Abstract

Mode stability is an important performance characteristic of external cavity diode lasers (ECDLs). It has been well established that the continuous mode-hop-free tuning range of a grating-feedback ECDL can be optimized by rotating the grating about a specific pivot location. We show that similar results can be obtained for other more convenient pivot locations by choosing instead the cavity length and grating location. The relative importance of the temperature stability of the diode and of the external cavity is also evaluated. We show that mechanically simple ECDL designs, using mostly standard components, can readily achieve a 35GHz mode-hop-free tuning range at 780nm.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. W. Fleming and A. Mooradian, “Spectral characteristics of external-cavity controlled semiconductor lasers,” IEEE J. Quantum Electron. 17, 44-59 (1981).
    [CrossRef]
  2. R. Wyatt and W. J. Devlin, “10 kHz linewidth 1.5 μm InGaAsP external cavity laser with 55 nm tuning range,” Electron. Lett. 19, 110-112 (1983).
    [CrossRef]
  3. C. E. Wieman and L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1-20 (1991).
    [CrossRef]
  4. K. B. MacAdam, A. Steinbach, and C. Wieman, “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098-1111 (1992).
    [CrossRef]
  5. K. G. Libbrecht, R. A. Boyd, P. A. Willems, T. L. Gustavson, and D. K. Kim, “Teaching physics with 670 nm diode lasers-construction of stabilized lasers and lithium cells,” Am. J. Phys. 63, 729-737 (1995).
    [CrossRef]
  6. C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B 35, 5141-5151 (2002).
    [CrossRef]
  7. L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541-549 (1995).
    [CrossRef]
  8. A. S. Arnold, J. S. Wilson, and M. G. Boshier, “A simple extended-cavity diode laser,” Rev. Sci. Instrum. 69, 1236-1239(1998).
    [CrossRef]
  9. T. Hof, D. Fick, and H. J. Jänsch, “Application of diode lasers as a spectroscopic tool at 670 nm,” Opt. Commun. 124, 283-286 (1996).
    [CrossRef]
  10. K. C. Harvey and C. J. Myatt, “External-cavity diode laser using a grazing-incidence diffraction grating,” Opt. Lett. 16, 910-912 (1991).
    [CrossRef] [PubMed]
  11. S. Lecomte, E. Fretel, G. Mileti, and P. Thomann, “Self-aligned extended-cavity diode laser stabilized by the Zeeman effect on the cesium D2 line,” Appl. Opt. 39, 1426-1429(2000).
    [CrossRef]
  12. W. R. Trutna, Jr., and L. F. Stokes, “Continuously tuned external cavity semiconductor laser,” J. Lightwave Technol. 11, 1279-1286 (1993).
    [CrossRef]
  13. C. J. Hawthorn, K. P. Weber, and R. E. Scholten, “Littrow configuration tunable external cavity diode laser with fixed direction output beam,” Rev. Sci. Instrum. 72, 4477-4479(2001).
    [CrossRef]
  14. V. V. Vassiliev, S. Zibrov, and V. Velichansky, “Compact extended-cavity diode laser for atomic spectroscopy and metrology,” Rev. Sci. Instrum. 77, 013102 (2006).
    [CrossRef]
  15. M. Merimaa, H. Talvitie, P. Laakkonen, M. Kuittinen, I. Tittonen, and E. Ikonen, “Compact external-cavity diode laser with a novel transmission geometry,” Opt. Commun. 174, 175-180 (2000).
    [CrossRef]
  16. T. Hieta, M. Vainio, C. Moser, and E. Ikonen, “External-cavity lasers based on a volume holographic grating at normal incidence for spectroscopy in the visible range,” Opt. Commun. 282, 3119-3123 (2009).
    [CrossRef]
  17. P. Zorabedian and W. R. Trutna, Jr., “Interference-filter-tuned, alignment-stabilized, semiconductor external-cavity laser,” Opt. Lett. 13, 826-828 (1988).
    [CrossRef] [PubMed]
  18. X. Baillard, A. Gauguet, S. Bize, P. Lemonde, P. Laurent, A. Clairon, and P. Rosenbusch, “Interference-filter-stabilized external-cavity diode lasers,” Opt. Commun. 266, 609-613(2006).
    [CrossRef]
