Abstract

We address the measurement and correction of fan distortion in optical coherence tomography (OCT). This effect arises from the scanning system configuration and prevents one, in general, from obtaining quantitative topographic data from OCT. Computer simulations allowed us to quantify the effect and evaluate its dependence on the scanning mirror separation and design of the collimating lens, as well as to estimate the optimal axial position of that lens to minimize the fan distortion. We also developed a numerical algorithm based on 3-D ray propagation for the correction of the residual fan distortion. The effect was studied experimentally using a custom developed time-domain OCT in a Michelson configuration provided with a confocal channel, and the accuracy of the fan distortion correction algorithm tested on samples of known dimensions (flat surfaces and spherical lenses). With a proper calibration of the system with use of an onfocal channel, this algorithm makes it possible for time-domain OCT devices to be used as topographers.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, J. Wang, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Micron-resolution ranging of cornea anterior chamber by optical reflectometry,” Lasers Surg. Med. 11, 419-425 (1991).
    [CrossRef] [PubMed]
  2. D. Huang, E. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  3. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography--principles and applications,” Rep. Prog. Phys. 66, 239-303 (2003).
    [CrossRef]
  4. J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205-1215 (1999).
    [CrossRef]
  5. B. Grajciar, M. Pircher, C. K. Hitzenberger, O. Findl, and A. F. Fercher, “High sensitive measurement of the human axial eye length in vivo with Fourier domain low coherence interferometry,” Opt. Express 16, 2405-2414 (2008).
    [CrossRef] [PubMed]
  6. M. Brzezinski, Optical Coherence Tomography: Principles and Applications (Academic, 2006).
  7. U. Morgner, F. X. Kärtner, S. H. Cho, Y. Chen, H. A. Haus, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi, “Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser,” Opt. Lett. 24, 411-413 (1999).
    [CrossRef]
  8. C. Lu, M. Tsai, Y. Wang, C. Lee, Y. Kiang, and C. C. Yang, “High-resolution swept-source optical coherence tomography with the frequency-sweeping the broadened spectrum of a fs Cr:forsterite laser,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies (Optical Society of America, 2007), paper JTuA44.
    [PubMed]
  9. A. G. Podoleanu, G. M. Dobre, and D. A. Jackson, “En-face coherence imaging using galvanometer scanner modulation,” Opt. Lett. 23, 147-149 (1998).
    [CrossRef]
  10. R. B. Rosen, M. Hathaway, J. Rogers, J. Pedro, P. Garcia, P. Laissue, G. M. Dobre, and A. G. Podoleanu, “Multidimensional en-face OCT imaging of the retina,” Opt. Express 17, 4112-4133 (2009).
    [CrossRef] [PubMed]
  11. E. Kim, K. Ehrmann, S. Uhlhorn, D. Borja, and J.-M. Parel, “Automated analysis of OCT images of the crystalline lens,” Proc. SPIE 7163, 716313 (2009).
    [CrossRef]
  12. A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49, 1277-1294(2004).
    [CrossRef] [PubMed]
  13. Y. Li, “Laser beam scanning by rotary mirrors. II. Conicsection scan patterns,” Appl. Opt. 34, 6417-6430 (1995).
    [CrossRef] [PubMed]
  14. Y. Li and J. Katz, “Asymmetric distribution of the scanned field of a rotating reflective polygon,” Appl. Opt. 36, 342-352(1997).
    [CrossRef] [PubMed]
  15. G. F. G. Marshall, “Scanning devices and systems,” in Applied Optics and Optical Engineering, R. Kingslake and B. J. Thompson, eds. (Academic, 1980), Vol. 6, pp. 203-262.
  16. Y. Li, “Beam deflection and scanning by two-mirror and two-axis systems of different architectures: a unified approach,” Appl. Opt. 47, 5976-5985 (2008).
    [CrossRef] [PubMed]
  17. J. Xie, S. Huang, Z. Duan, Y. Shi, and S. Wen, “Correction of the image distortion for laser galvanometric scanning system,” Opt. Laser Technol. 37, 305-311 (2005).
    [CrossRef]
  18. M. F. Chen and Y. P. Chen, “Compensating technique of field-distorting error for the CO2 laser galvanometric scanning drilling machines,” Int. J. Mach. Tools Manuf. 47, 1114-1124 (2007).
    [CrossRef]
  19. V. Westphall, A. M. Rollins, S. Radhakrishnan, and J. A. Izatt, “Correction of geometric and refractive image distortions in optical coherence tomography applying Fermat's principle,” Opt. Express 10, 397-404 (2002).
  20. J. I. Montagu, “Galvanometric and resonant scanners,” in Handbook of Optical and Laser Scanning, G. F. Marshall, ed. (Marcel Dekker, 2004), pp. 417-476.
    [CrossRef]
  21. L. A. F. Fernandes and M. M. Oliveira, “Real-time line detection through an improved Hough transform voting scheme,” Pattern Recogn. 41, 299-314 (2008).
    [CrossRef]
  22. A. de Castro, P. Rosales, and S. Marcos, “Tilt and decentration of intraocular leses in vivo from Purkinje and Scheimpflug imaging-a validation study,” J. Cataract Refract. Surg. 33, 418-429 (2007).
    [CrossRef] [PubMed]
  23. M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Opt. Express 17, 14880-14894 (2009).
    [CrossRef] [PubMed]
  24. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with spectral OCT system using a high-speed CMOS camera,” Opt. Express 17, 4842-4858(2009).
    [CrossRef] [PubMed]
  25. T. Zhou, P. Wright, J. Crawford, G. Mckinnon, and Y. Zhang, “MEMS 3-D optical mirror/scanner,” in Proceedings of the 2003 International Conference on MEMS, NANO and Smart Systems (IEEE Computer Society, 2003), pp. 222-226.
  26. Y. Xu, J. Singh, C. S. Premachandran, A. Khairyanto, K. W. S. Chen, N. Chen, C. J. R. Sheppard, and M. Olivo, “Design and development of a 3-D scanning MEMS OCT probe using a novel SiOB package assembly,” J. Micromech. Microeng. 18, 125005 (2008).
    [CrossRef]

