Abstract

We report nonlinear absorption data of LaF3 and MgF2 single layers at 193nm. A highly surface sensitive measurement strategy of the laser induced deflection technique is introduced and applied to measure the absorption of highly transparent thin films independently of the substrate absorption. Linear absorptions k=(α×λ)/4π of 2×104 and 8.5×104(LaF3) and 1.8×104 and 6.9×104(MgF2) are found. Measured two photon absorption (TPA) coefficients are β=1×104cm/W(LaF3), 1.8×105, and 5.8×105cm/W(MgF2). The TPA coefficients are several orders of magnitude higher than typical values for fluoride single crystals, which is likely to result from sequential two step absorption processes.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Dumas, E. Quesnel, F. Pierre, and F. Bertin, “Optical properties of magnesium fluoride thin films produced by argon ion-beam assisted deposition,” J. Vac. Sci. Technol. A 20, 102-106 (2002).
    [CrossRef]
  2. J. I. Larruquert and R. A. M. Keski-Kuha, “Far ultraviolet optical properties of MgF2 films deposited by ion-beam sputtering and their application as protective coatings for Al,” Opt. Commun. 215, 93-99 (2003).
    [CrossRef]
  3. M. Bischoff, D. Gäbler, N. Kaiser, A. Chuvilin, U. Kaiser, and A. Tünnermann, “Optical and structural properties of LaF3 thin films,” Appl. Opt. 47, C157-C161 (2008).
    [CrossRef] [PubMed]
  4. M. Bischoff, M. Sode, D. Gäbler, H. Bernitzki, Ch. Zaczek, N. Kaiser, and A. Tünnermann, “Metal fluoride coatings prepared by ion-assisted deposition,” Proc. SPIE 7101, 71010L(2008).
    [CrossRef]
  5. S. Nakazawa, N. Toyoda, K. Mochiji, T. Mitamura, and I. Yamada, “Fluoride thin film formation with low optical absorption by gas cluster ion beam assisted deposition,” Nucl. Instrum. Methods B 261, 656-659 (2007).
    [CrossRef]
  6. Ch. Mühlig, W. Triebel, G. Töpfer, and A. Jordanov, “Calcium fluoride for ArF laser lithography--characterization by in situ transmission and LIF measurements,” Proc. SPIE 4932, 458-466 (2002).
    [CrossRef]
  7. E. Eva and K. Mann, “Calorimetric measurements of two-photon absorption and color-center formation in ultraviolet-window materials,” Appl. Phys. A 62, 143-149 (1996).
    [CrossRef]
  8. N. Komine, S. Sakuma, M. Shiozawa, T. Mizugaki, and E. Sato, “Influence of sodium impurities on ArF excimer-laser-induced absorption in CaF2 crystals,” Appl. Opt. 39, 3925-3930 (2000).
    [CrossRef]
  9. M. Mizuguchi, H. Hosono, H. Kawazoe, and T. Ogawa, “Generation of optical absorption bands in CaF2 single crystals by ArF laser irradiation: Effect of yttrium impurity,” J. Vac. Sci. Technol. A 16, 3052-3057 (1998).
    [CrossRef]
  10. O. Kittelmann and J. Ringling, “Intensity-dependent transmission properties of window materials at 193 nm irradiation,” Opt. Lett. 19, 2053-2055 (1994).
    [CrossRef] [PubMed]
  11. M. Y. Artem'ev, V. M. Nesterov, A. P. Sergeev, and P. B. Sergeev, “Nonlinear absorption in optical materials at a wavelength of 193 nm,” Quantum Electron. 34, 147-150 (2004).
    [CrossRef]
  12. O. Apel, K. Mann, A. Zoellner, R. Goetzelmann, and E. Eva, “Nonlinear absorption of thin Al2O3 films at 193 nm,” Appl. Opt. 39, 3165-3169 (2000).
    [CrossRef]
  13. B. Li, S. Xiong, Y. Zhang, S. Martin, and E. Welsch, “Nonlinear absorption measurement of UV dielectric components by pulsed top-hat beam thermal lens,” Opt. Commun. 244, 367-376 (2005).
    [CrossRef]
  14. Ch. Mühlig, W. Triebel, S. Kufert, Ch. Noppeney, and H. Bernitzki, “Direct measurements of residual absorption in fluoridic thin films and optical materials for DUV laser applications,” Proc. SPIE 6403, 640317 (2007).
    [CrossRef]
  15. Ch. Mühlig, W. Triebel, S. Kufert, and S. Bublitz, “Characterization of low losses in optical thin films and materials,” Appl. Opt. 47, C135-C142 (2008).
    [CrossRef] [PubMed]
  16. M. Guntau and W. Triebel, “Novel method to measure bulk absorption in optically transparent materials,” Rev. Sci. Instrum. 71, 2279-2282 (2000).
    [CrossRef]
  17. Y. Taki, “Film structure and optical constants of magnetron-sputtered fluoridic films for deep ultraviolet lithography,” Vacuum 74, 431-435 (2004).
    [CrossRef]
  18. S. Shuzhen, S. Jianda, L. Chunyan, Y. Kui, F. Zhengxiu, and C. Lei, “High-reflectance 193 nmAl2O3/MgF2 mirrors,” Appl. Surf. Sci. 249, 157-161 (2005).
    [CrossRef]
  19. Ch. Görling, “Wechselwirkungsmechanismen von DUV- und VUV-Laserstrahlung mit fluoridischen Einkristallen,” Ph.D. thesis (University Göttingen, 2003).
  20. Ch. Mühlig, “Zur Absorption hochtransparenter optischer Materialien unter gepulster ArF-Laserstrahlung,” Ph.D. dissertation (University Jena, 2005).
  21. T. Tsujibayashi, K. Toyoda, S. Sakuragi, M. Kamada, and M. Itoh, “Spectral profile of the two-photon absorption coefficients in CaF2 and BaF2,” Appl. Phys. Lett. 80, 2883-2885(2002).
    [CrossRef]