  19. M. Gilowski, C. Schuberta, M. Zaisera, W. Herra, T. Wübbenaa, T. Wendricha, T. Müllera, E. M. Rasela, and W. Ertmer, “Narrow bandwidth interference filter-stabilized diode laser systems for the manipulation of neutral atoms,” Opt. Commun. 280, 443-447 (2007).
    [CrossRef]
  20. P. Zorabedian, “Tunable external-cavity semiconductor lasers,” in Tunable Lasers Handbook, F. J. Duarte, ed. (Academic, 1995), pp. 349-442.
    [CrossRef]
  21. G. Galbács, “A review of applications and experimental improvements related to diode laser atomic spectroscopy,” Appl. Spectrosc. Rev. 41, 259-303 (2006).
    [CrossRef]
  22. B. Mroziewicz, “External cavity wavelength tunable semiconductor lasers: a review,” Opto-Electron. Rev. 16, 347-366(2008).
    [CrossRef]
  23. P. McNicholl and H. J. Metcalf, “Synchronous cavity mode and feedback wavelength scanning in dye laser oscillators with gratings.,” Appl. Opt. 24, 2757-2761 (1985).
    [CrossRef] [PubMed]
  24. L. Nilse, J. J. Davies, and C. S. Adams, “Synchronous tuning of extended cavity diode lasers: the case for an optimum pivot point,” Appl. Opt. 38, 548-553 (1999).
    [CrossRef]
  25. M. de Labachelerie and G. Passedat, “Mode-hop suppression of Littrow grating-tuned lasers,” Appl. Opt. 32, 269-274 (1993).
    [CrossRef] [PubMed]
  26. M. de Labachelerie, H. Sasada, and G. Passedat, “Mode-hop suppression of Littrow grating-tuned lasers: erratum,” Appl. Opt. 33, 3817-3819 (1994).
    [CrossRef] [PubMed]
  27. We used a Thorlabs LT230P-B collimation tube, Newport Ultima and Fine-Adjustment Earth-series kinematic mounts, Spectraphysics 33001FL02-330H gold-coated holographic grating, Melcor CP1.4-71-045L TEC, Tokin AE0203D04 piezoelectric actuator, Sanyo DL-7140-201 diode, High Finesse WS-6 Fizeau wavemeter, and a MOGLabs DLC-202 ECDL controller. Note: certain commercial equipment, instruments, or materials are identified in this paper in order to adequately specify the experimental procedure. Such identification does not imply recommendation or endorsement, nor does it imply that the materials or equipment are necessarily the best available for the purpose.
  28. C. J. Myatt, N. R. Newbury, and C. E. Wieman, “Simplified atom trap by using direct microwave modulation of a diode laser,” Opt. Lett. 18, 649-651 (1993).
    [CrossRef] [PubMed]
  29. P. Feng and T. Walker, “Inexpensive diode laser microwave modulation for atom trapping,” Am. J. Phys. 63, 905-908(1995).
    [CrossRef]
  30. J. Ringot, Y. Lecoq, J. C. Garreau, and P. Szriftgiser, “Generation of phase-coherent laser beams for Raman spectroscopy and cooling by direct current modulation of a diode laser,” Eur. Phys. J. D 7, 285-288 (1999).
    [CrossRef]
  31. R. Kowalski, S. Root, S. D. Gensemer, and P. L. Gould, “A frequency-modulated injection-locked diode lsaer for two-frequency generation,” Rev. Sci. Instrum. 72, 2532-2534 (2001).
    [CrossRef]
  32. A. Waxman, M. Givon, G. Aviv, D. Groswasser, and R. Folman, “Modulation enhancement of a diode laser in an external cavity,” Appl. Phys. B 95, 301-305 (2009).
    [CrossRef]
  33. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1993), pp. 402-405.
  34. T. Nayuki, T. Fujii, K. Nemoto, M. Kozuma, M. Kourogi, and M. Ohtsu, “Continuous wavelength sweep of external cavity laser diode without antireflection coating on output facet,” Opt. Rev. 5, 267-270 (1998).
    [CrossRef]
  35. C. Petridis, I. D. Lindsay, D. J. M. Stothard, and M. Ebrahimzadeh, “Mode-hop-free tuning over 80 GHz of an extended cavity diode laser without antireflection coating,” Rev. Sci. Instrum. 72, 3811-3815 (2001).
    [CrossRef]
  36. J. Hult, I. S. Burns, and C. F. Kaminski, “Wide-bandwidth mode-hop-free tuning of extended-cavity GaN diode lasers,” Appl. Opt. 44, 3675-3685 (2005).
    [CrossRef] [PubMed]
  37. H. Talvitie, A. Pietiläinen, H. Ludvigsen, and E. Ikonen, “Passive frequency and intensity stabilization of extended-cavity diode lasers,” Rev. Sci. Instrum. 68, 1-7 (1997).
    [CrossRef]

