. Y. Lee, J. L. You, H. J. Choi, and M. S. Jhon, “Role of organic coating on carbonyl iron suspended particles in magnetorheological fluids,” J. Appl. Phys. 97, 10Q912(2005).
    [CrossRef]
  26. F. F. Fang and H. J. Choi, “Polymeric nanobead coated carbonyl iron particles and their magnetic property,” Phys. Status Solidi A 204, 4190-4193 (2007).
    [CrossRef]
  27. T. J. Swihart, “Method for protecting carbonyl iron powder and compositions therefrom,” U.S. patent 4,731,191 (15 March 1988).
  28. H. Rutz and F. G. Hanejko, “Doubly-coated iron particles,” U.S. patent 5,063,011 (5 November 1991).
  29. T. Atarashi and K. Nakatsuka, “Rheological fluid,” U.S. patent 6,280,658 (28 August 2001).
  30. J. C. Ulicny and Y. T. Cheng, “Oxidation-resistant magnetorheological fluid,” U.S. patent 6,929,757 (16 August 2005).
  31. K. D. Weiss, J. D. Carlson, and D. A. Nixon, “Magnetorheological materials utilizing surface-modified particles,” U.S. patent 5,578,238 (26 November 1996).
  32. H. Pu, F. Jiang, and Z. Yang, “Studies on preparation and chemical stability of reduced iron particles encapsulated with polysiloxane nano-films,” Mater. Lett. 60, 94-97(2006).
    [CrossRef]
  33. J. C. Ulicny, T. Xie, M. A. Golden, A. M. Mance, and K. S. Snavely, “Treated magnetizable particles and methods of making and using the same,” U.S. patent application 0185554 A1 (2008).
  34. Carbonyl iron (CI) HQ, BASF Aktiengesellschaft Inorganic Specialties, Ludwigshafen, Germany.
  35. R. Shen, S. N. Shafrir, C. Miao, M. Wang, J. C. Lambropoulos, S. D. Jacobs, and H. Yang, “Synthesis and corrosion study of zirconia coated carbonyl iron particles,” J. Colloid Interface Sci. (to be published).
  36. SUPRA 40VP Scanning Electron Microscope (SEM), Zeiss, Germany.
  37. L. Kumari, W. Li, and D. Wang, “Monoclinic zirconium oxide nanostructures synthesized by a hydrothermal route,” Nanotechnol. 19, 195602 (2008).
    [CrossRef]
  38. Zirconium oxide material safety data sheet, Zircar Zirconia Inc., Florida, New York, USA.
  39. S. Koynov, M. S. Brandt, and M. Stutzmann, “Black nonreflecting silicon surfaces for solar cells,” Appl. Phys. Lett. 88, 203107 (2006).
    [CrossRef]
  40. VCA 2500xe video contact angle system, AST Products, Inc., Billerica, Massachusetts, USA.
  41. AccuPyc II 1340 gas pycnometer, Micromeritics, Norcross, Georgia, USA.
  42. D. R. Lide, ed. CRC Handbook of Chemistry and Physics, a Ready-Reference Book of Chemical and Physical Data, 89th ed. (CRC Press, 2008-2009), pp. 4-101.
  43. R. M. Cornell and U. Schwertmann, The Iron Oxides, 2nd ed. (Wiley-VCH, 2003), p. XVIII.
  44. Brookfield cone and plate viscometer model DV-III CP, Brookfield Engineering Laboratories, Inc., Middleboro, Massachusetts, USA.
  45. D. C. Harris, Materials for Infrared Windows and Domes: Properties and Performance (SPIE, 1999), p. 415.
  46. Micro Abrasives Corp. Westfield, Massachusetts, USA
  47. Hastilite Precision Polishes for Advanced Optics (PO), J. H. Rhodes, a division of Universal Photonics, Inc., Franklin Springs, New York, USA.
  48. 915 Pitch, Universal Photonics, Inc., Hicksville, New York, USA.
  49. Buehler METADI Diamond Suspension (water based), Buehler, Lake Bluff, Illinois, USA.
  50. Kay Diamond Products LLC, Boca Raton, Florida, USA.
  51. Zygo Mark IV xp Interferometer, Zygo Corporation, Middlefield, Connecticut, USA. This instrument is a 4 in. He-Ne Fizeau interferometer with a wavelength of 632.8 nm. Peak-to-valley (pv) for surface flatness and depth of deepest penetration (ddp) of the spot were measured in micrometers.
  52. NewView 5000 noncontact profilometer, Zygo Corporation, Connecticut, USA.
  53. Talysurf CCI 3000 noncontact 3D surface profiler (Taylor Hobson Inc., Rolling Meadows, Illinois, USA). The 50× objective (0.37 mm×0.37 mm) and four phase averages were used for each measurement, unfiltered. The Talysurf CCI has a maximum resolution of 0.1 Å in the z axis and 0.47 μm in the x-y axis (maximum optical resolution).
  54. S. N. Shafrir, J. C. Lambropoulos, and S. D. Jacobs, “Subsurface damage and microstructure development in precision microground hard ceramics using magnetorheological finishing spots,” Appl. Opt. 46, 5500-5515 (2007).
    [CrossRef]
  55. Beckman 210 pH meter, Beckman Instruments Inc., Fullerton, California, USA.
  56. D. Golini, W. I. Kordonski, P. Dumas, and S. Hogan, “Magnetorheological finishing (MRF) in commercial precision optics manufacturing,” Proc. SPIE 3782, 80-91 (1999).
    [CrossRef]
  57. The moisture content is measured using an Arizona Instrument Computrac Max-1000 moisture analyzer, Arizona Instruments LLC, Chandler, Arizona, USA.
  58. Probemet conductive molding compound, Buehler, Lake Bluff, Illinois, USA.
  59. Specimen mounting press, Buehler, Lake Bluff, Illinois, USA.
  60. J. C. Lambropoulos and R. Varshneya, “Glass material response to the fabrication process: Examples from lapping,” in OSA Topical Meeting on Optical Fabrication and Testing (Optical Society of America, 2004), paper OTuA1.

2009

2008

S-W. Park, Y-J. Seo, and W-S. Lee, “A study on the chemical mechanical polishing of oxide film using a zirconia (ZrO2)-mixed abrasive slurry (MAS),” Microelectron. Eng. 85, 682-688 (2008).
[CrossRef]

L. Kumari, W. Li, and D. Wang, “Monoclinic zirconium oxide nanostructures synthesized by a hydrothermal route,” Nanotechnol. 19, 195602 (2008).
[CrossRef]

2007

2006

H. Pu, F. Jiang, and Z. Yang, “Studies on preparation and chemical stability of reduced iron particles encapsulated with polysiloxane nano-films,” Mater. Lett. 60, 94-97(2006).
[CrossRef]

S. Koynov, M. S. Brandt, and M. Stutzmann, “Black nonreflecting silicon surfaces for solar cells,” Appl. Phys. Lett. 88, 203107 (2006).
[CrossRef]

J. D. T. Kruschwitz, “Technology boost in precision optics: the story of QED Technologies Inc.,” Opt. Photon. News 10-13(2006).

2005

M. Schinhaerl, E. Pitschke, A. Geiss, R. Rascher, P. Sperber, R. Stamp, L. Smith, and G. Smith, “Comparison of different magnetorheological polishing fluids,” Proc. SPIE 5965, 659-670 (2005).