2008

2007

Ch. Mühlig, W. Triebel, S. Kufert, Ch. Noppeney, and H. Bernitzki, “Direct measurements of residual absorption in fluoridic thin films and optical materials for DUV laser applications,” Proc. SPIE 6403, 640317 (2007).
[CrossRef]

S. Nakazawa, N. Toyoda, K. Mochiji, T. Mitamura, and I. Yamada, “Fluoride thin film formation with low optical absorption by gas cluster ion beam assisted deposition,” Nucl. Instrum. Methods B 261, 656-659 (2007).
[CrossRef]

2005

B. Li, S. Xiong, Y. Zhang, S. Martin, and E. Welsch, “Nonlinear absorption measurement of UV dielectric components by pulsed top-hat beam thermal lens,” Opt. Commun. 244, 367-376 (2005).
[CrossRef]

S. Shuzhen, S. Jianda, L. Chunyan, Y. Kui, F. Zhengxiu, and C. Lei, “High-reflectance 193 nmAl2O3/MgF2 mirrors,” Appl. Surf. Sci. 249, 157-161 (2005).
[CrossRef]

2004

M. Y. Artem'ev, V. M. Nesterov, A. P. Sergeev, and P. B. Sergeev, “Nonlinear absorption in optical materials at a wavelength of 193 nm,” Quantum Electron. 34, 147-150 (2004).
[CrossRef]

Y. Taki, “Film structure and optical constants of magnetron-sputtered fluoridic films for deep ultraviolet lithography,” Vacuum 74, 431-435 (2004).
[CrossRef]

2003

J. I. Larruquert and R. A. M. Keski-Kuha, “Far ultraviolet optical properties of MgF2 films deposited by ion-beam sputtering and their application as protective coatings for Al,” Opt. Commun. 215, 93-99 (2003).
[CrossRef]

2002

L. Dumas, E. Quesnel, F. Pierre, and F. Bertin, “Optical properties of magnesium fluoride thin films produced by argon ion-beam assisted deposition,” J. Vac. Sci. Technol. A 20, 102-106 (2002).
[CrossRef]

Ch. Mühlig, W. Triebel, G. Töpfer, and A. Jordanov, “Calcium fluoride for ArF laser lithography--characterization by in situ transmission and LIF measurements,” Proc. SPIE 4932, 458-466 (2002).
[CrossRef]

T. Tsujibayashi, K. Toyoda, S. Sakuragi, M. Kamada, and M. Itoh, “Spectral profile of the two-photon absorption coefficients in CaF2 and BaF2,” Appl. Phys. Lett. 80, 2883-2885(2002).
[CrossRef]

2000

1998

M. Mizuguchi, H. Hosono, H. Kawazoe, and T. Ogawa, “Generation of optical absorption bands in CaF2 single crystals by ArF laser irradiation: Effect of yttrium impurity,” J. Vac. Sci. Technol. A 16, 3052-3057 (1998).
[CrossRef]

1996

E. Eva and K. Mann, “Calorimetric measurements of two-photon absorption and color-center formation in ultraviolet-window materials,” Appl. Phys. A 62, 143-149 (1996).
[CrossRef]

1994

Apel, O.