2009

2008

Y. Xu, J. Singh, C. S. Premachandran, A. Khairyanto, K. W. S. Chen, N. Chen, C. J. R. Sheppard, and M. Olivo, “Design and development of a 3-D scanning MEMS OCT probe using a novel SiOB package assembly,” J. Micromech. Microeng. 18, 125005 (2008).
[CrossRef]

B. Grajciar, M. Pircher, C. K. Hitzenberger, O. Findl, and A. F. Fercher, “High sensitive measurement of the human axial eye length in vivo with Fourier domain low coherence interferometry,” Opt. Express 16, 2405-2414 (2008).
[CrossRef] [PubMed]

Y. Li, “Beam deflection and scanning by two-mirror and two-axis systems of different architectures: a unified approach,” Appl. Opt. 47, 5976-5985 (2008).
[CrossRef] [PubMed]

L. A. F. Fernandes and M. M. Oliveira, “Real-time line detection through an improved Hough transform voting scheme,” Pattern Recogn. 41, 299-314 (2008).
[CrossRef]

2007

A. de Castro, P. Rosales, and S. Marcos, “Tilt and decentration of intraocular leses in vivo from Purkinje and Scheimpflug imaging-a validation study,” J. Cataract Refract. Surg. 33, 418-429 (2007).
[CrossRef] [PubMed]

M. F. Chen and Y. P. Chen, “Compensating technique of field-distorting error for the CO2 laser galvanometric scanning drilling machines,” Int. J. Mach. Tools Manuf. 47, 1114-1124 (2007).
[CrossRef]

2005

J. Xie, S. Huang, Z. Duan, Y. Shi, and S. Wen, “Correction of the image distortion for laser galvanometric scanning system,” Opt. Laser Technol. 37, 305-311 (2005).
[CrossRef]

2004

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49, 1277-1294(2004).
[CrossRef] [PubMed]

2003

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography--principles and applications,” Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

2002

1999

1998

1997

1995

1991

D. Huang, J. Wang, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Micron-resolution ranging of cornea anterior chamber by optical reflectometry,” Lasers Surg. Med. 11, 419-425 (1991).
[CrossRef] [PubMed]

D. Huang, E. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Angelow, G.

Borja, D.