2009 (2)

T. Hieta, M. Vainio, C. Moser, and E. Ikonen, “External-cavity lasers based on a volume holographic grating at normal incidence for spectroscopy in the visible range,” Opt. Commun. 282, 3119-3123 (2009).
[CrossRef]

A. Waxman, M. Givon, G. Aviv, D. Groswasser, and R. Folman, “Modulation enhancement of a diode laser in an external cavity,” Appl. Phys. B 95, 301-305 (2009).
[CrossRef]

2008 (1)

B. Mroziewicz, “External cavity wavelength tunable semiconductor lasers: a review,” Opto-Electron. Rev. 16, 347-366(2008).
[CrossRef]

2007 (1)

M. Gilowski, C. Schuberta, M. Zaisera, W. Herra, T. Wübbenaa, T. Wendricha, T. Müllera, E. M. Rasela, and W. Ertmer, “Narrow bandwidth interference filter-stabilized diode laser systems for the manipulation of neutral atoms,” Opt. Commun. 280, 443-447 (2007).
[CrossRef]

2006 (3)

G. Galbács, “A review of applications and experimental improvements related to diode laser atomic spectroscopy,” Appl. Spectrosc. Rev. 41, 259-303 (2006).
[CrossRef]

X. Baillard, A. Gauguet, S. Bize, P. Lemonde, P. Laurent, A. Clairon, and P. Rosenbusch, “Interference-filter-stabilized external-cavity diode lasers,” Opt. Commun. 266, 609-613(2006).
[CrossRef]

V. V. Vassiliev, S. Zibrov, and V. Velichansky, “Compact extended-cavity diode laser for atomic spectroscopy and metrology,” Rev. Sci. Instrum. 77, 013102 (2006).
[CrossRef]

2005 (1)

2002 (1)

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B 35, 5141-5151 (2002).
[CrossRef]

2001 (3)

C. J. Hawthorn, K. P. Weber, and R. E. Scholten, “Littrow configuration tunable external cavity diode laser with fixed direction output beam,” Rev. Sci. Instrum. 72, 4477-4479(2001).
[CrossRef]

R. Kowalski, S. Root, S. D. Gensemer, and P. L. Gould, “A frequency-modulated injection-locked diode lsaer for two-frequency generation,” Rev. Sci. Instrum. 72, 2532-2534 (2001).
[CrossRef]

C. Petridis, I. D. Lindsay, D. J. M. Stothard, and M. Ebrahimzadeh, “Mode-hop-free tuning over 80 GHz of an extended cavity diode laser without antireflection coating,” Rev. Sci. Instrum. 72, 3811-3815 (2001).
[CrossRef]

2000 (2)

S. Lecomte, E. Fretel, G. Mileti, and P. Thomann, “Self-aligned extended-cavity diode laser stabilized by the Zeeman effect on the cesium D2 line,” Appl. Opt. 39, 1426-1429(2000).
[CrossRef]

M. Merimaa, H. Talvitie, P. Laakkonen, M. Kuittinen, I. Tittonen, and E. Ikonen, “Compact external-cavity diode laser with a novel transmission geometry,” Opt. Commun. 174, 175-180 (2000).
[CrossRef]

1999 (2)

L. Nilse, J. J. Davies, and C. S. Adams, “Synchronous tuning of extended cavity diode lasers: the case for an optimum pivot point,” Appl. Opt. 38, 548-553 (1999).
[CrossRef]

J. Ringot, Y. Lecoq, J. C. Garreau, and P. Szriftgiser, “Generation of phase-coherent laser beams for Raman spectroscopy and cooling by direct current modulation of a diode laser,” Eur. Phys. J. D 7, 285-288 (1999).
[CrossRef]

1998 (2)

T. Nayuki, T. Fujii, K. Nemoto, M. Kozuma, M. Kourogi, and M. Ohtsu, “Continuous wavelength sweep of external cavity laser diode without antireflection coating on output facet,” Opt. Rev. 5, 267-270 (1998).
[CrossRef]

A. S. Arnold, J. S. Wilson, and M. G. Boshier, “A simple extended-cavity diode laser,” Rev. Sci. Instrum. 69, 1236-1239(1998).
[CrossRef]

1997 (1)

H. Talvitie, A. Pietiläinen, H. Ludvigsen, and E. Ikonen, “Passive frequency and intensity stabilization of extended-cavity diode lasers,” Rev. Sci. Instrum. 68, 1-7 (1997).
[CrossRef]