Artem'ev, M. Y.

M. Y. Artem'ev, V. M. Nesterov, A. P. Sergeev, and P. B. Sergeev, “Nonlinear absorption in optical materials at a wavelength of 193 nm,” Quantum Electron. 34, 147-150 (2004).
[CrossRef]

Bernitzki, H.

M. Bischoff, M. Sode, D. Gäbler, H. Bernitzki, Ch. Zaczek, N. Kaiser, and A. Tünnermann, “Metal fluoride coatings prepared by ion-assisted deposition,” Proc. SPIE 7101, 71010L(2008).
[CrossRef]

Ch. Mühlig, W. Triebel, S. Kufert, Ch. Noppeney, and H. Bernitzki, “Direct measurements of residual absorption in fluoridic thin films and optical materials for DUV laser applications,” Proc. SPIE 6403, 640317 (2007).
[CrossRef]

Bertin, F.

L. Dumas, E. Quesnel, F. Pierre, and F. Bertin, “Optical properties of magnesium fluoride thin films produced by argon ion-beam assisted deposition,” J. Vac. Sci. Technol. A 20, 102-106 (2002).
[CrossRef]

Bischoff, M.

M. Bischoff, D. Gäbler, N. Kaiser, A. Chuvilin, U. Kaiser, and A. Tünnermann, “Optical and structural properties of LaF3 thin films,” Appl. Opt. 47, C157-C161 (2008).
[CrossRef] [PubMed]

M. Bischoff, M. Sode, D. Gäbler, H. Bernitzki, Ch. Zaczek, N. Kaiser, and A. Tünnermann, “Metal fluoride coatings prepared by ion-assisted deposition,” Proc. SPIE 7101, 71010L(2008).
[CrossRef]

Bublitz, S.

Chunyan, L.

S. Shuzhen, S. Jianda, L. Chunyan, Y. Kui, F. Zhengxiu, and C. Lei, “High-reflectance 193 nmAl2O3/MgF2 mirrors,” Appl. Surf. Sci. 249, 157-161 (2005).
[CrossRef]

Chuvilin, A.

Dumas, L.

L. Dumas, E. Quesnel, F. Pierre, and F. Bertin, “Optical properties of magnesium fluoride thin films produced by argon ion-beam assisted deposition,” J. Vac. Sci. Technol. A 20, 102-106 (2002).
[CrossRef]

Eva, E.

O. Apel, K. Mann, A. Zoellner, R. Goetzelmann, and E. Eva, “Nonlinear absorption of thin Al2O3 films at 193 nm,” Appl. Opt. 39, 3165-3169 (2000).
[CrossRef]

E. Eva and K. Mann, “Calorimetric measurements of two-photon absorption and color-center formation in ultraviolet-window materials,” Appl. Phys. A 62, 143-149 (1996).
[CrossRef]

Gäbler, D.

M. Bischoff, M. Sode, D. Gäbler, H. Bernitzki, Ch. Zaczek, N. Kaiser, and A. Tünnermann, “Metal fluoride coatings prepared by ion-assisted deposition,” Proc. SPIE 7101, 71010L(2008).
[CrossRef]

M. Bischoff, D. Gäbler, N. Kaiser, A. Chuvilin, U. Kaiser, and A. Tünnermann, “Optical and structural properties of LaF3 thin films,” Appl. Opt. 47, C157-C161 (2008).
[CrossRef] [PubMed]

Goetzelmann, R.

Görling, Ch.

Ch. Görling, “Wechselwirkungsmechanismen von DUV- und VUV-Laserstrahlung mit fluoridischen Einkristallen,” Ph.D. thesis (University Göttingen, 2003).

Guntau, M.

M. Guntau and W. Triebel, “Novel method to measure bulk absorption in optically transparent materials,” Rev. Sci. Instrum. 71, 2279-2282 (2000).
[CrossRef]

Hosono, H.