E. Kim, K. Ehrmann, S. Uhlhorn, D. Borja, and J.-M. Parel, “Automated analysis of OCT images of the crystalline lens,” Proc. SPIE 7163, 716313 (2009).
[CrossRef]

Brzezinski, M.

M. Brzezinski, Optical Coherence Tomography: Principles and Applications (Academic, 2006).

Chang, W.

D. Huang, E. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Charalambous, I.

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49, 1277-1294(2004).
[CrossRef] [PubMed]

Chen, K. W. S.

Y. Xu, J. Singh, C. S. Premachandran, A. Khairyanto, K. W. S. Chen, N. Chen, C. J. R. Sheppard, and M. Olivo, “Design and development of a 3-D scanning MEMS OCT probe using a novel SiOB package assembly,” J. Micromech. Microeng. 18, 125005 (2008).
[CrossRef]

Chen, M. F.

M. F. Chen and Y. P. Chen, “Compensating technique of field-distorting error for the CO2 laser galvanometric scanning drilling machines,” Int. J. Mach. Tools Manuf. 47, 1114-1124 (2007).
[CrossRef]

Chen, N.

Y. Xu, J. Singh, C. S. Premachandran, A. Khairyanto, K. W. S. Chen, N. Chen, C. J. R. Sheppard, and M. Olivo, “Design and development of a 3-D scanning MEMS OCT probe using a novel SiOB package assembly,” J. Micromech. Microeng. 18, 125005 (2008).
[CrossRef]

Chen, Y.

Chen, Y. P.

M. F. Chen and Y. P. Chen, “Compensating technique of field-distorting error for the CO2 laser galvanometric scanning drilling machines,” Int. J. Mach. Tools Manuf. 47, 1114-1124 (2007).
[CrossRef]

Cho, S. H.

Crawford, J.

T. Zhou, P. Wright, J. Crawford, G. Mckinnon, and Y. Zhang, “MEMS 3-D optical mirror/scanner,” in Proceedings of the 2003 International Conference on MEMS, NANO and Smart Systems (IEEE Computer Society, 2003), pp. 222-226.

de Castro, A.

A. de Castro, P. Rosales, and S. Marcos, “Tilt and decentration of intraocular leses in vivo from Purkinje and Scheimpflug imaging-a validation study,” J. Cataract Refract. Surg. 33, 418-429 (2007).
[CrossRef] [PubMed]

Dobre, G. M.

Dogariu, A.

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49, 1277-1294(2004).
[CrossRef] [PubMed]

Drexler, W.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography--principles and applications,” Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

Duan, Z.

J. Xie, S. Huang, Z. Duan, Y. Shi, and S. Wen, “Correction of the image distortion for laser galvanometric scanning system,” Opt. Laser Technol. 37, 305-311 (2005).
[CrossRef]

Ehrmann, K.

E. Kim, K. Ehrmann, S. Uhlhorn, D. Borja, and J.-M. Parel, “Automated analysis of OCT images of the crystalline lens,” Proc. SPIE 7163, 716313 (2009).
[CrossRef]

Fercher, A. F.

Fernandes, L. A. F.

L. A. F. Fernandes and M. M. Oliveira, “Real-time line detection through an improved Hough transform voting scheme,” Pattern Recogn. 41, 299-314 (2008).
[CrossRef]

Findl, O.

Flotte, T.

D. Huang, E. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

U. Morgner, F. X. Kärtner, S. H. Cho, Y. Chen, H. A. Haus, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi, “Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser,” Opt. Lett. 24, 411-413 (1999).
[CrossRef]

D. Huang, E. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

D. Huang, J. Wang, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Micron-resolution ranging of cornea anterior chamber by optical reflectometry,” Lasers Surg. Med. 11, 419-425 (1991).
[CrossRef] [PubMed]

Garcia, P.

Gora, M.

Gorczynska, I.

Grajciar, B.

Gregory, K.

D. Huang, E. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Grulkowski,

Hathaway, M.

Haus, H. A.

Hee, M. R.