1996 (1)

T. Hof, D. Fick, and H. J. Jänsch, “Application of diode lasers as a spectroscopic tool at 670 nm,” Opt. Commun. 124, 283-286 (1996).
[CrossRef]

1995 (3)

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541-549 (1995).
[CrossRef]

K. G. Libbrecht, R. A. Boyd, P. A. Willems, T. L. Gustavson, and D. K. Kim, “Teaching physics with 670 nm diode lasers-construction of stabilized lasers and lithium cells,” Am. J. Phys. 63, 729-737 (1995).
[CrossRef]

P. Feng and T. Walker, “Inexpensive diode laser microwave modulation for atom trapping,” Am. J. Phys. 63, 905-908(1995).
[CrossRef]

1994 (1)

1993 (3)

1992 (1)

K. B. MacAdam, A. Steinbach, and C. Wieman, “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098-1111 (1992).
[CrossRef]

1991 (2)

1988 (1)

1985 (1)

1983 (1)

R. Wyatt and W. J. Devlin, “10 kHz linewidth 1.5 μm InGaAsP external cavity laser with 55 nm tuning range,” Electron. Lett. 19, 110-112 (1983).
[CrossRef]

1981 (1)

M. W. Fleming and A. Mooradian, “Spectral characteristics of external-cavity controlled semiconductor lasers,” IEEE J. Quantum Electron. 17, 44-59 (1981).
[CrossRef]

Adams, C. S.

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B 35, 5141-5151 (2002).
[CrossRef]

L. Nilse, J. J. Davies, and C. S. Adams, “Synchronous tuning of extended cavity diode lasers: the case for an optimum pivot point,” Appl. Opt. 38, 548-553 (1999).
[CrossRef]

Arnold, A. S.

A. S. Arnold, J. S. Wilson, and M. G. Boshier, “A simple extended-cavity diode laser,” Rev. Sci. Instrum. 69, 1236-1239(1998).
[CrossRef]

Aviv, G.

A. Waxman, M. Givon, G. Aviv, D. Groswasser, and R. Folman, “Modulation enhancement of a diode laser in an external cavity,” Appl. Phys. B 95, 301-305 (2009).
[CrossRef]

Baillard, X.

X. Baillard, A. Gauguet, S. Bize, P. Lemonde, P. Laurent, A. Clairon, and P. Rosenbusch, “Interference-filter-stabilized external-cavity diode lasers,” Opt. Commun. 266, 609-613(2006).
[CrossRef]

Bize, S.

X. Baillard, A. Gauguet, S. Bize, P. Lemonde, P. Laurent, A. Clairon, and P. Rosenbusch, “Interference-filter-stabilized external-cavity diode lasers,” Opt. Commun. 266, 609-613(2006).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1993), pp. 402-405.

Boshier, M. G.

A. S. Arnold, J. S. Wilson, and M. G. Boshier, “A simple extended-cavity diode laser,” Rev. Sci. Instrum. 69, 1236-1239(1998).
[CrossRef]

Boyd, R. A.

K. G. Libbrecht, R. A. Boyd, P. A. Willems, T. L. Gustavson, and D. K. Kim, “Teaching physics with 670 nm diode lasers-construction of stabilized lasers and lithium cells,” Am. J. Phys. 63, 729-737 (1995).
[CrossRef]

Burns, I. S.

Clairon, A.

X. Baillard, A. Gauguet, S. Bize, P. Lemonde, P. Laurent, A. Clairon, and P. Rosenbusch, “Interference-filter-stabilized external-cavity diode lasers,” Opt. Commun. 266, 609-613(2006).
[CrossRef]

Cox, S. G.

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B 35, 5141-5151 (2002).
[CrossRef]

Davies, J. J.

de Labachelerie, M.

Devlin, W. J.

R. Wyatt and W. J. Devlin, “10 kHz linewidth 1.5 μm InGaAsP external cavity laser with 55 nm tuning range,” Electron. Lett. 19, 110-112 (1983).
[CrossRef]

Ebrahimzadeh, M.

C. Petridis, I. D. Lindsay, D. J. M. Stothard, and M. Ebrahimzadeh, “Mode-hop-free tuning over 80 GHz of an extended cavity diode laser without antireflection coating,” Rev. Sci. Instrum. 72, 3811-3815 (2001).
[CrossRef]

Ertmer, W.