I. B. Jang, H. B. Kim, J. Y. Lee, J. L. You, H. J. Choi, and M. S. Jhon, “Role of organic coating on carbonyl iron suspended particles in magnetorheological fluids,” J. Appl. Phys. 97, 10Q912(2005).
[CrossRef]

I. A. Kozhinova, H. J. Romanofsky, A. Maltsev, S. D. Jacobs, W. E. Kordonski, and S. Gorodkin, “Minimizing artifact formation in magnetorheological finishing of chemical vapor deposition ZnS flats,” Appl. Opt. 44, 4671-4677(2005).
[CrossRef]

2004

M. Schinhaerl, E. Pitschke, R. Rascher, P. Sperber, R. Stamj, L. Smith, and G. Smith, “Temporal stability and performance of MR polishing fluid,” Proc. SPIE 5523, 273-280 (2004).
[CrossRef]

J. E. DeGroote, H. J. Romanofsky, I. A. Kozhinova, J. M. Schoen, and S. D. Jacobs, “Polishing PMMA and other optical polymers with magnetorheological finishing,” Proc. SPIE 5180, 123-134 (2004).
[CrossRef]

2002

B. M. Kavlicoglu, F. Gordaninejad, C. A. Evrensel, N. Cobanoglu, Y. Liu, and A. Fuchs, “A high-torque magneto-rheological fluid clutch,” Proc. SPIE 4697, 393-400 (2002).
[CrossRef]

2001

1999

D. Golini, W. I. Kordonski, P. Dumas, and S. Hogan, “Magnetorheological finishing (MRF) in commercial precision optics manufacturing,” Proc. SPIE 3782, 80-91 (1999).
[CrossRef]

1998

W. Kordonski, D. Golini, P. Dumas, S. Hogan, and S. Jacobs, “Magnetorheological suspension-based finishing technology,” Proc. SPIE 3326, 527-535 (1998).
[CrossRef]

D. Towery and M. A. Fury, “Chemical mechanical polishing of polymer films,” J. Electron. Mater. 27, 1088-1094 (1998).
[CrossRef]

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. A. Nichols, M. Dovik, R. Raether, and I. M. Thomas, “Subsurface damage and polishing compound affect the 355 nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356-367 (1998).
[CrossRef]

1997

P. A. Barata and M. L. Serrano, “Thermodynamic representation of the solubility of potassium dihydrogen phosphate (KDP) + water + alcohols systems,” Fluid Phase Equilib. 141, 247-263 (1997).
[CrossRef]

1995

Aikens, D. M.

M. A. Nichols, D. M. Aikens, D. W. Camp, I. M. Thomas, C. Kiikka, L. M. Sheehan, and M. R. Kozlowski, “Fabrication of an optical component,” U.S. patent 6,099,389 (8 August 2000).

Arrasmith, S.

S. Arrasmith, S. D. Jacobs, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, D. Golini, W. E. Kordonski, S. Hogan, and P. Dumas, “Studies of material removal in magnetorheological finishing (MRF) from polishing spots,” in Finishing of Advanced Ceramics and Glasses Symposium at the 101st Annual Meeting of the American Ceramic Society, R. Sabia, V. A. Greenhunt, and C. G. Pantano, eds. (American Ceramic Society, 1999), Vol. 96, pp. 201-210.

Atarashi, T.

T. Atarashi and K. Nakatsuka, “Rheological fluid,” U.S. patent 6,280,658 (28 August 2001).

Barata, P. A.

P. A. Barata and M. L. Serrano, “Thermodynamic representation of the solubility of potassium dihydrogen phosphate (KDP) + water + alcohols systems,” Fluid Phase Equilib. 141, 247-263 (1997).
[CrossRef]

Bishop, A. L.

Brandt, M. S.

S. Koynov, M. S. Brandt, and M. Stutzmann, “Black nonreflecting silicon surfaces for solar cells,” Appl. Phys. Lett. 88, 203107 (2006).
[CrossRef]

Camp, D. W.

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. A. Nichols, M. Dovik, R. Raether, and I. M. Thomas, “Subsurface damage and polishing compound affect the 355 nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356-367 (1998).
[CrossRef]

M. A. Nichols, D. M. Aikens, D. W. Camp, I. M. Thomas, C. Kiikka, L. M. Sheehan, and M. R. Kozlowski, “Fabrication of an optical component,” U.S. patent 6,099,389 (8 August 2000).

Carlson, J. D.

K. D. Weiss, J. D. Carlson, and D. A. Nixon, “Magnetorheological materials utilizing surface-modified particles,” U.S. patent 5,578,238 (26 November 1996).

Cheng, Y. T.

J. C. Ulicny and Y. T. Cheng, “Oxidation-resistant magnetorheological fluid,” U.S. patent 6,929,757 (16 August 2005).

Chew, C-M.

W. Zhou, C-M. Chew, and G-S. Hong, “Inverse dynamics control for series damper actuator based on mr fluid damper,” in International Conference on Advanced Intelligent Mechatronics (IEEE/ASME, 2005), pp. 473-478.

Choi, H. J.

F. F. Fang and H. J. Choi, “Polymeric nanobead coated carbonyl iron particles and their magnetic property,” Phys. Status Solidi A 204, 4190-4193 (2007).
[CrossRef]

I. B. Jang, H. B. Kim, J. Y. Lee, J. L. You, H. J. Choi, and M. S. Jhon, “Role of organic coating on carbonyl iron suspended particles in magnetorheological fluids,” J. Appl. Phys. 97, 10Q912(2005).
[CrossRef]

Cobanoglu, N.

B. M. Kavlicoglu, F. Gordaninejad, C. A. Evrensel, N. Cobanoglu, Y. Liu, and A. Fuchs, “A high-torque magneto-rheological fluid clutch,” Proc. SPIE 4697, 393-400 (2002).
[CrossRef]

Cornell, R. M.

R. M. Cornell and U. Schwertmann, The Iron Oxides, 2nd ed. (Wiley-VCH, 2003), p. XVIII.

Cumbo, M. J.

DeGroote, J. E.

J. E. DeGroote, A. E. Marino, J. P. Wilson, A. L. Bishop, J. C. Lambropoulos, and S. D. Jacobs, “Removal rate model for magnetorheological finishing of glass,” Appl. Opt. 46, 7927-7941(2007).
[CrossRef]

J. E. DeGroote, H. J. Romanofsky, I. A. Kozhinova, J. M. Schoen, and S. D. Jacobs, “Polishing PMMA and other optical polymers with magnetorheological finishing,” Proc. SPIE 5180, 123-134 (2004).
[CrossRef]

Dovik, M.

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. A. Nichols, M. Dovik, R. Raether, and I. M. Thomas, “Subsurface damage and polishing compound affect the 355 nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356-367 (1998).
[CrossRef]

Dumas, P.

D. Golini, W. I. Kordonski, P. Dumas, and S. Hogan, “Magnetorheological finishing (MRF) in commercial precision optics manufacturing,” Proc. SPIE 3782, 80-91 (1999).
[CrossRef]

W. Kordonski, D. Golini, P. Dumas, S. Hogan, and S. Jacobs, “Magnetorheological suspension-based finishing technology,” Proc. SPIE 3326, 527-535 (1998).
[CrossRef]

S. Arrasmith, S. D. Jacobs, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, D. Golini, W. E. Kordonski, S. Hogan, and P. Dumas, “Studies of material removal in magnetorheological finishing (MRF) from polishing spots,” in Finishing of Advanced Ceramics and Glasses Symposium at the 101st Annual Meeting of the American Ceramic Society, R. Sabia, V. A. Greenhunt, and C. G. Pantano, eds. (American Ceramic Society, 1999), Vol. 96, pp. 201-210.

Evrensel, C. A.

B. M. Kavlicoglu, F. Gordaninejad, C. A. Evrensel, N. Cobanoglu, Y. Liu, and A. Fuchs, “A high-torque magneto-rheological fluid clutch,” Proc. SPIE 4697, 393-400 (2002).
[CrossRef]

Fairhurst, D.

Fang, F. F.