D. Huang, E. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Hitzenberger, C. K.

Huang, D.

D. Huang, E. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

D. Huang, J. Wang, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Micron-resolution ranging of cornea anterior chamber by optical reflectometry,” Lasers Surg. Med. 11, 419-425 (1991).
[CrossRef] [PubMed]

Huang, S.

J. Xie, S. Huang, Z. Duan, Y. Shi, and S. Wen, “Correction of the image distortion for laser galvanometric scanning system,” Opt. Laser Technol. 37, 305-311 (2005).
[CrossRef]

Huber, R.

Ippen, E. P.

Izatt, J. A.

Jackson, D. A.

Kaluzny, B. J.

Karnowski, K.

Kärtner, F. X.

Katz, J.

Khairyanto, A.

Y. Xu, J. Singh, C. S. Premachandran, A. Khairyanto, K. W. S. Chen, N. Chen, C. J. R. Sheppard, and M. Olivo, “Design and development of a 3-D scanning MEMS OCT probe using a novel SiOB package assembly,” J. Micromech. Microeng. 18, 125005 (2008).
[CrossRef]

Kiang, Y.

C. Lu, M. Tsai, Y. Wang, C. Lee, Y. Kiang, and C. C. Yang, “High-resolution swept-source optical coherence tomography with the frequency-sweeping the broadened spectrum of a fs Cr:forsterite laser,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies (Optical Society of America, 2007), paper JTuA44.
[PubMed]

Kim, E.

E. Kim, K. Ehrmann, S. Uhlhorn, D. Borja, and J.-M. Parel, “Automated analysis of OCT images of the crystalline lens,” Proc. SPIE 7163, 716313 (2009).
[CrossRef]

Kowalczyk, A.

Laissue, P.

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography--principles and applications,” Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

Lee, C.

C. Lu, M. Tsai, Y. Wang, C. Lee, Y. Kiang, and C. C. Yang, “High-resolution swept-source optical coherence tomography with the frequency-sweeping the broadened spectrum of a fs Cr:forsterite laser,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies (Optical Society of America, 2007), paper JTuA44.
[PubMed]

Li, Y.

Lin, C. P.

D. Huang, J. Wang, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Micron-resolution ranging of cornea anterior chamber by optical reflectometry,” Lasers Surg. Med. 11, 419-425 (1991).
[CrossRef] [PubMed]

D. Huang, E. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Lu, C.

C. Lu, M. Tsai, Y. Wang, C. Lee, Y. Kiang, and C. C. Yang, “High-resolution swept-source optical coherence tomography with the frequency-sweeping the broadened spectrum of a fs Cr:forsterite laser,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies (Optical Society of America, 2007), paper JTuA44.
[PubMed]

Marcos, S.

Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with spectral OCT system using a high-speed CMOS camera,” Opt. Express 17, 4842-4858(2009).
[CrossRef] [PubMed]

A. de Castro, P. Rosales, and S. Marcos, “Tilt and decentration of intraocular leses in vivo from Purkinje and Scheimpflug imaging-a validation study,” J. Cataract Refract. Surg. 33, 418-429 (2007).
[CrossRef] [PubMed]

Marshall, G. F. G.

G. F. G. Marshall, “Scanning devices and systems,” in Applied Optics and Optical Engineering, R. Kingslake and B. J. Thompson, eds. (Academic, 1980), Vol. 6, pp. 203-262.

Mckinnon, G.

T. Zhou, P. Wright, J. Crawford, G. Mckinnon, and Y. Zhang, “MEMS 3-D optical mirror/scanner,” in Proceedings of the 2003 International Conference on MEMS, NANO and Smart Systems (IEEE Computer Society, 2003), pp. 222-226.

Montagu, J. I.

J. I. Montagu, “Galvanometric and resonant scanners,” in Handbook of Optical and Laser Scanning, G. F. Marshall, ed. (Marcel Dekker, 2004), pp. 417-476.
[CrossRef]

Morgner, U.

Oliveira, M. M.

L. A. F. Fernandes and M. M. Oliveira, “Real-time line detection through an improved Hough transform voting scheme,” Pattern Recogn. 41, 299-314 (2008).
[CrossRef]

Olivo, M.