M. Mizuguchi, H. Hosono, H. Kawazoe, and T. Ogawa, “Generation of optical absorption bands in CaF2 single crystals by ArF laser irradiation: Effect of yttrium impurity,” J. Vac. Sci. Technol. A 16, 3052-3057 (1998).
[CrossRef]

Itoh, M.

T. Tsujibayashi, K. Toyoda, S. Sakuragi, M. Kamada, and M. Itoh, “Spectral profile of the two-photon absorption coefficients in CaF2 and BaF2,” Appl. Phys. Lett. 80, 2883-2885(2002).
[CrossRef]

Jianda, S.

S. Shuzhen, S. Jianda, L. Chunyan, Y. Kui, F. Zhengxiu, and C. Lei, “High-reflectance 193 nmAl2O3/MgF2 mirrors,” Appl. Surf. Sci. 249, 157-161 (2005).
[CrossRef]

Jordanov, A.

Ch. Mühlig, W. Triebel, G. Töpfer, and A. Jordanov, “Calcium fluoride for ArF laser lithography--characterization by in situ transmission and LIF measurements,” Proc. SPIE 4932, 458-466 (2002).
[CrossRef]

Kaiser, N.

M. Bischoff, D. Gäbler, N. Kaiser, A. Chuvilin, U. Kaiser, and A. Tünnermann, “Optical and structural properties of LaF3 thin films,” Appl. Opt. 47, C157-C161 (2008).
[CrossRef] [PubMed]

M. Bischoff, M. Sode, D. Gäbler, H. Bernitzki, Ch. Zaczek, N. Kaiser, and A. Tünnermann, “Metal fluoride coatings prepared by ion-assisted deposition,” Proc. SPIE 7101, 71010L(2008).
[CrossRef]

Kaiser, U.

Kamada, M.

T. Tsujibayashi, K. Toyoda, S. Sakuragi, M. Kamada, and M. Itoh, “Spectral profile of the two-photon absorption coefficients in CaF2 and BaF2,” Appl. Phys. Lett. 80, 2883-2885(2002).
[CrossRef]

Kawazoe, H.

M. Mizuguchi, H. Hosono, H. Kawazoe, and T. Ogawa, “Generation of optical absorption bands in CaF2 single crystals by ArF laser irradiation: Effect of yttrium impurity,” J. Vac. Sci. Technol. A 16, 3052-3057 (1998).
[CrossRef]

Keski-Kuha, R. A. M.

J. I. Larruquert and R. A. M. Keski-Kuha, “Far ultraviolet optical properties of MgF2 films deposited by ion-beam sputtering and their application as protective coatings for Al,” Opt. Commun. 215, 93-99 (2003).
[CrossRef]

Kittelmann, O.

Komine, N.

Kufert, S.

Ch. Mühlig, W. Triebel, S. Kufert, and S. Bublitz, “Characterization of low losses in optical thin films and materials,” Appl. Opt. 47, C135-C142 (2008).
[CrossRef] [PubMed]

Ch. Mühlig, W. Triebel, S. Kufert, Ch. Noppeney, and H. Bernitzki, “Direct measurements of residual absorption in fluoridic thin films and optical materials for DUV laser applications,” Proc. SPIE 6403, 640317 (2007).
[CrossRef]

Kui, Y.

S. Shuzhen, S. Jianda, L. Chunyan, Y. Kui, F. Zhengxiu, and C. Lei, “High-reflectance 193 nmAl2O3/MgF2 mirrors,” Appl. Surf. Sci. 249, 157-161 (2005).
[CrossRef]

Larruquert, J. I.

J. I. Larruquert and R. A. M. Keski-Kuha, “Far ultraviolet optical properties of MgF2 films deposited by ion-beam sputtering and their application as protective coatings for Al,” Opt. Commun. 215, 93-99 (2003).
[CrossRef]

Lei, C.

S. Shuzhen, S. Jianda, L. Chunyan, Y. Kui, F. Zhengxiu, and C. Lei, “High-reflectance 193 nmAl2O3/MgF2 mirrors,” Appl. Surf. Sci. 249, 157-161 (2005).
[CrossRef]

Li, B.

B. Li, S. Xiong, Y. Zhang, S. Martin, and E. Welsch, “Nonlinear absorption measurement of UV dielectric components by pulsed top-hat beam thermal lens,” Opt. Commun. 244, 367-376 (2005).
[CrossRef]

Mann, K.