F. F. Fang and H. J. Choi, “Polymeric nanobead coated carbonyl iron particles and their magnetic property,” Phys. Status Solidi A 204, 4190-4193 (2007).
[CrossRef]

Fuchs, A.

B. M. Kavlicoglu, F. Gordaninejad, C. A. Evrensel, N. Cobanoglu, Y. Liu, and A. Fuchs, “A high-torque magneto-rheological fluid clutch,” Proc. SPIE 4697, 393-400 (2002).
[CrossRef]

Fury, M. A.

D. Towery and M. A. Fury, “Chemical mechanical polishing of polymer films,” J. Electron. Mater. 27, 1088-1094 (1998).
[CrossRef]

Gans, R. F.

Geiss, A.

M. Schinhaerl, E. Pitschke, A. Geiss, R. Rascher, P. Sperber, R. Stamp, L. Smith, and G. Smith, “Comparison of different magnetorheological polishing fluids,” Proc. SPIE 5965, 659-670 (2005).

Golden, M. A.

J. C. Ulicny, T. Xie, M. A. Golden, A. M. Mance, and K. S. Snavely, “Treated magnetizable particles and methods of making and using the same,” U.S. patent application 0185554 A1 (2008).

Golini, D.

D. Golini, W. I. Kordonski, P. Dumas, and S. Hogan, “Magnetorheological finishing (MRF) in commercial precision optics manufacturing,” Proc. SPIE 3782, 80-91 (1999).
[CrossRef]

W. Kordonski, D. Golini, P. Dumas, S. Hogan, and S. Jacobs, “Magnetorheological suspension-based finishing technology,” Proc. SPIE 3326, 527-535 (1998).
[CrossRef]

W. Kordonski and D. Golini, “Progress update in magnetorheological finishing,” in 6th International Conference on Electro-Rheological Fluid, Magnetorheological Suspensions and Their Applications, M. Nakano and K. Koyama, eds. (World Scientific, 1997), pp. 837-844.

S. Arrasmith, S. D. Jacobs, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, D. Golini, W. E. Kordonski, S. Hogan, and P. Dumas, “Studies of material removal in magnetorheological finishing (MRF) from polishing spots,” in Finishing of Advanced Ceramics and Glasses Symposium at the 101st Annual Meeting of the American Ceramic Society, R. Sabia, V. A. Greenhunt, and C. G. Pantano, eds. (American Ceramic Society, 1999), Vol. 96, pp. 201-210.

S. D. Jacobs, W. Kordonski, I. V. Prokhorov, D. Golini, G. R. Gorodkin, and T. D. Strafford, “Magnetorheological fluid composition,” U.S. patent 5,804,095 (8 September 1998).

Gordaninejad, F.

B. M. Kavlicoglu, F. Gordaninejad, C. A. Evrensel, N. Cobanoglu, Y. Liu, and A. Fuchs, “A high-torque magneto-rheological fluid clutch,” Proc. SPIE 4697, 393-400 (2002).
[CrossRef]

Gorodkin, G. R.

S. D. Jacobs, W. Kordonski, I. V. Prokhorov, D. Golini, G. R. Gorodkin, and T. D. Strafford, “Magnetorheological fluid composition,” U.S. patent 5,804,095 (8 September 1998).

Gorodkin, S.

Gregg, L. L.

S. Arrasmith, S. D. Jacobs, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, D. Golini, W. E. Kordonski, S. Hogan, and P. Dumas, “Studies of material removal in magnetorheological finishing (MRF) from polishing spots,” in Finishing of Advanced Ceramics and Glasses Symposium at the 101st Annual Meeting of the American Ceramic Society, R. Sabia, V. A. Greenhunt, and C. G. Pantano, eds. (American Ceramic Society, 1999), Vol. 96, pp. 201-210.

Hanejko, F. G.

H. Rutz and F. G. Hanejko, “Doubly-coated iron particles,” U.S. patent 5,063,011 (5 November 1991).

Harris, D. C.

D. C. Harris, Materials for Infrared Windows and Domes: Properties and Performance (SPIE, 1999), p. 415.

Hogan, S.

D. Golini, W. I. Kordonski, P. Dumas, and S. Hogan, “Magnetorheological finishing (MRF) in commercial precision optics manufacturing,” Proc. SPIE 3782, 80-91 (1999).
[CrossRef]

W. Kordonski, D. Golini, P. Dumas, S. Hogan, and S. Jacobs, “Magnetorheological suspension-based finishing technology,” Proc. SPIE 3326, 527-535 (1998).
[CrossRef]

S. Arrasmith, S. D. Jacobs, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, D. Golini, W. E. Kordonski, S. Hogan, and P. Dumas, “Studies of material removal in magnetorheological finishing (MRF) from polishing spots,” in Finishing of Advanced Ceramics and Glasses Symposium at the 101st Annual Meeting of the American Ceramic Society, R. Sabia, V. A. Greenhunt, and C. G. Pantano, eds. (American Ceramic Society, 1999), Vol. 96, pp. 201-210.

Hong, G-S.

W. Zhou, C-M. Chew, and G-S. Hong, “Inverse dynamics control for series damper actuator based on mr fluid damper,” in International Conference on Advanced Intelligent Mechatronics (IEEE/ASME, 2005), pp. 473-478.

Izumitani, T. S.

T. S. Izumitani, Optical Glass, Translation series (American Institute of Physics, 1986), p. 197.

Jacobs, S.

W. Kordonski, D. Golini, P. Dumas, S. Hogan, and S. Jacobs, “Magnetorheological suspension-based finishing technology,” Proc. SPIE 3326, 527-535 (1998).
[CrossRef]

Jacobs, S. D.

C. Miao, S. N. Shafrir, J. C. Lambropoulos, J. Mici, and S. D. Jacobs, “Shear stress in magnetorheological finishing for glasses,” Appl. Opt. 48, 2585-2594 (2009).
[CrossRef]

J. E. DeGroote, A. E. Marino, J. P. Wilson, A. L. Bishop, J. C. Lambropoulos, and S. D. Jacobs, “Removal rate model for magnetorheological finishing of glass,” Appl. Opt. 46, 7927-7941(2007).
[CrossRef]

S. N. Shafrir, J. C. Lambropoulos, and S. D. Jacobs, “Subsurface damage and microstructure development in precision microground hard ceramics using magnetorheological finishing spots,” Appl. Opt. 46, 5500-5515 (2007).
[CrossRef]

I. A. Kozhinova, H. J. Romanofsky, A. Maltsev, S. D. Jacobs, W. E. Kordonski, and S. Gorodkin, “Minimizing artifact formation in magnetorheological finishing of chemical vapor deposition ZnS flats,” Appl. Opt. 44, 4671-4677(2005).
[CrossRef]

J. E. DeGroote, H. J. Romanofsky, I. A. Kozhinova, J. M. Schoen, and S. D. Jacobs, “Polishing PMMA and other optical polymers with magnetorheological finishing,” Proc. SPIE 5180, 123-134 (2004).
[CrossRef]

A. B. Shorey, S. D. Jacobs, W. E. Kordonski, and R. F. Gans, “Experiments and observations regarding the mechanisms of glass removal in magnetorheological finishing,” Appl. Opt. 40, 20-33 (2001).
[CrossRef]

M. J. Cumbo, D. Fairhurst, S. D. Jacobs, and B. E. Puchebner, “Slurry particle size evolution during the polishing of optical glass,” Appl. Opt. 34, 3743-3755 (1995).
[CrossRef]

R. Shen, S. N. Shafrir, C. Miao, M. Wang, J. C. Lambropoulos, S. D. Jacobs, and H. Yang, “Synthesis and corrosion study of zirconia coated carbonyl iron particles,” J. Colloid Interface Sci. (to be published).