M. Gilowski, C. Schuberta, M. Zaisera, W. Herra, T. Wübbenaa, T. Wendricha, T. Müllera, E. M. Rasela, and W. Ertmer, “Narrow bandwidth interference filter-stabilized diode laser systems for the manipulation of neutral atoms,” Opt. Commun. 280, 443-447 (2007).
[CrossRef]

Esslinger, T.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541-549 (1995).
[CrossRef]

Feng, P.

P. Feng and T. Walker, “Inexpensive diode laser microwave modulation for atom trapping,” Am. J. Phys. 63, 905-908(1995).
[CrossRef]

Fick, D.

T. Hof, D. Fick, and H. J. Jänsch, “Application of diode lasers as a spectroscopic tool at 670 nm,” Opt. Commun. 124, 283-286 (1996).
[CrossRef]

Fleming, M. W.

M. W. Fleming and A. Mooradian, “Spectral characteristics of external-cavity controlled semiconductor lasers,” IEEE J. Quantum Electron. 17, 44-59 (1981).
[CrossRef]

Folman, R.

A. Waxman, M. Givon, G. Aviv, D. Groswasser, and R. Folman, “Modulation enhancement of a diode laser in an external cavity,” Appl. Phys. B 95, 301-305 (2009).
[CrossRef]

Fretel, E.

Fujii, T.

T. Nayuki, T. Fujii, K. Nemoto, M. Kozuma, M. Kourogi, and M. Ohtsu, “Continuous wavelength sweep of external cavity laser diode without antireflection coating on output facet,” Opt. Rev. 5, 267-270 (1998).
[CrossRef]

Galbács, G.

G. Galbács, “A review of applications and experimental improvements related to diode laser atomic spectroscopy,” Appl. Spectrosc. Rev. 41, 259-303 (2006).
[CrossRef]

Garreau, J. C.

J. Ringot, Y. Lecoq, J. C. Garreau, and P. Szriftgiser, “Generation of phase-coherent laser beams for Raman spectroscopy and cooling by direct current modulation of a diode laser,” Eur. Phys. J. D 7, 285-288 (1999).
[CrossRef]

Gauguet, A.

X. Baillard, A. Gauguet, S. Bize, P. Lemonde, P. Laurent, A. Clairon, and P. Rosenbusch, “Interference-filter-stabilized external-cavity diode lasers,” Opt. Commun. 266, 609-613(2006).
[CrossRef]

Gensemer, S. D.

R. Kowalski, S. Root, S. D. Gensemer, and P. L. Gould, “A frequency-modulated injection-locked diode lsaer for two-frequency generation,” Rev. Sci. Instrum. 72, 2532-2534 (2001).
[CrossRef]

Gilowski, M.

M. Gilowski, C. Schuberta, M. Zaisera, W. Herra, T. Wübbenaa, T. Wendricha, T. Müllera, E. M. Rasela, and W. Ertmer, “Narrow bandwidth interference filter-stabilized diode laser systems for the manipulation of neutral atoms,” Opt. Commun. 280, 443-447 (2007).
[CrossRef]

Givon, M.

A. Waxman, M. Givon, G. Aviv, D. Groswasser, and R. Folman, “Modulation enhancement of a diode laser in an external cavity,” Appl. Phys. B 95, 301-305 (2009).
[CrossRef]

Gould, P. L.

R. Kowalski, S. Root, S. D. Gensemer, and P. L. Gould, “A frequency-modulated injection-locked diode lsaer for two-frequency generation,” Rev. Sci. Instrum. 72, 2532-2534 (2001).
[CrossRef]

Griffin, P. F.

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B 35, 5141-5151 (2002).
[CrossRef]

Groswasser, D.

A. Waxman, M. Givon, G. Aviv, D. Groswasser, and R. Folman, “Modulation enhancement of a diode laser in an external cavity,” Appl. Phys. B 95, 301-305 (2009).
[CrossRef]

Gustavson, T. L.

K. G. Libbrecht, R. A. Boyd, P. A. Willems, T. L. Gustavson, and D. K. Kim, “Teaching physics with 670 nm diode lasers-construction of stabilized lasers and lithium cells,” Am. J. Phys. 63, 729-737 (1995).
[CrossRef]

Hänsch, T. W.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541-549 (1995).
[CrossRef]

Harvey, K. C.

Hawthorn, C. J.

C. J. Hawthorn, K. P. Weber, and R. E. Scholten, “Littrow configuration tunable external cavity diode laser with fixed direction output beam,” Rev. Sci. Instrum. 72, 4477-4479(2001).
[CrossRef]

Hemmerich, A.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541-549 (1995).
[CrossRef]

Herra, W.