O. Apel, K. Mann, A. Zoellner, R. Goetzelmann, and E. Eva, “Nonlinear absorption of thin Al2O3 films at 193 nm,” Appl. Opt. 39, 3165-3169 (2000).
[CrossRef]

E. Eva and K. Mann, “Calorimetric measurements of two-photon absorption and color-center formation in ultraviolet-window materials,” Appl. Phys. A 62, 143-149 (1996).
[CrossRef]

Martin, S.

B. Li, S. Xiong, Y. Zhang, S. Martin, and E. Welsch, “Nonlinear absorption measurement of UV dielectric components by pulsed top-hat beam thermal lens,” Opt. Commun. 244, 367-376 (2005).
[CrossRef]

Mitamura, T.

S. Nakazawa, N. Toyoda, K. Mochiji, T. Mitamura, and I. Yamada, “Fluoride thin film formation with low optical absorption by gas cluster ion beam assisted deposition,” Nucl. Instrum. Methods B 261, 656-659 (2007).
[CrossRef]

Mizugaki, T.

Mizuguchi, M.

M. Mizuguchi, H. Hosono, H. Kawazoe, and T. Ogawa, “Generation of optical absorption bands in CaF2 single crystals by ArF laser irradiation: Effect of yttrium impurity,” J. Vac. Sci. Technol. A 16, 3052-3057 (1998).
[CrossRef]

Mochiji, K.

S. Nakazawa, N. Toyoda, K. Mochiji, T. Mitamura, and I. Yamada, “Fluoride thin film formation with low optical absorption by gas cluster ion beam assisted deposition,” Nucl. Instrum. Methods B 261, 656-659 (2007).
[CrossRef]

Mühlig, Ch.

Ch. Mühlig, W. Triebel, S. Kufert, and S. Bublitz, “Characterization of low losses in optical thin films and materials,” Appl. Opt. 47, C135-C142 (2008).
[CrossRef] [PubMed]

Ch. Mühlig, W. Triebel, S. Kufert, Ch. Noppeney, and H. Bernitzki, “Direct measurements of residual absorption in fluoridic thin films and optical materials for DUV laser applications,” Proc. SPIE 6403, 640317 (2007).
[CrossRef]

Ch. Mühlig, W. Triebel, G. Töpfer, and A. Jordanov, “Calcium fluoride for ArF laser lithography--characterization by in situ transmission and LIF measurements,” Proc. SPIE 4932, 458-466 (2002).
[CrossRef]

Ch. Mühlig, “Zur Absorption hochtransparenter optischer Materialien unter gepulster ArF-Laserstrahlung,” Ph.D. dissertation (University Jena, 2005).

Nakazawa, S.

S. Nakazawa, N. Toyoda, K. Mochiji, T. Mitamura, and I. Yamada, “Fluoride thin film formation with low optical absorption by gas cluster ion beam assisted deposition,” Nucl. Instrum. Methods B 261, 656-659 (2007).
[CrossRef]

Nesterov, V. M.

M. Y. Artem'ev, V. M. Nesterov, A. P. Sergeev, and P. B. Sergeev, “Nonlinear absorption in optical materials at a wavelength of 193 nm,” Quantum Electron. 34, 147-150 (2004).
[CrossRef]

Noppeney, Ch.

Ch. Mühlig, W. Triebel, S. Kufert, Ch. Noppeney, and H. Bernitzki, “Direct measurements of residual absorption in fluoridic thin films and optical materials for DUV laser applications,” Proc. SPIE 6403, 640317 (2007).
[CrossRef]

Ogawa, T.

M. Mizuguchi, H. Hosono, H. Kawazoe, and T. Ogawa, “Generation of optical absorption bands in CaF2 single crystals by ArF laser irradiation: Effect of yttrium impurity,” J. Vac. Sci. Technol. A 16, 3052-3057 (1998).
[CrossRef]

Pierre, F.

L. Dumas, E. Quesnel, F. Pierre, and F. Bertin, “Optical properties of magnesium fluoride thin films produced by argon ion-beam assisted deposition,” J. Vac. Sci. Technol. A 20, 102-106 (2002).
[CrossRef]

Quesnel, E.