S. Arrasmith, S. D. Jacobs, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, D. Golini, W. E. Kordonski, S. Hogan, and P. Dumas, “Studies of material removal in magnetorheological finishing (MRF) from polishing spots,” in Finishing of Advanced Ceramics and Glasses Symposium at the 101st Annual Meeting of the American Ceramic Society, R. Sabia, V. A. Greenhunt, and C. G. Pantano, eds. (American Ceramic Society, 1999), Vol. 96, pp. 201-210.

S. D. Jacobs, W. Kordonski, I. V. Prokhorov, D. Golini, G. R. Gorodkin, and T. D. Strafford, “Magnetorheological fluid composition,” U.S. patent 5,804,095 (8 September 1998).

Jang, I. B.

I. B. Jang, H. B. Kim, J. Y. Lee, J. L. You, H. J. Choi, and M. S. Jhon, “Role of organic coating on carbonyl iron suspended particles in magnetorheological fluids,” J. Appl. Phys. 97, 10Q912(2005).
[CrossRef]

Jhon, M. S.

I. B. Jang, H. B. Kim, J. Y. Lee, J. L. You, H. J. Choi, and M. S. Jhon, “Role of organic coating on carbonyl iron suspended particles in magnetorheological fluids,” J. Appl. Phys. 97, 10Q912(2005).
[CrossRef]

Jiang, F.

H. Pu, F. Jiang, and Z. Yang, “Studies on preparation and chemical stability of reduced iron particles encapsulated with polysiloxane nano-films,” Mater. Lett. 60, 94-97(2006).
[CrossRef]

Kavlicoglu, B. M.

B. M. Kavlicoglu, F. Gordaninejad, C. A. Evrensel, N. Cobanoglu, Y. Liu, and A. Fuchs, “A high-torque magneto-rheological fluid clutch,” Proc. SPIE 4697, 393-400 (2002).
[CrossRef]

Kiikka, C.

M. A. Nichols, D. M. Aikens, D. W. Camp, I. M. Thomas, C. Kiikka, L. M. Sheehan, and M. R. Kozlowski, “Fabrication of an optical component,” U.S. patent 6,099,389 (8 August 2000).

Kim, H. B.

I. B. Jang, H. B. Kim, J. Y. Lee, J. L. You, H. J. Choi, and M. S. Jhon, “Role of organic coating on carbonyl iron suspended particles in magnetorheological fluids,” J. Appl. Phys. 97, 10Q912(2005).
[CrossRef]

Kordonski, W.

W. Kordonski, D. Golini, P. Dumas, S. Hogan, and S. Jacobs, “Magnetorheological suspension-based finishing technology,” Proc. SPIE 3326, 527-535 (1998).
[CrossRef]

W. Kordonski and D. Golini, “Progress update in magnetorheological finishing,” in 6th International Conference on Electro-Rheological Fluid, Magnetorheological Suspensions and Their Applications, M. Nakano and K. Koyama, eds. (World Scientific, 1997), pp. 837-844.

S. D. Jacobs, W. Kordonski, I. V. Prokhorov, D. Golini, G. R. Gorodkin, and T. D. Strafford, “Magnetorheological fluid composition,” U.S. patent 5,804,095 (8 September 1998).

Kordonski, W. E.

I. A. Kozhinova, H. J. Romanofsky, A. Maltsev, S. D. Jacobs, W. E. Kordonski, and S. Gorodkin, “Minimizing artifact formation in magnetorheological finishing of chemical vapor deposition ZnS flats,” Appl. Opt. 44, 4671-4677(2005).
[CrossRef]

A. B. Shorey, S. D. Jacobs, W. E. Kordonski, and R. F. Gans, “Experiments and observations regarding the mechanisms of glass removal in magnetorheological finishing,” Appl. Opt. 40, 20-33 (2001).
[CrossRef]

S. Arrasmith, S. D. Jacobs, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, D. Golini, W. E. Kordonski, S. Hogan, and P. Dumas, “Studies of material removal in magnetorheological finishing (MRF) from polishing spots,” in Finishing of Advanced Ceramics and Glasses Symposium at the 101st Annual Meeting of the American Ceramic Society, R. Sabia, V. A. Greenhunt, and C. G. Pantano, eds. (American Ceramic Society, 1999), Vol. 96, pp. 201-210.

Kordonski, W. I.

D. Golini, W. I. Kordonski, P. Dumas, and S. Hogan, “Magnetorheological finishing (MRF) in commercial precision optics manufacturing,” Proc. SPIE 3782, 80-91 (1999).
[CrossRef]

Koynov, S.

S. Koynov, M. S. Brandt, and M. Stutzmann, “Black nonreflecting silicon surfaces for solar cells,” Appl. Phys. Lett. 88, 203107 (2006).
[CrossRef]

Kozhinova, I. A.

I. A. Kozhinova, H. J. Romanofsky, A. Maltsev, S. D. Jacobs, W. E. Kordonski, and S. Gorodkin, “Minimizing artifact formation in magnetorheological finishing of chemical vapor deposition ZnS flats,” Appl. Opt. 44, 4671-4677(2005).
[CrossRef]

J. E. DeGroote, H. J. Romanofsky, I. A. Kozhinova, J. M. Schoen, and S. D. Jacobs, “Polishing PMMA and other optical polymers with magnetorheological finishing,” Proc. SPIE 5180, 123-134 (2004).
[CrossRef]

S. Arrasmith, S. D. Jacobs, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, D. Golini, W. E. Kordonski, S. Hogan, and P. Dumas, “Studies of material removal in magnetorheological finishing (MRF) from polishing spots,” in Finishing of Advanced Ceramics and Glasses Symposium at the 101st Annual Meeting of the American Ceramic Society, R. Sabia, V. A. Greenhunt, and C. G. Pantano, eds. (American Ceramic Society, 1999), Vol. 96, pp. 201-210.

Kozlowski, M. R.

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. A. Nichols, M. Dovik, R. Raether, and I. M. Thomas, “Subsurface damage and polishing compound affect the 355 nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356-367 (1998).
[CrossRef]

M. A. Nichols, D. M. Aikens, D. W. Camp, I. M. Thomas, C. Kiikka, L. M. Sheehan, and M. R. Kozlowski, “Fabrication of an optical component,” U.S. patent 6,099,389 (8 August 2000).

Kruschwitz, J. D. T.

J. D. T. Kruschwitz, “Technology boost in precision optics: the story of QED Technologies Inc.,” Opt. Photon. News 10-13(2006).

Kumari, L.

L. Kumari, W. Li, and D. Wang, “Monoclinic zirconium oxide nanostructures synthesized by a hydrothermal route,” Nanotechnol. 19, 195602 (2008).
[CrossRef]

Lambropoulos, J. C.

C. Miao, S. N. Shafrir, J. C. Lambropoulos, J. Mici, and S. D. Jacobs, “Shear stress in magnetorheological finishing for glasses,” Appl. Opt. 48, 2585-2594 (2009).
[CrossRef]

J. E. DeGroote, A. E. Marino, J. P. Wilson, A. L. Bishop, J. C. Lambropoulos, and S. D. Jacobs, “Removal rate model for magnetorheological finishing of glass,” Appl. Opt. 46, 7927-7941(2007).
[CrossRef]

S. N. Shafrir, J. C. Lambropoulos, and S. D. Jacobs, “Subsurface damage and microstructure development in precision microground hard ceramics using magnetorheological finishing spots,” Appl. Opt. 46, 5500-5515 (2007).
[CrossRef]

R. Shen, S. N. Shafrir, C. Miao, M. Wang, J. C. Lambropoulos, S. D. Jacobs, and H. Yang, “Synthesis and corrosion study of zirconia coated carbonyl iron particles,” J. Colloid Interface Sci. (to be published).