M. Gilowski, C. Schuberta, M. Zaisera, W. Herra, T. Wübbenaa, T. Wendricha, T. Müllera, E. M. Rasela, and W. Ertmer, “Narrow bandwidth interference filter-stabilized diode laser systems for the manipulation of neutral atoms,” Opt. Commun. 280, 443-447 (2007).
[CrossRef]

Hieta, T.

T. Hieta, M. Vainio, C. Moser, and E. Ikonen, “External-cavity lasers based on a volume holographic grating at normal incidence for spectroscopy in the visible range,” Opt. Commun. 282, 3119-3123 (2009).
[CrossRef]

Hof, T.

T. Hof, D. Fick, and H. J. Jänsch, “Application of diode lasers as a spectroscopic tool at 670 nm,” Opt. Commun. 124, 283-286 (1996).
[CrossRef]

Hollberg, L.

C. E. Wieman and L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1-20 (1991).
[CrossRef]

Hughes, I. G.

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B 35, 5141-5151 (2002).
[CrossRef]

Hult, J.

Ikonen, E.

T. Hieta, M. Vainio, C. Moser, and E. Ikonen, “External-cavity lasers based on a volume holographic grating at normal incidence for spectroscopy in the visible range,” Opt. Commun. 282, 3119-3123 (2009).
[CrossRef]

M. Merimaa, H. Talvitie, P. Laakkonen, M. Kuittinen, I. Tittonen, and E. Ikonen, “Compact external-cavity diode laser with a novel transmission geometry,” Opt. Commun. 174, 175-180 (2000).
[CrossRef]

H. Talvitie, A. Pietiläinen, H. Ludvigsen, and E. Ikonen, “Passive frequency and intensity stabilization of extended-cavity diode lasers,” Rev. Sci. Instrum. 68, 1-7 (1997).
[CrossRef]

Jänsch, H. J.

T. Hof, D. Fick, and H. J. Jänsch, “Application of diode lasers as a spectroscopic tool at 670 nm,” Opt. Commun. 124, 283-286 (1996).
[CrossRef]

Kaminski, C. F.

Kim, D. K.

K. G. Libbrecht, R. A. Boyd, P. A. Willems, T. L. Gustavson, and D. K. Kim, “Teaching physics with 670 nm diode lasers-construction of stabilized lasers and lithium cells,” Am. J. Phys. 63, 729-737 (1995).
[CrossRef]

König, W.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541-549 (1995).
[CrossRef]

Kourogi, M.

T. Nayuki, T. Fujii, K. Nemoto, M. Kozuma, M. Kourogi, and M. Ohtsu, “Continuous wavelength sweep of external cavity laser diode without antireflection coating on output facet,” Opt. Rev. 5, 267-270 (1998).
[CrossRef]

Kowalski, R.

R. Kowalski, S. Root, S. D. Gensemer, and P. L. Gould, “A frequency-modulated injection-locked diode lsaer for two-frequency generation,” Rev. Sci. Instrum. 72, 2532-2534 (2001).
[CrossRef]

Kozuma, M.

T. Nayuki, T. Fujii, K. Nemoto, M. Kozuma, M. Kourogi, and M. Ohtsu, “Continuous wavelength sweep of external cavity laser diode without antireflection coating on output facet,” Opt. Rev. 5, 267-270 (1998).
[CrossRef]

Kuittinen, M.

M. Merimaa, H. Talvitie, P. Laakkonen, M. Kuittinen, I. Tittonen, and E. Ikonen, “Compact external-cavity diode laser with a novel transmission geometry,” Opt. Commun. 174, 175-180 (2000).
[CrossRef]

Laakkonen, P.

M. Merimaa, H. Talvitie, P. Laakkonen, M. Kuittinen, I. Tittonen, and E. Ikonen, “Compact external-cavity diode laser with a novel transmission geometry,” Opt. Commun. 174, 175-180 (2000).
[CrossRef]

Laurent, P.

X. Baillard, A. Gauguet, S. Bize, P. Lemonde, P. Laurent, A. Clairon, and P. Rosenbusch, “Interference-filter-stabilized external-cavity diode lasers,” Opt. Commun. 266, 609-613(2006).
[CrossRef]

Lecomte, S.

Lecoq, Y.

J. Ringot, Y. Lecoq, J. C. Garreau, and P. Szriftgiser, “Generation of phase-coherent laser beams for Raman spectroscopy and cooling by direct current modulation of a diode laser,” Eur. Phys. J. D 7, 285-288 (1999).
[CrossRef]

Lemonde, P.