L. Dumas, E. Quesnel, F. Pierre, and F. Bertin, “Optical properties of magnesium fluoride thin films produced by argon ion-beam assisted deposition,” J. Vac. Sci. Technol. A 20, 102-106 (2002).
[CrossRef]

Ringling, J.

Sakuma, S.

Sakuragi, S.

T. Tsujibayashi, K. Toyoda, S. Sakuragi, M. Kamada, and M. Itoh, “Spectral profile of the two-photon absorption coefficients in CaF2 and BaF2,” Appl. Phys. Lett. 80, 2883-2885(2002).
[CrossRef]

Sato, E.

Sergeev, A. P.

M. Y. Artem'ev, V. M. Nesterov, A. P. Sergeev, and P. B. Sergeev, “Nonlinear absorption in optical materials at a wavelength of 193 nm,” Quantum Electron. 34, 147-150 (2004).
[CrossRef]

Sergeev, P. B.

M. Y. Artem'ev, V. M. Nesterov, A. P. Sergeev, and P. B. Sergeev, “Nonlinear absorption in optical materials at a wavelength of 193 nm,” Quantum Electron. 34, 147-150 (2004).
[CrossRef]

Shiozawa, M.

Shuzhen, S.

S. Shuzhen, S. Jianda, L. Chunyan, Y. Kui, F. Zhengxiu, and C. Lei, “High-reflectance 193 nmAl2O3/MgF2 mirrors,” Appl. Surf. Sci. 249, 157-161 (2005).
[CrossRef]

Sode, M.

M. Bischoff, M. Sode, D. Gäbler, H. Bernitzki, Ch. Zaczek, N. Kaiser, and A. Tünnermann, “Metal fluoride coatings prepared by ion-assisted deposition,” Proc. SPIE 7101, 71010L(2008).
[CrossRef]

Taki, Y.

Y. Taki, “Film structure and optical constants of magnetron-sputtered fluoridic films for deep ultraviolet lithography,” Vacuum 74, 431-435 (2004).
[CrossRef]

Töpfer, G.

Ch. Mühlig, W. Triebel, G. Töpfer, and A. Jordanov, “Calcium fluoride for ArF laser lithography--characterization by in situ transmission and LIF measurements,” Proc. SPIE 4932, 458-466 (2002).
[CrossRef]

Toyoda, K.

T. Tsujibayashi, K. Toyoda, S. Sakuragi, M. Kamada, and M. Itoh, “Spectral profile of the two-photon absorption coefficients in CaF2 and BaF2,” Appl. Phys. Lett. 80, 2883-2885(2002).
[CrossRef]

Toyoda, N.

S. Nakazawa, N. Toyoda, K. Mochiji, T. Mitamura, and I. Yamada, “Fluoride thin film formation with low optical absorption by gas cluster ion beam assisted deposition,” Nucl. Instrum. Methods B 261, 656-659 (2007).
[CrossRef]

Triebel, W.

Ch. Mühlig, W. Triebel, S. Kufert, and S. Bublitz, “Characterization of low losses in optical thin films and materials,” Appl. Opt. 47, C135-C142 (2008).
[CrossRef] [PubMed]

Ch. Mühlig, W. Triebel, S. Kufert, Ch. Noppeney, and H. Bernitzki, “Direct measurements of residual absorption in fluoridic thin films and optical materials for DUV laser applications,” Proc. SPIE 6403, 640317 (2007).
[CrossRef]

Ch. Mühlig, W. Triebel, G. Töpfer, and A. Jordanov, “Calcium fluoride for ArF laser lithography--characterization by in situ transmission and LIF measurements,” Proc. SPIE 4932, 458-466 (2002).
[CrossRef]

M. Guntau and W. Triebel, “Novel method to measure bulk absorption in optically transparent materials,” Rev. Sci. Instrum. 71, 2279-2282 (2000).
[CrossRef]

Tsujibayashi, T.

T. Tsujibayashi, K. Toyoda, S. Sakuragi, M. Kamada, and M. Itoh, “Spectral profile of the two-photon absorption coefficients in CaF2 and BaF2,” Appl. Phys. Lett. 80, 2883-2885(2002).
[CrossRef]

Tünnermann, A.