J. C. Lambropoulos and R. Varshneya, “Glass material response to the fabrication process: Examples from lapping,” in OSA Topical Meeting on Optical Fabrication and Testing (Optical Society of America, 2004), paper OTuA1.

Lee, J. Y.

I. B. Jang, H. B. Kim, J. Y. Lee, J. L. You, H. J. Choi, and M. S. Jhon, “Role of organic coating on carbonyl iron suspended particles in magnetorheological fluids,” J. Appl. Phys. 97, 10Q912(2005).
[CrossRef]

Lee, W-S.

S-W. Park, Y-J. Seo, and W-S. Lee, “A study on the chemical mechanical polishing of oxide film using a zirconia (ZrO2)-mixed abrasive slurry (MAS),” Microelectron. Eng. 85, 682-688 (2008).
[CrossRef]

Li, W.

L. Kumari, W. Li, and D. Wang, “Monoclinic zirconium oxide nanostructures synthesized by a hydrothermal route,” Nanotechnol. 19, 195602 (2008).
[CrossRef]

Lide, D. R.

D. R. Lide, ed. CRC Handbook of Chemistry and Physics, a Ready-Reference Book of Chemical and Physical Data, 89th ed. (CRC Press, 2008-2009), pp. 4-101.

Liu, Y.

B. M. Kavlicoglu, F. Gordaninejad, C. A. Evrensel, N. Cobanoglu, Y. Liu, and A. Fuchs, “A high-torque magneto-rheological fluid clutch,” Proc. SPIE 4697, 393-400 (2002).
[CrossRef]

Maltsev, A.

Mance, A. M.

J. C. Ulicny, T. Xie, M. A. Golden, A. M. Mance, and K. S. Snavely, “Treated magnetizable particles and methods of making and using the same,” U.S. patent application 0185554 A1 (2008).

Marino, A. E.

Menapace, J. A.

J. A. Menapace, J. E. Peterson, B. M. Penetrante, P. E. Miller, T. G. Parham, and M. A. Nichols, “Combined advanced finishing and UV laser conditioning process for pordusing damage resistant optics,” U.S. patent 6,920,765 B2 (26 July 2005).

Miao, C.

C. Miao, S. N. Shafrir, J. C. Lambropoulos, J. Mici, and S. D. Jacobs, “Shear stress in magnetorheological finishing for glasses,” Appl. Opt. 48, 2585-2594 (2009).
[CrossRef]

R. Shen, S. N. Shafrir, C. Miao, M. Wang, J. C. Lambropoulos, S. D. Jacobs, and H. Yang, “Synthesis and corrosion study of zirconia coated carbonyl iron particles,” J. Colloid Interface Sci. (to be published).

Mici, J.

Miller, P. E.

J. A. Menapace, J. E. Peterson, B. M. Penetrante, P. E. Miller, T. G. Parham, and M. A. Nichols, “Combined advanced finishing and UV laser conditioning process for pordusing damage resistant optics,” U.S. patent 6,920,765 B2 (26 July 2005).

Nakatsuka, K.

T. Atarashi and K. Nakatsuka, “Rheological fluid,” U.S. patent 6,280,658 (28 August 2001).

Naselaris, M.

For a medium hardness polyurethane polishing pad (SUBA X pads) on a double-sided polishing machine, the useful lifetime is within the range of 100-110 hr. Pads on a single-sided polishing machine last considerably longer, approximately three to four months. From personal communication with M. Naselaris, Sydor Optics, Rochester, New York, USA (2009).

Nichols, M. A.

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. A. Nichols, M. Dovik, R. Raether, and I. M. Thomas, “Subsurface damage and polishing compound affect the 355 nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356-367 (1998).
[CrossRef]

J. A. Menapace, J. E. Peterson, B. M. Penetrante, P. E. Miller, T. G. Parham, and M. A. Nichols, “Combined advanced finishing and UV laser conditioning process for pordusing damage resistant optics,” U.S. patent 6,920,765 B2 (26 July 2005).

M. A. Nichols, D. M. Aikens, D. W. Camp, I. M. Thomas, C. Kiikka, L. M. Sheehan, and M. R. Kozlowski, “Fabrication of an optical component,” U.S. patent 6,099,389 (8 August 2000).

Nixon, D. A.

K. D. Weiss, J. D. Carlson, and D. A. Nixon, “Magnetorheological materials utilizing surface-modified particles,” U.S. patent 5,578,238 (26 November 1996).

Parham, T. G.

J. A. Menapace, J. E. Peterson, B. M. Penetrante, P. E. Miller, T. G. Parham, and M. A. Nichols, “Combined advanced finishing and UV laser conditioning process for pordusing damage resistant optics,” U.S. patent 6,920,765 B2 (26 July 2005).

Park, S-W.

S-W. Park, Y-J. Seo, and W-S. Lee, “A study on the chemical mechanical polishing of oxide film using a zirconia (ZrO2)-mixed abrasive slurry (MAS),” Microelectron. Eng. 85, 682-688 (2008).
[CrossRef]

Penetrante, B. M.

J. A. Menapace, J. E. Peterson, B. M. Penetrante, P. E. Miller, T. G. Parham, and M. A. Nichols, “Combined advanced finishing and UV laser conditioning process for pordusing damage resistant optics,” U.S. patent 6,920,765 B2 (26 July 2005).

Peterson, J. E.

J. A. Menapace, J. E. Peterson, B. M. Penetrante, P. E. Miller, T. G. Parham, and M. A. Nichols, “Combined advanced finishing and UV laser conditioning process for pordusing damage resistant optics,” U.S. patent 6,920,765 B2 (26 July 2005).

Pitschke, E.

M. Schinhaerl, E. Pitschke, A. Geiss, R. Rascher, P. Sperber, R. Stamp, L. Smith, and G. Smith, “Comparison of different magnetorheological polishing fluids,” Proc. SPIE 5965, 659-670 (2005).

M. Schinhaerl, E. Pitschke, R. Rascher, P. Sperber, R. Stamj, L. Smith, and G. Smith, “Temporal stability and performance of MR polishing fluid,” Proc. SPIE 5523, 273-280 (2004).
[CrossRef]

Prokhorov, I. V.

S. D. Jacobs, W. Kordonski, I. V. Prokhorov, D. Golini, G. R. Gorodkin, and T. D. Strafford, “Magnetorheological fluid composition,” U.S. patent 5,804,095 (8 September 1998).

Pu, H.

H. Pu, F. Jiang, and Z. Yang, “Studies on preparation and chemical stability of reduced iron particles encapsulated with polysiloxane nano-films,” Mater. Lett. 60, 94-97(2006).
[CrossRef]

Puchebner, B. E.

Raether, R.

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. A. Nichols, M. Dovik, R. Raether, and I. M. Thomas, “Subsurface damage and polishing compound affect the 355 nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356-367 (1998).
[CrossRef]

Rascher, R.

M. Schinhaerl, E. Pitschke, A. Geiss, R. Rascher, P. Sperber, R. Stamp, L. Smith, and G. Smith, “Comparison of different magnetorheological polishing fluids,” Proc. SPIE 5965, 659-670 (2005).

M. Schinhaerl, E. Pitschke, R. Rascher, P. Sperber, R. Stamj, L. Smith, and G. Smith, “Temporal stability and performance of MR polishing fluid,” Proc. SPIE 5523, 273-280 (2004).
[CrossRef]

Romanofsky, H. J.