X. Baillard, A. Gauguet, S. Bize, P. Lemonde, P. Laurent, A. Clairon, and P. Rosenbusch, “Interference-filter-stabilized external-cavity diode lasers,” Opt. Commun. 266, 609-613(2006).
[CrossRef]

Libbrecht, K. G.

K. G. Libbrecht, R. A. Boyd, P. A. Willems, T. L. Gustavson, and D. K. Kim, “Teaching physics with 670 nm diode lasers-construction of stabilized lasers and lithium cells,” Am. J. Phys. 63, 729-737 (1995).
[CrossRef]

Lindsay, I. D.

C. Petridis, I. D. Lindsay, D. J. M. Stothard, and M. Ebrahimzadeh, “Mode-hop-free tuning over 80 GHz of an extended cavity diode laser without antireflection coating,” Rev. Sci. Instrum. 72, 3811-3815 (2001).
[CrossRef]

Ludvigsen, H.

H. Talvitie, A. Pietiläinen, H. Ludvigsen, and E. Ikonen, “Passive frequency and intensity stabilization of extended-cavity diode lasers,” Rev. Sci. Instrum. 68, 1-7 (1997).
[CrossRef]

MacAdam, K. B.

K. B. MacAdam, A. Steinbach, and C. Wieman, “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098-1111 (1992).
[CrossRef]

McNicholl, P.

Merimaa, M.

M. Merimaa, H. Talvitie, P. Laakkonen, M. Kuittinen, I. Tittonen, and E. Ikonen, “Compact external-cavity diode laser with a novel transmission geometry,” Opt. Commun. 174, 175-180 (2000).
[CrossRef]

Metcalf, H. J.

Mileti, G.

Mooradian, A.

M. W. Fleming and A. Mooradian, “Spectral characteristics of external-cavity controlled semiconductor lasers,” IEEE J. Quantum Electron. 17, 44-59 (1981).
[CrossRef]

Moser, C.

T. Hieta, M. Vainio, C. Moser, and E. Ikonen, “External-cavity lasers based on a volume holographic grating at normal incidence for spectroscopy in the visible range,” Opt. Commun. 282, 3119-3123 (2009).
[CrossRef]

Mroziewicz, B.

B. Mroziewicz, “External cavity wavelength tunable semiconductor lasers: a review,” Opto-Electron. Rev. 16, 347-366(2008).
[CrossRef]

Müllera, T.

M. Gilowski, C. Schuberta, M. Zaisera, W. Herra, T. Wübbenaa, T. Wendricha, T. Müllera, E. M. Rasela, and W. Ertmer, “Narrow bandwidth interference filter-stabilized diode laser systems for the manipulation of neutral atoms,” Opt. Commun. 280, 443-447 (2007).
[CrossRef]

Myatt, C. J.

Nayuki, T.

T. Nayuki, T. Fujii, K. Nemoto, M. Kozuma, M. Kourogi, and M. Ohtsu, “Continuous wavelength sweep of external cavity laser diode without antireflection coating on output facet,” Opt. Rev. 5, 267-270 (1998).
[CrossRef]

Nemoto, K.

T. Nayuki, T. Fujii, K. Nemoto, M. Kozuma, M. Kourogi, and M. Ohtsu, “Continuous wavelength sweep of external cavity laser diode without antireflection coating on output facet,” Opt. Rev. 5, 267-270 (1998).
[CrossRef]

Newbury, N. R.

Nilse, L.

Ohtsu, M.

T. Nayuki, T. Fujii, K. Nemoto, M. Kozuma, M. Kourogi, and M. Ohtsu, “Continuous wavelength sweep of external cavity laser diode without antireflection coating on output facet,” Opt. Rev. 5, 267-270 (1998).
[CrossRef]

Passedat, G.

Pearman, C. P.

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B 35, 5141-5151 (2002).
[CrossRef]

Petridis, C.

C. Petridis, I. D. Lindsay, D. J. M. Stothard, and M. Ebrahimzadeh, “Mode-hop-free tuning over 80 GHz of an extended cavity diode laser without antireflection coating,” Rev. Sci. Instrum. 72, 3811-3815 (2001).
[CrossRef]

Pietiläinen, A.

H. Talvitie, A. Pietiläinen, H. Ludvigsen, and E. Ikonen, “Passive frequency and intensity stabilization of extended-cavity diode lasers,” Rev. Sci. Instrum. 68, 1-7 (1997).
[CrossRef]

Rasela, E. M.