M. Bischoff, D. Gäbler, N. Kaiser, A. Chuvilin, U. Kaiser, and A. Tünnermann, “Optical and structural properties of LaF3 thin films,” Appl. Opt. 47, C157-C161 (2008).
[CrossRef] [PubMed]

M. Bischoff, M. Sode, D. Gäbler, H. Bernitzki, Ch. Zaczek, N. Kaiser, and A. Tünnermann, “Metal fluoride coatings prepared by ion-assisted deposition,” Proc. SPIE 7101, 71010L(2008).
[CrossRef]

Welsch, E.

B. Li, S. Xiong, Y. Zhang, S. Martin, and E. Welsch, “Nonlinear absorption measurement of UV dielectric components by pulsed top-hat beam thermal lens,” Opt. Commun. 244, 367-376 (2005).
[CrossRef]

Xiong, S.

B. Li, S. Xiong, Y. Zhang, S. Martin, and E. Welsch, “Nonlinear absorption measurement of UV dielectric components by pulsed top-hat beam thermal lens,” Opt. Commun. 244, 367-376 (2005).
[CrossRef]

Yamada, I.

S. Nakazawa, N. Toyoda, K. Mochiji, T. Mitamura, and I. Yamada, “Fluoride thin film formation with low optical absorption by gas cluster ion beam assisted deposition,” Nucl. Instrum. Methods B 261, 656-659 (2007).
[CrossRef]

Zaczek, Ch.

M. Bischoff, M. Sode, D. Gäbler, H. Bernitzki, Ch. Zaczek, N. Kaiser, and A. Tünnermann, “Metal fluoride coatings prepared by ion-assisted deposition,” Proc. SPIE 7101, 71010L(2008).
[CrossRef]

Zhang, Y.

B. Li, S. Xiong, Y. Zhang, S. Martin, and E. Welsch, “Nonlinear absorption measurement of UV dielectric components by pulsed top-hat beam thermal lens,” Opt. Commun. 244, 367-376 (2005).
[CrossRef]

Zhengxiu, F.

S. Shuzhen, S. Jianda, L. Chunyan, Y. Kui, F. Zhengxiu, and C. Lei, “High-reflectance 193 nmAl2O3/MgF2 mirrors,” Appl. Surf. Sci. 249, 157-161 (2005).
[CrossRef]

Zoellner, A.

Appl. Opt.

Appl. Phys. A

E. Eva and K. Mann, “Calorimetric measurements of two-photon absorption and color-center formation in ultraviolet-window materials,” Appl. Phys. A 62, 143-149 (1996).
[CrossRef]

Appl. Phys. Lett.

T. Tsujibayashi, K. Toyoda, S. Sakuragi, M. Kamada, and M. Itoh, “Spectral profile of the two-photon absorption coefficients in CaF2 and BaF2,” Appl. Phys. Lett. 80, 2883-2885(2002).
[CrossRef]

Appl. Surf. Sci.

S. Shuzhen, S. Jianda, L. Chunyan, Y. Kui, F. Zhengxiu, and C. Lei, “High-reflectance 193 nmAl2O3/MgF2 mirrors,” Appl. Surf. Sci. 249, 157-161 (2005).
[CrossRef]

J. Vac. Sci. Technol. A

M. Mizuguchi, H. Hosono, H. Kawazoe, and T. Ogawa, “Generation of optical absorption bands in CaF2 single crystals by ArF laser irradiation: Effect of yttrium impurity,” J. Vac. Sci. Technol. A 16, 3052-3057 (1998).
[CrossRef]

L. Dumas, E. Quesnel, F. Pierre, and F. Bertin, “Optical properties of magnesium fluoride thin films produced by argon ion-beam assisted deposition,” J. Vac. Sci. Technol. A 20, 102-106 (2002).
[CrossRef]

Nucl. Instrum. Methods B

S. Nakazawa, N. Toyoda, K. Mochiji, T. Mitamura, and I. Yamada, “Fluoride thin film formation with low optical absorption by gas cluster ion beam assisted deposition,” Nucl. Instrum. Methods B 261, 656-659 (2007).
[CrossRef]

Opt. Commun.

B. Li, S. Xiong, Y. Zhang, S. Martin, and E. Welsch, “Nonlinear absorption measurement of UV dielectric components by pulsed top-hat beam thermal lens,” Opt. Commun. 244, 367-376 (2005).
[CrossRef]

J. I. Larruquert and R. A. M. Keski-Kuha, “Far ultraviolet optical properties of MgF2 films deposited by ion-beam sputtering and their application as protective coatings for Al,” Opt. Commun. 215, 93-99 (2003).
[CrossRef]

Opt. Lett.