I. A. Kozhinova, H. J. Romanofsky, A. Maltsev, S. D. Jacobs, W. E. Kordonski, and S. Gorodkin, “Minimizing artifact formation in magnetorheological finishing of chemical vapor deposition ZnS flats,” Appl. Opt. 44, 4671-4677(2005).
[CrossRef]

J. E. DeGroote, H. J. Romanofsky, I. A. Kozhinova, J. M. Schoen, and S. D. Jacobs, “Polishing PMMA and other optical polymers with magnetorheological finishing,” Proc. SPIE 5180, 123-134 (2004).
[CrossRef]

S. Arrasmith, S. D. Jacobs, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, D. Golini, W. E. Kordonski, S. Hogan, and P. Dumas, “Studies of material removal in magnetorheological finishing (MRF) from polishing spots,” in Finishing of Advanced Ceramics and Glasses Symposium at the 101st Annual Meeting of the American Ceramic Society, R. Sabia, V. A. Greenhunt, and C. G. Pantano, eds. (American Ceramic Society, 1999), Vol. 96, pp. 201-210.

Rutz, H.

H. Rutz and F. G. Hanejko, “Doubly-coated iron particles,” U.S. patent 5,063,011 (5 November 1991).

Schinhaerl, M.

M. Schinhaerl, E. Pitschke, A. Geiss, R. Rascher, P. Sperber, R. Stamp, L. Smith, and G. Smith, “Comparison of different magnetorheological polishing fluids,” Proc. SPIE 5965, 659-670 (2005).

M. Schinhaerl, E. Pitschke, R. Rascher, P. Sperber, R. Stamj, L. Smith, and G. Smith, “Temporal stability and performance of MR polishing fluid,” Proc. SPIE 5523, 273-280 (2004).
[CrossRef]

Schoen, J. M.

J. E. DeGroote, H. J. Romanofsky, I. A. Kozhinova, J. M. Schoen, and S. D. Jacobs, “Polishing PMMA and other optical polymers with magnetorheological finishing,” Proc. SPIE 5180, 123-134 (2004).
[CrossRef]

Schwertmann, U.

R. M. Cornell and U. Schwertmann, The Iron Oxides, 2nd ed. (Wiley-VCH, 2003), p. XVIII.

Seo, Y-J.

S-W. Park, Y-J. Seo, and W-S. Lee, “A study on the chemical mechanical polishing of oxide film using a zirconia (ZrO2)-mixed abrasive slurry (MAS),” Microelectron. Eng. 85, 682-688 (2008).
[CrossRef]

Serrano, M. L.

P. A. Barata and M. L. Serrano, “Thermodynamic representation of the solubility of potassium dihydrogen phosphate (KDP) + water + alcohols systems,” Fluid Phase Equilib. 141, 247-263 (1997).
[CrossRef]

Shafrir, S. N.

Sheehan, L. M.

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. A. Nichols, M. Dovik, R. Raether, and I. M. Thomas, “Subsurface damage and polishing compound affect the 355 nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356-367 (1998).
[CrossRef]

M. A. Nichols, D. M. Aikens, D. W. Camp, I. M. Thomas, C. Kiikka, L. M. Sheehan, and M. R. Kozlowski, “Fabrication of an optical component,” U.S. patent 6,099,389 (8 August 2000).

Shen, R.

R. Shen, S. N. Shafrir, C. Miao, M. Wang, J. C. Lambropoulos, S. D. Jacobs, and H. Yang, “Synthesis and corrosion study of zirconia coated carbonyl iron particles,” J. Colloid Interface Sci. (to be published).

Shorey, A. B.

A. B. Shorey, S. D. Jacobs, W. E. Kordonski, and R. F. Gans, “Experiments and observations regarding the mechanisms of glass removal in magnetorheological finishing,” Appl. Opt. 40, 20-33 (2001).
[CrossRef]

S. Arrasmith, S. D. Jacobs, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, D. Golini, W. E. Kordonski, S. Hogan, and P. Dumas, “Studies of material removal in magnetorheological finishing (MRF) from polishing spots,” in Finishing of Advanced Ceramics and Glasses Symposium at the 101st Annual Meeting of the American Ceramic Society, R. Sabia, V. A. Greenhunt, and C. G. Pantano, eds. (American Ceramic Society, 1999), Vol. 96, pp. 201-210.

Smith, G.

M. Schinhaerl, E. Pitschke, A. Geiss, R. Rascher, P. Sperber, R. Stamp, L. Smith, and G. Smith, “Comparison of different magnetorheological polishing fluids,” Proc. SPIE 5965, 659-670 (2005).

M. Schinhaerl, E. Pitschke, R. Rascher, P. Sperber, R. Stamj, L. Smith, and G. Smith, “Temporal stability and performance of MR polishing fluid,” Proc. SPIE 5523, 273-280 (2004).
[CrossRef]

Smith, L.

M. Schinhaerl, E. Pitschke, A. Geiss, R. Rascher, P. Sperber, R. Stamp, L. Smith, and G. Smith, “Comparison of different magnetorheological polishing fluids,” Proc. SPIE 5965, 659-670 (2005).

M. Schinhaerl, E. Pitschke, R. Rascher, P. Sperber, R. Stamj, L. Smith, and G. Smith, “Temporal stability and performance of MR polishing fluid,” Proc. SPIE 5523, 273-280 (2004).
[CrossRef]

Snavely, K. S.

J. C. Ulicny, T. Xie, M. A. Golden, A. M. Mance, and K. S. Snavely, “Treated magnetizable particles and methods of making and using the same,” U.S. patent application 0185554 A1 (2008).

Sperber, P.

M. Schinhaerl, E. Pitschke, A. Geiss, R. Rascher, P. Sperber, R. Stamp, L. Smith, and G. Smith, “Comparison of different magnetorheological polishing fluids,” Proc. SPIE 5965, 659-670 (2005).

M. Schinhaerl, E. Pitschke, R. Rascher, P. Sperber, R. Stamj, L. Smith, and G. Smith, “Temporal stability and performance of MR polishing fluid,” Proc. SPIE 5523, 273-280 (2004).
[CrossRef]

Stamj, R.

M. Schinhaerl, E. Pitschke, R. Rascher, P. Sperber, R. Stamj, L. Smith, and G. Smith, “Temporal stability and performance of MR polishing fluid,” Proc. SPIE 5523, 273-280 (2004).
[CrossRef]

Stamp, R.

M. Schinhaerl, E. Pitschke, A. Geiss, R. Rascher, P. Sperber, R. Stamp, L. Smith, and G. Smith, “Comparison of different magnetorheological polishing fluids,” Proc. SPIE 5965, 659-670 (2005).

Strafford, T. D.

S. D. Jacobs, W. Kordonski, I. V. Prokhorov, D. Golini, G. R. Gorodkin, and T. D. Strafford, “Magnetorheological fluid composition,” U.S. patent 5,804,095 (8 September 1998).

Stutzmann, M.

S. Koynov, M. S. Brandt, and M. Stutzmann, “Black nonreflecting silicon surfaces for solar cells,” Appl. Phys. Lett. 88, 203107 (2006).
[CrossRef]

Swihart, T. J.

T. J. Swihart, “Method for protecting carbonyl iron powder and compositions therefrom,” U.S. patent 4,731,191 (15 March 1988).

Thomas, I. M.

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. A. Nichols, M. Dovik, R. Raether, and I. M. Thomas, “Subsurface damage and polishing compound affect the 355 nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356-367 (1998).
[CrossRef]

M. A. Nichols, D. M. Aikens, D. W. Camp, I. M. Thomas, C. Kiikka, L. M. Sheehan, and M. R. Kozlowski, “Fabrication of an optical component,” U.S. patent 6,099,389 (8 August 2000).

Towery, D.

D. Towery and M. A. Fury, “Chemical mechanical polishing of polymer films,” J. Electron. Mater. 27, 1088-1094 (1998).
[CrossRef]

Ulicny, J. C.

