Abstract

We report the transmission characteristics of infrared hollow fiber with multi- AgI and SiO2 inner- coating layers in the mid-infrared region. A three-dielectric-layer hollow glass fiber with a SiO2–AgI–SiO2–Ag structure was fabricated and low-loss property was obtained in the mid-infrared region. The SiO2 films were coated by use of the liquid-phase coating method and a semi-inorganic polymer was used as the coating material. For deposition of the AgI film between the two SiO2 films, a silver film was first plated by use of the silver mirror reaction method. Then the iodination process was conducted to turn the silver layer into silver iodide. A calculation method was also developed to estimate the film thickness of dielectric layers in each fabrication step according to the position of loss peaks in the measured loss spectra. Good agreement between calculated and measured loss spectra was demonstrated by taking into consideration material dispersion and surface roughness of inner-coating films.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Croitoru, A. Inberg, M. Ben David, and I. Gannot, “Broad band and low loss mid-IR flexible hollow waveguides,” Opt. Express 12, 1341-1352 (2004).
    [CrossRef] [PubMed]
  2. R. George and J. A. Harrington, “Infrared transmissive, hollow plastic waveguides with inner Ag─AgI coatings,” Appl. Opt. 44, 6449-6455 (2005).
    [CrossRef] [PubMed]
  3. Y. W. Shi, K. Ito, L. Ma, T. Yoshida, Y. Matsuura, and M. Miyagi, “Fabrication of polymer-coated silver hollow optical fiber with high performance,” Appl. Opt. 45, 6736-6740 (2006).
    [CrossRef] [PubMed]
  4. M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. 2, 116-126 (1984).
    [CrossRef]
  5. B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibers with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650-653 (2002).
    [CrossRef] [PubMed]
  6. Y. Fink, D. J. Ripin, S. Fan, C. Chen, J. D. Joannopoulos, and E. L. Thomas, “Guiding optical light in air using an all-dielectric structure,” J. Lightwave Technol. 17, 2039-2041 (1999).
    [CrossRef]
  7. V. Gopal and J. A. Harrington, “Deposition and characterization of metal sulfide dielectric coatings for hollow glass waveguides,” Opt. Express 11, 3182-3187 (2003).
    [CrossRef] [PubMed]
  8. M. Ben David, M. Catalogna, J. A. Harrington, V. Krishnan, and I. Gannot, “Theoretical and experimental investigations of metal sulfide dielectric coatings for hollow waveguides,” Opt. Eng. 47, 045008 (2008).
    [CrossRef]
  9. T. Karagiri, Y. Matsuura, and M. Miyagi, “Metal-covered photonic bandgap multilayer for infrared hollow waveguide,” Appl. Opt. 41, 7603-7606 (2002).
    [CrossRef]
  10. K. Iwai, M. Miyagi, Y. W. Shi, X. S. Zhu, and Y. Matsuura, “Infrared hollow fiber with a vitreous film as the dielectric inner coating layer,” Opt. Lett. 32, 3420-3422 (2007).
    [CrossRef] [PubMed]
  11. K. R. Sui, Y. W. Shi, X. L. Tang, X. S. Zhu, K. Iwai, and M. Miyagi, “Optical properties of AgI/Ag infrared hollow fiber in the visible wavelength region,” Opt. Lett. 33, 318-320 (2008).
    [CrossRef] [PubMed]
  12. Y. Matsuura, M. Saito, and M. Miyagi, “Loss characteristics of circular hollow waveguides for incoherent infrared light,” J. Opt. Soc. Am. A 6, 423-427 (1989).
    [CrossRef]
  13. M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, 1999).
  14. K. R. Sui, X. S. Zhu, X. L. Tang, K. Iwai, M. Miyagi, and Y. W. Shi, “Method for evaluating material dispersion of dielectric film in the hollow fiber,” Appl. Opt. 47, 6340-6344(2008).
    [CrossRef] [PubMed]
  15. Y. Matsuura and J. A. Harrington, “Hollow glass waveguides with three-layer dielectric coating fabricated by chemical vapor deposition,” J. Opt. Soc. Am. A 14, 1255-1259 (1997).
    [CrossRef]

2008 (3)

2007 (1)

2006 (1)

2005 (1)

2004 (1)

2003 (1)

2002 (2)

T. Karagiri, Y. Matsuura, and M. Miyagi, “Metal-covered photonic bandgap multilayer for infrared hollow waveguide,” Appl. Opt. 41, 7603-7606 (2002).
[CrossRef]

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibers with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650-653 (2002).
[CrossRef] [PubMed]

1999 (1)

1997 (1)

1989 (1)

1984 (1)

M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. 2, 116-126 (1984).
[CrossRef]

Ben David, M.

M. Ben David, M. Catalogna, J. A. Harrington, V. Krishnan, and I. Gannot, “Theoretical and experimental investigations of metal sulfide dielectric coatings for hollow waveguides,” Opt. Eng. 47, 045008 (2008).
[CrossRef]

N. Croitoru, A. Inberg, M. Ben David, and I. Gannot, “Broad band and low loss mid-IR flexible hollow waveguides,” Opt. Express 12, 1341-1352 (2004).
[CrossRef] [PubMed]

Benoit, G.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibers with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650-653 (2002).
[CrossRef] [PubMed]

Born, M.