Proc. SPIE

M. Bischoff, M. Sode, D. Gäbler, H. Bernitzki, Ch. Zaczek, N. Kaiser, and A. Tünnermann, “Metal fluoride coatings prepared by ion-assisted deposition,” Proc. SPIE 7101, 71010L(2008).
[CrossRef]

Ch. Mühlig, W. Triebel, S. Kufert, Ch. Noppeney, and H. Bernitzki, “Direct measurements of residual absorption in fluoridic thin films and optical materials for DUV laser applications,” Proc. SPIE 6403, 640317 (2007).
[CrossRef]

Ch. Mühlig, W. Triebel, G. Töpfer, and A. Jordanov, “Calcium fluoride for ArF laser lithography--characterization by in situ transmission and LIF measurements,” Proc. SPIE 4932, 458-466 (2002).
[CrossRef]

Quantum Electron.

M. Y. Artem'ev, V. M. Nesterov, A. P. Sergeev, and P. B. Sergeev, “Nonlinear absorption in optical materials at a wavelength of 193 nm,” Quantum Electron. 34, 147-150 (2004).
[CrossRef]

Rev. Sci. Instrum.

M. Guntau and W. Triebel, “Novel method to measure bulk absorption in optically transparent materials,” Rev. Sci. Instrum. 71, 2279-2282 (2000).
[CrossRef]

Vacuum

Y. Taki, “Film structure and optical constants of magnetron-sputtered fluoridic films for deep ultraviolet lithography,” Vacuum 74, 431-435 (2004).
[CrossRef]

Other

Ch. Görling, “Wechselwirkungsmechanismen von DUV- und VUV-Laserstrahlung mit fluoridischen Einkristallen,” Ph.D. thesis (University Göttingen, 2003).

Ch. Mühlig, “Zur Absorption hochtransparenter optischer Materialien unter gepulster ArF-Laserstrahlung,” Ph.D. dissertation (University Jena, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Sketch of the LID measurement principle including calculated isolines of temperature and refractive index for fused silica as well as the probe beam propagation.

Fig. 2
Fig. 2

(a) Schematic view of the common LID measurement strategy for separation between surface and bulk absorption by detection of the probe beam deflection in the z (vertical) direction and (b) vertical deflection signals dependent on the probe beam position along the sample length obtained from electrical simulation of surface and bulk absorption.

Fig. 3
Fig. 3

New surface sensitive LID technique: probe beam deflection in the x (horizontal) direction dependent on the applied power of the electrical surface and bulk absorption simulation (probe beam position = 1 mm off the sample’s front surface).

Fig. 4
Fig. 4

Probe beam deflection in the x (horizontal) direction (equivalent to sensitive LID strategy) during the measurements of (a) a 68 nm single Mg F 2 (sample 1) and (b) a 62 nm single Si O 2 layer (sample 2) upon 193 nm irradiation at a fluence of 5 mJ / cm 2 .

Fig. 5
Fig. 5

Consecutive deflection measurements at a fixed fluence for (a) the investigated Mg F 2 thin films (samples 3 and 4) and (b) the La F 3 thin film (sample 5).

Fig. 6
Fig. 6

Fluence dependent absorption data for the investigated Mg F 2 thin films, measured by surface sensitive LID technique.

Fig. 7
Fig. 7

Fluence dependent absorption data for the investigated La F 3 thin film, measured by surface sensitive LID technique.

Tables (3)

Tables Icon

Table 1 Summary of the Investigated Samples

Tables Icon

Table 2 Comparison of the Normalized Absorption k Values of Single Mg F 2 and Si O 2 Layers Obtained by New Surface Sensitive and Common LID Measurement Strategies

Tables Icon

Table 3 Summary of the Linear Absorption (α, k) and the Two Photon Absorption Coefficient β of Mg F 2 and La F 3 Single Layers Obtained by the Surface Sensitive LID Technique

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

d I d x = α I β I 2 ,
I ( x ) = α I 0 exp ( α x ) α + β I 0 [ 1 exp ( α x ) ] ,
A = 1 I ( d ) I 0 = α + β I 0 α 1 exp ( α d ) + β I 0 .
A = ( α + β I 0 ) d .

Metrics