Y. Xu, J. Singh, C. S. Premachandran, A. Khairyanto, K. W. S. Chen, N. Chen, C. J. R. Sheppard, and M. Olivo, “Design and development of a 3-D scanning MEMS OCT probe using a novel SiOB package assembly,” J. Micromech. Microeng. 18, 125005 (2008).
[CrossRef]

Parel, J.-M.

E. Kim, K. Ehrmann, S. Uhlhorn, D. Borja, and J.-M. Parel, “Automated analysis of OCT images of the crystalline lens,” Proc. SPIE 7163, 716313 (2009).
[CrossRef]

Pedro, J.

Pircher, M.

Plesea, L.

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49, 1277-1294(2004).
[CrossRef] [PubMed]

Podoleanu, A.

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49, 1277-1294(2004).
[CrossRef] [PubMed]

Podoleanu, A. G.

Premachandran, C. S.

Y. Xu, J. Singh, C. S. Premachandran, A. Khairyanto, K. W. S. Chen, N. Chen, C. J. R. Sheppard, and M. Olivo, “Design and development of a 3-D scanning MEMS OCT probe using a novel SiOB package assembly,” J. Micromech. Microeng. 18, 125005 (2008).
[CrossRef]

Puliafito, C. A.

D. Huang, J. Wang, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Micron-resolution ranging of cornea anterior chamber by optical reflectometry,” Lasers Surg. Med. 11, 419-425 (1991).
[CrossRef] [PubMed]

D. Huang, E. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Radhakrishnan, S.

Rogers, J.

Rollins, A. M.

Rosales, P.

A. de Castro, P. Rosales, and S. Marcos, “Tilt and decentration of intraocular leses in vivo from Purkinje and Scheimpflug imaging-a validation study,” J. Cataract Refract. Surg. 33, 418-429 (2007).
[CrossRef] [PubMed]

Rosen, R.

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49, 1277-1294(2004).
[CrossRef] [PubMed]

Rosen, R. B.

Scheuer, V.

Schmitt, J. M.

J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205-1215 (1999).
[CrossRef]

Schuman, J. S.

D. Huang, E. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Sheppard, C. J. R.

Y. Xu, J. Singh, C. S. Premachandran, A. Khairyanto, K. W. S. Chen, N. Chen, C. J. R. Sheppard, and M. Olivo, “Design and development of a 3-D scanning MEMS OCT probe using a novel SiOB package assembly,” J. Micromech. Microeng. 18, 125005 (2008).
[CrossRef]

Shi, Y.

J. Xie, S. Huang, Z. Duan, Y. Shi, and S. Wen, “Correction of the image distortion for laser galvanometric scanning system,” Opt. Laser Technol. 37, 305-311 (2005).
[CrossRef]

Singh, J.

Y. Xu, J. Singh, C. S. Premachandran, A. Khairyanto, K. W. S. Chen, N. Chen, C. J. R. Sheppard, and M. Olivo, “Design and development of a 3-D scanning MEMS OCT probe using a novel SiOB package assembly,” J. Micromech. Microeng. 18, 125005 (2008).
[CrossRef]

Stinson, W. G.

D. Huang, E. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Swanson, E.

D. Huang, E. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Szkulmowski, M.

Szlag, D.

Tsai, M.

C. Lu, M. Tsai, Y. Wang, C. Lee, Y. Kiang, and C. C. Yang, “High-resolution swept-source optical coherence tomography with the frequency-sweeping the broadened spectrum of a fs Cr:forsterite laser,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies (Optical Society of America, 2007), paper JTuA44.
[PubMed]

Tschudi, T.

Uhlhorn, S.

E. Kim, K. Ehrmann, S. Uhlhorn, D. Borja, and J.-M. Parel, “Automated analysis of OCT images of the crystalline lens,” Proc. SPIE 7163, 716313 (2009).
[CrossRef]

Wang, J.

D. Huang, J. Wang, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Micron-resolution ranging of cornea anterior chamber by optical reflectometry,” Lasers Surg. Med. 11, 419-425 (1991).
[CrossRef] [PubMed]

Wang, Y.