J. C. Ulicny and Y. T. Cheng, “Oxidation-resistant magnetorheological fluid,” U.S. patent 6,929,757 (16 August 2005).

J. C. Ulicny, T. Xie, M. A. Golden, A. M. Mance, and K. S. Snavely, “Treated magnetizable particles and methods of making and using the same,” U.S. patent application 0185554 A1 (2008).

Varshneya, R.

J. C. Lambropoulos and R. Varshneya, “Glass material response to the fabrication process: Examples from lapping,” in OSA Topical Meeting on Optical Fabrication and Testing (Optical Society of America, 2004), paper OTuA1.

Wang, D.

L. Kumari, W. Li, and D. Wang, “Monoclinic zirconium oxide nanostructures synthesized by a hydrothermal route,” Nanotechnol. 19, 195602 (2008).
[CrossRef]

Wang, M.

R. Shen, S. N. Shafrir, C. Miao, M. Wang, J. C. Lambropoulos, S. D. Jacobs, and H. Yang, “Synthesis and corrosion study of zirconia coated carbonyl iron particles,” J. Colloid Interface Sci. (to be published).

Weiss, K. D.

K. D. Weiss, J. D. Carlson, and D. A. Nixon, “Magnetorheological materials utilizing surface-modified particles,” U.S. patent 5,578,238 (26 November 1996).

Wilson, J. P.

Xie, T.

J. C. Ulicny, T. Xie, M. A. Golden, A. M. Mance, and K. S. Snavely, “Treated magnetizable particles and methods of making and using the same,” U.S. patent application 0185554 A1 (2008).

Yang, H.

R. Shen, S. N. Shafrir, C. Miao, M. Wang, J. C. Lambropoulos, S. D. Jacobs, and H. Yang, “Synthesis and corrosion study of zirconia coated carbonyl iron particles,” J. Colloid Interface Sci. (to be published).

Yang, Z.

H. Pu, F. Jiang, and Z. Yang, “Studies on preparation and chemical stability of reduced iron particles encapsulated with polysiloxane nano-films,” Mater. Lett. 60, 94-97(2006).
[CrossRef]

You, J. L.

I. B. Jang, H. B. Kim, J. Y. Lee, J. L. You, H. J. Choi, and M. S. Jhon, “Role of organic coating on carbonyl iron suspended particles in magnetorheological fluids,” J. Appl. Phys. 97, 10Q912(2005).
[CrossRef]

Zhou, W.

W. Zhou, C-M. Chew, and G-S. Hong, “Inverse dynamics control for series damper actuator based on mr fluid damper,” in International Conference on Advanced Intelligent Mechatronics (IEEE/ASME, 2005), pp. 473-478.

Appl. Opt.

Appl. Phys. Lett.

S. Koynov, M. S. Brandt, and M. Stutzmann, “Black nonreflecting silicon surfaces for solar cells,” Appl. Phys. Lett. 88, 203107 (2006).
[CrossRef]

Fluid Phase Equilib.

P. A. Barata and M. L. Serrano, “Thermodynamic representation of the solubility of potassium dihydrogen phosphate (KDP) + water + alcohols systems,” Fluid Phase Equilib. 141, 247-263 (1997).
[CrossRef]

J. Appl. Phys.

I. B. Jang, H. B. Kim, J. Y. Lee, J. L. You, H. J. Choi, and M. S. Jhon, “Role of organic coating on carbonyl iron suspended particles in magnetorheological fluids,” J. Appl. Phys. 97, 10Q912(2005).
[CrossRef]

J. Electron. Mater.

D. Towery and M. A. Fury, “Chemical mechanical polishing of polymer films,” J. Electron. Mater. 27, 1088-1094 (1998).
[CrossRef]

Mater. Lett.

H. Pu, F. Jiang, and Z. Yang, “Studies on preparation and chemical stability of reduced iron particles encapsulated with polysiloxane nano-films,” Mater. Lett. 60, 94-97(2006).
[CrossRef]

Microelectron. Eng.

S-W. Park, Y-J. Seo, and W-S. Lee, “A study on the chemical mechanical polishing of oxide film using a zirconia (ZrO2)-mixed abrasive slurry (MAS),” Microelectron. Eng. 85, 682-688 (2008).
[CrossRef]

Nanotechnol.

L. Kumari, W. Li, and D. Wang, “Monoclinic zirconium oxide nanostructures synthesized by a hydrothermal route,” Nanotechnol. 19, 195602 (2008).
[CrossRef]

Opt. Photon. News

J. D. T. Kruschwitz, “Technology boost in precision optics: the story of QED Technologies Inc.,” Opt. Photon. News 10-13(2006).

Phys. Status Solidi A

F. F. Fang and H. J. Choi, “Polymeric nanobead coated carbonyl iron particles and their magnetic property,” Phys. Status Solidi A 204, 4190-4193 (2007).
[CrossRef]

Proc. SPIE

M. Schinhaerl, E. Pitschke, R. Rascher, P. Sperber, R. Stamj, L. Smith, and G. Smith, “Temporal stability and performance of MR polishing fluid,” Proc. SPIE 5523, 273-280 (2004).
[CrossRef]

M. Schinhaerl, E. Pitschke, A. Geiss, R. Rascher, P. Sperber, R. Stamp, L. Smith, and G. Smith, “Comparison of different magnetorheological polishing fluids,” Proc. SPIE 5965, 659-670 (2005).

W. Kordonski, D. Golini, P. Dumas, S. Hogan, and S. Jacobs, “Magnetorheological suspension-based finishing technology,” Proc. SPIE 3326, 527-535 (1998).
[CrossRef]

B. M. Kavlicoglu, F. Gordaninejad, C. A. Evrensel, N. Cobanoglu, Y. Liu, and A. Fuchs, “A high-torque magneto-rheological fluid clutch,” Proc. SPIE 4697, 393-400 (2002).
[CrossRef]

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. A. Nichols, M. Dovik, R. Raether, and I. M. Thomas, “Subsurface damage and polishing compound affect the 355 nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356-367 (1998).
[CrossRef]

J. E. DeGroote, H. J. Romanofsky, I. A. Kozhinova, J. M. Schoen, and S. D. Jacobs, “Polishing PMMA and other optical polymers with magnetorheological finishing,” Proc. SPIE 5180, 123-134 (2004).
[CrossRef]

D. Golini, W. I. Kordonski, P. Dumas, and S. Hogan, “Magnetorheological finishing (MRF) in commercial precision optics manufacturing,” Proc. SPIE 3782, 80-91 (1999).
[CrossRef]

Other

The moisture content is measured using an Arizona Instrument Computrac Max-1000 moisture analyzer, Arizona Instruments LLC, Chandler, Arizona, USA.

Probemet conductive molding compound, Buehler, Lake Bluff, Illinois, USA.

Specimen mounting press, Buehler, Lake Bluff, Illinois, USA.

J. C. Lambropoulos and R. Varshneya, “Glass material response to the fabrication process: Examples from lapping,” in OSA Topical Meeting on Optical Fabrication and Testing (Optical Society of America, 2004), paper OTuA1.

Beckman 210 pH meter, Beckman Instruments Inc., Fullerton, California, USA.

S. Arrasmith, S. D. Jacobs, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, D. Golini, W. E. Kordonski, S. Hogan, and P. Dumas, “Studies of material removal in magnetorheological finishing (MRF) from polishing spots,” in Finishing of Advanced Ceramics and Glasses Symposium at the 101st Annual Meeting of the American Ceramic Society, R. Sabia, V. A. Greenhunt, and C. G. Pantano, eds. (American Ceramic Society, 1999), Vol. 96, pp. 201-210.

M. A. Nichols, D. M. Aikens, D. W. Camp, I. M. Thomas, C. Kiikka, L. M. Sheehan, and M. R. Kozlowski, “Fabrication of an optical component,” U.S. patent 6,099,389 (8 August 2000).