M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, 1999).

Catalogna, M.

M. Ben David, M. Catalogna, J. A. Harrington, V. Krishnan, and I. Gannot, “Theoretical and experimental investigations of metal sulfide dielectric coatings for hollow waveguides,” Opt. Eng. 47, 045008 (2008).
[CrossRef]

Chen, C.

Croitoru, N.

Fan, S.

Fink, Y.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibers with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650-653 (2002).
[CrossRef] [PubMed]

Y. Fink, D. J. Ripin, S. Fan, C. Chen, J. D. Joannopoulos, and E. L. Thomas, “Guiding optical light in air using an all-dielectric structure,” J. Lightwave Technol. 17, 2039-2041 (1999).
[CrossRef]

Gannot, I.

M. Ben David, M. Catalogna, J. A. Harrington, V. Krishnan, and I. Gannot, “Theoretical and experimental investigations of metal sulfide dielectric coatings for hollow waveguides,” Opt. Eng. 47, 045008 (2008).
[CrossRef]

N. Croitoru, A. Inberg, M. Ben David, and I. Gannot, “Broad band and low loss mid-IR flexible hollow waveguides,” Opt. Express 12, 1341-1352 (2004).
[CrossRef] [PubMed]

George, R.

Gopal, V.

Harrington, J. A.

Hart, S. D.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibers with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650-653 (2002).
[CrossRef] [PubMed]

Inberg, A.

Ito, K.

Iwai, K.

Joannopoulos, J. D.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibers with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650-653 (2002).
[CrossRef] [PubMed]

Y. Fink, D. J. Ripin, S. Fan, C. Chen, J. D. Joannopoulos, and E. L. Thomas, “Guiding optical light in air using an all-dielectric structure,” J. Lightwave Technol. 17, 2039-2041 (1999).
[CrossRef]

Karagiri, T.

Kawakami, S.

M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. 2, 116-126 (1984).
[CrossRef]

Krishnan, V.

M. Ben David, M. Catalogna, J. A. Harrington, V. Krishnan, and I. Gannot, “Theoretical and experimental investigations of metal sulfide dielectric coatings for hollow waveguides,” Opt. Eng. 47, 045008 (2008).
[CrossRef]

Ma, L.

Matsuura, Y.

Miyagi, M.

Ripin, D. J.

Saito, M.

Shi, Y. W.

Sui, K. R.

Tang, X. L.

Temelkuran, B.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibers with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650-653 (2002).
[CrossRef] [PubMed]

Thomas, E. L.

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, 1999).

Yoshida, T.

Zhu, X. S.

Appl. Opt. (4)

J. Lightwave Technol. (2)

M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. 2, 116-126 (1984).
[CrossRef]

Y. Fink, D. J. Ripin, S. Fan, C. Chen, J. D. Joannopoulos, and E. L. Thomas, “Guiding optical light in air using an all-dielectric structure,” J. Lightwave Technol. 17, 2039-2041 (1999).
[CrossRef]

J. Opt. Soc. Am. A (2)

Nature (1)

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibers with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650-653 (2002).
[CrossRef] [PubMed]

Opt. Eng. (1)

M. Ben David, M. Catalogna, J. A. Harrington, V. Krishnan, and I. Gannot, “Theoretical and experimental investigations of metal sulfide dielectric coatings for hollow waveguides,” Opt. Eng. 47, 045008 (2008).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Other (1)

M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Calculated loss spectra of hollow fiber with single and fifteen dielectric films.

Fig. 2
Fig. 2

Calculated loss spectra of hollow fiber with and without thickness errors for each inner-coating layer.

Fig. 3
Fig. 3

Theoretical loss spectra of Ag–SiO2–AgI–SiO2 hollow fiber with and without surface roughness for each inner-coating layer.

Fig. 4
Fig. 4

Loss spectra of Ag– SiO 2 –AgI– S i O 2 hollow fiber during fabrication: (a) Ag– SiO 2 , (b) Ag–SiO2–Ag, (c) Ag–SiO2–AgI, and (d) Ag–SiO2–AgI–SiO2.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

P ( z ) = 0 θ max P 0 ( θ ) exp [ 1 R ( θ ) 2 T cot θ z ] sin θ d θ ,
M = [ m 11 m 12 m 21 m 22 ] = [ cos ( k 0 n z cos θ ) i p sin ( k 0 n z cos θ ) i p sin ( k 0 n z cos θ ) cos ( k 0 n z cos θ ) ] ,
r = ( m 11 + m 12 ) p l ( m 21 + m 22 p l ) ( m 11 + m 12 ) p l + ( m 21 + m 22 p l ) .
M total = M 1 ( z 1 ) M 2 ( z 2 z 1 ) M n ( z N z N 1 ) ,
AgI : n ( λ ) = 2.0216 + 0.0878 / λ 2 0.0024 / λ 4 ,
SiO 2 : n ( λ ) = 1.42614 + 0.02729 / λ 2 + 0.0001 / λ 4 .
Δ ϕ = 2 k 0 n i σ cos φ i ,
r = r 0 exp [ ( Δ ϕ ) 2 / 2 ] .

Metrics