C. Lu, M. Tsai, Y. Wang, C. Lee, Y. Kiang, and C. C. Yang, “High-resolution swept-source optical coherence tomography with the frequency-sweeping the broadened spectrum of a fs Cr:forsterite laser,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies (Optical Society of America, 2007), paper JTuA44.
[PubMed]

Wen, S.

J. Xie, S. Huang, Z. Duan, Y. Shi, and S. Wen, “Correction of the image distortion for laser galvanometric scanning system,” Opt. Laser Technol. 37, 305-311 (2005).
[CrossRef]

Westphall, V.

Wojtkowski, M.

Wright, P.

T. Zhou, P. Wright, J. Crawford, G. Mckinnon, and Y. Zhang, “MEMS 3-D optical mirror/scanner,” in Proceedings of the 2003 International Conference on MEMS, NANO and Smart Systems (IEEE Computer Society, 2003), pp. 222-226.

Xie, J.

J. Xie, S. Huang, Z. Duan, Y. Shi, and S. Wen, “Correction of the image distortion for laser galvanometric scanning system,” Opt. Laser Technol. 37, 305-311 (2005).
[CrossRef]

Xu, Y.

Y. Xu, J. Singh, C. S. Premachandran, A. Khairyanto, K. W. S. Chen, N. Chen, C. J. R. Sheppard, and M. Olivo, “Design and development of a 3-D scanning MEMS OCT probe using a novel SiOB package assembly,” J. Micromech. Microeng. 18, 125005 (2008).
[CrossRef]

Yang, C. C.

C. Lu, M. Tsai, Y. Wang, C. Lee, Y. Kiang, and C. C. Yang, “High-resolution swept-source optical coherence tomography with the frequency-sweeping the broadened spectrum of a fs Cr:forsterite laser,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies (Optical Society of America, 2007), paper JTuA44.
[PubMed]

Zhang, Y.

T. Zhou, P. Wright, J. Crawford, G. Mckinnon, and Y. Zhang, “MEMS 3-D optical mirror/scanner,” in Proceedings of the 2003 International Conference on MEMS, NANO and Smart Systems (IEEE Computer Society, 2003), pp. 222-226.

Zhou, T.

T. Zhou, P. Wright, J. Crawford, G. Mckinnon, and Y. Zhang, “MEMS 3-D optical mirror/scanner,” in Proceedings of the 2003 International Conference on MEMS, NANO and Smart Systems (IEEE Computer Society, 2003), pp. 222-226.

Appl. Opt.

IEEE J. Sel. Top. Quantum Electron.

J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205-1215 (1999).
[CrossRef]

Int. J. Mach. Tools Manuf.

M. F. Chen and Y. P. Chen, “Compensating technique of field-distorting error for the CO2 laser galvanometric scanning drilling machines,” Int. J. Mach. Tools Manuf. 47, 1114-1124 (2007).
[CrossRef]

J. Cataract Refract. Surg.

A. de Castro, P. Rosales, and S. Marcos, “Tilt and decentration of intraocular leses in vivo from Purkinje and Scheimpflug imaging-a validation study,” J. Cataract Refract. Surg. 33, 418-429 (2007).
[CrossRef] [PubMed]

J. Micromech. Microeng.

Y. Xu, J. Singh, C. S. Premachandran, A. Khairyanto, K. W. S. Chen, N. Chen, C. J. R. Sheppard, and M. Olivo, “Design and development of a 3-D scanning MEMS OCT probe using a novel SiOB package assembly,” J. Micromech. Microeng. 18, 125005 (2008).
[CrossRef]

Lasers Surg. Med.

D. Huang, J. Wang, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Micron-resolution ranging of cornea anterior chamber by optical reflectometry,” Lasers Surg. Med. 11, 419-425 (1991).
[CrossRef] [PubMed]

Opt. Express

Opt. Laser Technol.

J. Xie, S. Huang, Z. Duan, Y. Shi, and S. Wen, “Correction of the image distortion for laser galvanometric scanning system,” Opt. Laser Technol. 37, 305-311 (2005).
[CrossRef]

Opt. Lett.

Pattern Recogn.