J. A. Menapace, J. E. Peterson, B. M. Penetrante, P. E. Miller, T. G. Parham, and M. A. Nichols, “Combined advanced finishing and UV laser conditioning process for pordusing damage resistant optics,” U.S. patent 6,920,765 B2 (26 July 2005).

QED Technologies, Rochester, New York, USA.

W. Zhou, C-M. Chew, and G-S. Hong, “Inverse dynamics control for series damper actuator based on mr fluid damper,” in International Conference on Advanced Intelligent Mechatronics (IEEE/ASME, 2005), pp. 473-478.

Zirconium oxide material safety data sheet, Zircar Zirconia Inc., Florida, New York, USA.

S. D. Jacobs, W. Kordonski, I. V. Prokhorov, D. Golini, G. R. Gorodkin, and T. D. Strafford, “Magnetorheological fluid composition,” U.S. patent 5,804,095 (8 September 1998).

For a medium hardness polyurethane polishing pad (SUBA X pads) on a double-sided polishing machine, the useful lifetime is within the range of 100-110 hr. Pads on a single-sided polishing machine last considerably longer, approximately three to four months. From personal communication with M. Naselaris, Sydor Optics, Rochester, New York, USA (2009).

T. S. Izumitani, Optical Glass, Translation series (American Institute of Physics, 1986), p. 197.

W. Kordonski and D. Golini, “Progress update in magnetorheological finishing,” in 6th International Conference on Electro-Rheological Fluid, Magnetorheological Suspensions and Their Applications, M. Nakano and K. Koyama, eds. (World Scientific, 1997), pp. 837-844.

T. J. Swihart, “Method for protecting carbonyl iron powder and compositions therefrom,” U.S. patent 4,731,191 (15 March 1988).

H. Rutz and F. G. Hanejko, “Doubly-coated iron particles,” U.S. patent 5,063,011 (5 November 1991).

T. Atarashi and K. Nakatsuka, “Rheological fluid,” U.S. patent 6,280,658 (28 August 2001).

J. C. Ulicny and Y. T. Cheng, “Oxidation-resistant magnetorheological fluid,” U.S. patent 6,929,757 (16 August 2005).

K. D. Weiss, J. D. Carlson, and D. A. Nixon, “Magnetorheological materials utilizing surface-modified particles,” U.S. patent 5,578,238 (26 November 1996).

J. C. Ulicny, T. Xie, M. A. Golden, A. M. Mance, and K. S. Snavely, “Treated magnetizable particles and methods of making and using the same,” U.S. patent application 0185554 A1 (2008).

Carbonyl iron (CI) HQ, BASF Aktiengesellschaft Inorganic Specialties, Ludwigshafen, Germany.

R. Shen, S. N. Shafrir, C. Miao, M. Wang, J. C. Lambropoulos, S. D. Jacobs, and H. Yang, “Synthesis and corrosion study of zirconia coated carbonyl iron particles,” J. Colloid Interface Sci. (to be published).

SUPRA 40VP Scanning Electron Microscope (SEM), Zeiss, Germany.

VCA 2500xe video contact angle system, AST Products, Inc., Billerica, Massachusetts, USA.

AccuPyc II 1340 gas pycnometer, Micromeritics, Norcross, Georgia, USA.

D. R. Lide, ed. CRC Handbook of Chemistry and Physics, a Ready-Reference Book of Chemical and Physical Data, 89th ed. (CRC Press, 2008-2009), pp. 4-101.

R. M. Cornell and U. Schwertmann, The Iron Oxides, 2nd ed. (Wiley-VCH, 2003), p. XVIII.

Brookfield cone and plate viscometer model DV-III CP, Brookfield Engineering Laboratories, Inc., Middleboro, Massachusetts, USA.

D. C. Harris, Materials for Infrared Windows and Domes: Properties and Performance (SPIE, 1999), p. 415.

Micro Abrasives Corp. Westfield, Massachusetts, USA

Hastilite Precision Polishes for Advanced Optics (PO), J. H. Rhodes, a division of Universal Photonics, Inc., Franklin Springs, New York, USA.

915 Pitch, Universal Photonics, Inc., Hicksville, New York, USA.

Buehler METADI Diamond Suspension (water based), Buehler, Lake Bluff, Illinois, USA.

Kay Diamond Products LLC, Boca Raton, Florida, USA.

Zygo Mark IV xp Interferometer, Zygo Corporation, Middlefield, Connecticut, USA. This instrument is a 4 in. He-Ne Fizeau interferometer with a wavelength of 632.8 nm. Peak-to-valley (pv) for surface flatness and depth of deepest penetration (ddp) of the spot were measured in micrometers.

NewView 5000 noncontact profilometer, Zygo Corporation, Connecticut, USA.

Talysurf CCI 3000 noncontact 3D surface profiler (Taylor Hobson Inc., Rolling Meadows, Illinois, USA). The 50× objective (0.37 mm×0.37 mm) and four phase averages were used for each measurement, unfiltered. The Talysurf CCI has a maximum resolution of 0.1 Å in the z axis and 0.47 μm in the x-y axis (maximum optical resolution).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

SEM images of (a) uncoated CI and (c) zirconia-coated CI , and their (b) and (d) cross sections, respectively. (e) Free zirconia nanocrystals.

Fig. 2
Fig. 2

Images from a corrosion towel test: (a) uncoated CI up to 1 h , and (b) zirconia-coated CI up to 530 h .

Fig. 3
Fig. 3

Evaluation of coated CI MR fluid properties (pH and viscosity) and peak removal rates for glasses S-BSL-7 and BK-7 during the spotting experiment. Results are plotted against spot number and elapsed time (days of fluid circulation in the STM).

Fig. 4
Fig. 4

A polishing spot of 4 s duration taken on an S-BSL-7 part on day 1, using the coated CI-particle MR fluid. The three-dimensional pseudo-color image was measured on a white light interferometer [52] with a 1 × objective, giving a field of view of 14.7 mm × 10.7 mm . The line-out taken through the center of the part shows the spot depth to be 124 nm .

Fig. 5
Fig. 5

Peak removal rates for optical glasses as a function of Vickers hardness for three coated CI-particle-based MR fluid viscosities. The MR fluid consisted of coated particles and water only.

Fig. 6
Fig. 6

Peak removal rates for polycrystalline ceramics as a function of Vickers hardness for three coated CI-particle-based MR fluid viscosities. The MR fluid consisted of coated particles, loose nanodiamond abrasives and water.

Fig. 7
Fig. 7

SEM images of zirconia-coated CI after being circulated in the STM delivery system for 3, 10, and 22 days.

Fig. 8
Fig. 8

SEM cross-sectional images of zirconia-coated CI after being circulated in the STM delivery system for 22 days.

Tables (6)

Tables Icon

Table 1 Composition of Magnetorheological Fluid Based on Zirconia-Coated Carbonyl Iron

Tables Icon

Table 2 Substrate Materials Used for the Experiment, in Order of Increasing Hardness and Separated by Type (Glasses and Ceramics) a

Tables Icon

Table 3 Polycrystalline Ceramics

Tables Icon

Table 3 Results for Spotting Experiment on Baseline Glasses S-BSL-7, BK-7, and Fused Silica Obtained Over 18 Days With a Zirconia-Coated Carbonyl-Iron-Particle-Based Magnetorheological Fluid a

Tables Icon

Table 4 Results for Spotting Experiment on Optical Glasses Obtained Over Two Days With a Zirconia-Coated Carbonyl-Iron-Particle-Based Magnetorheological Fluid a

Tables Icon

Table 5 Results for Spotting Experiment on Polycrystalline Ceramics Obtained on Days 11, 17, and 18 of the Experiment With a Zirconia-Coated Carbonyl-Iron-Particle-Based Magnetorheological Fluid a

Metrics