L. A. F. Fernandes and M. M. Oliveira, “Real-time line detection through an improved Hough transform voting scheme,” Pattern Recogn. 41, 299-314 (2008).
[CrossRef]

Phys. Med. Biol.

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49, 1277-1294(2004).
[CrossRef] [PubMed]

Proc. SPIE

E. Kim, K. Ehrmann, S. Uhlhorn, D. Borja, and J.-M. Parel, “Automated analysis of OCT images of the crystalline lens,” Proc. SPIE 7163, 716313 (2009).
[CrossRef]

Rep. Prog. Phys.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography--principles and applications,” Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

Science

D. Huang, E. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Other

M. Brzezinski, Optical Coherence Tomography: Principles and Applications (Academic, 2006).

C. Lu, M. Tsai, Y. Wang, C. Lee, Y. Kiang, and C. C. Yang, “High-resolution swept-source optical coherence tomography with the frequency-sweeping the broadened spectrum of a fs Cr:forsterite laser,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies (Optical Society of America, 2007), paper JTuA44.
[PubMed]

G. F. G. Marshall, “Scanning devices and systems,” in Applied Optics and Optical Engineering, R. Kingslake and B. J. Thompson, eds. (Academic, 1980), Vol. 6, pp. 203-262.

J. I. Montagu, “Galvanometric and resonant scanners,” in Handbook of Optical and Laser Scanning, G. F. Marshall, ed. (Marcel Dekker, 2004), pp. 417-476.
[CrossRef]

T. Zhou, P. Wright, J. Crawford, G. Mckinnon, and Y. Zhang, “MEMS 3-D optical mirror/scanner,” in Proceedings of the 2003 International Conference on MEMS, NANO and Smart Systems (IEEE Computer Society, 2003), pp. 222-226.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Separation of mirrors in the scanner (a) results in a different beam deflections after being refracted by a collimating lens (b) in an OCT setup.

Fig. 2
Fig. 2

OCT images of a flat optical surface (mirror) captured in two perpendicular directions: (a) vertical and (b) horizontal.

Fig. 3
Fig. 3

Steps of the calibration procedure using the confocal channel: (a) original confocal image, (b) grid line detection (points) and their approximation by parabolas (lines), (c) detection of the grid nodes (intersection points of the parabolas).

Fig. 4
Fig. 4

Point P k l represented in angular (dashed lines) and Cartesian (solid lines) systems of coordinates. The origin of both systems is at the same point ( 0 , 0 ) —the point not affected by distortion. Point N m n is the closest node to point P k l .

Fig. 5
Fig. 5

(a) Capture of a series of confocal images at different axial grid positions for the purposes of system calibration. (b) Schematic explanation of the correction procedure. Point P i is obtained on the OCT and expressed in angular system of coordinates ( θ , φ , L ) , where θ and φ are the angles of the scanner, and L is the distance from the reference point O along the ray given by the propagation vector T. Point P i is the point after correction in Cartesian coordinates.

Fig. 6
Fig. 6

Results of simulations of the fan distortion: (a) distortion as a function of the lens position and separation between scanner mirrors, (b) distortion as a function of the focal length of the collimating lens (in its optimal position), and (c) fan distortion for the architecture used in the experiment.

Fig. 7
Fig. 7

Optimal lens position as a function of lens aperture radius.

Fig. 8
Fig. 8

Comparison of topographies of a flat surface obtained by means of OCT before and after numerical correction. The shape of the uncorrected surface is given by simple conversion from angular to Cartesian coordinates.

Tables (1)

Tables Icon

Table 1 Radii of Curvature of Tested Surfaces as Measured with Noncontact Profilometry and OCT (Before and After Distortion Correction)

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

N i j ( x , y ) = { x i = 0 θ i 1 + f ( θ ) d θ y i = 0 φ j 1 + f ( φ ) d φ ,
P k l ( x , y ) = { x k = θ k Θ m X m y l = φ l Φ n Y n ,
R i = O i + L i T ^ i ,
{ x i = x 0 i + L i T x i y i = y 0 i + L i T y i ,
z i = L i 1 ( T x i ) 2 + ( T y i ) 2 .
P i = O i + L i T ^ i .

Metrics