M. Gilowski, C. Schuberta, M. Zaisera, W. Herra, T. Wübbenaa, T. Wendricha, T. Müllera, E. M. Rasela, and W. Ertmer, “Narrow bandwidth interference filter-stabilized diode laser systems for the manipulation of neutral atoms,” Opt. Commun. 280, 443-447 (2007).
[CrossRef]

Ricci, L.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541-549 (1995).
[CrossRef]

Ringot, J.

J. Ringot, Y. Lecoq, J. C. Garreau, and P. Szriftgiser, “Generation of phase-coherent laser beams for Raman spectroscopy and cooling by direct current modulation of a diode laser,” Eur. Phys. J. D 7, 285-288 (1999).
[CrossRef]

Root, S.

R. Kowalski, S. Root, S. D. Gensemer, and P. L. Gould, “A frequency-modulated injection-locked diode lsaer for two-frequency generation,” Rev. Sci. Instrum. 72, 2532-2534 (2001).
[CrossRef]

Rosenbusch, P.

X. Baillard, A. Gauguet, S. Bize, P. Lemonde, P. Laurent, A. Clairon, and P. Rosenbusch, “Interference-filter-stabilized external-cavity diode lasers,” Opt. Commun. 266, 609-613(2006).
[CrossRef]

Sasada, H.

Scholten, R. E.

C. J. Hawthorn, K. P. Weber, and R. E. Scholten, “Littrow configuration tunable external cavity diode laser with fixed direction output beam,” Rev. Sci. Instrum. 72, 4477-4479(2001).
[CrossRef]

Schuberta, C.

M. Gilowski, C. Schuberta, M. Zaisera, W. Herra, T. Wübbenaa, T. Wendricha, T. Müllera, E. M. Rasela, and W. Ertmer, “Narrow bandwidth interference filter-stabilized diode laser systems for the manipulation of neutral atoms,” Opt. Commun. 280, 443-447 (2007).
[CrossRef]

Smith, D. A.

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B 35, 5141-5151 (2002).
[CrossRef]

Steinbach, A.

K. B. MacAdam, A. Steinbach, and C. Wieman, “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098-1111 (1992).
[CrossRef]

Stokes, L. F.

W. R. Trutna, Jr., and L. F. Stokes, “Continuously tuned external cavity semiconductor laser,” J. Lightwave Technol. 11, 1279-1286 (1993).
[CrossRef]

Stothard, D. J. M.

C. Petridis, I. D. Lindsay, D. J. M. Stothard, and M. Ebrahimzadeh, “Mode-hop-free tuning over 80 GHz of an extended cavity diode laser without antireflection coating,” Rev. Sci. Instrum. 72, 3811-3815 (2001).
[CrossRef]

Szriftgiser, P.

J. Ringot, Y. Lecoq, J. C. Garreau, and P. Szriftgiser, “Generation of phase-coherent laser beams for Raman spectroscopy and cooling by direct current modulation of a diode laser,” Eur. Phys. J. D 7, 285-288 (1999).
[CrossRef]

Talvitie, H.

M. Merimaa, H. Talvitie, P. Laakkonen, M. Kuittinen, I. Tittonen, and E. Ikonen, “Compact external-cavity diode laser with a novel transmission geometry,” Opt. Commun. 174, 175-180 (2000).
[CrossRef]

H. Talvitie, A. Pietiläinen, H. Ludvigsen, and E. Ikonen, “Passive frequency and intensity stabilization of extended-cavity diode lasers,” Rev. Sci. Instrum. 68, 1-7 (1997).
[CrossRef]

Thomann, P.

Tittonen, I.

M. Merimaa, H. Talvitie, P. Laakkonen, M. Kuittinen, I. Tittonen, and E. Ikonen, “Compact external-cavity diode laser with a novel transmission geometry,” Opt. Commun. 174, 175-180 (2000).
[CrossRef]

Trutna, W. R.

Trutna, , W. R.

W. R. Trutna, Jr., and L. F. Stokes, “Continuously tuned external cavity semiconductor laser,” J. Lightwave Technol. 11, 1279-1286 (1993).
[CrossRef]

Vainio, M.

T. Hieta, M. Vainio, C. Moser, and E. Ikonen, “External-cavity lasers based on a volume holographic grating at normal incidence for spectroscopy in the visible range,” Opt. Commun. 282, 3119-3123 (2009).
[CrossRef]

Vassiliev, V. V.

V. V. Vassiliev, S. Zibrov, and V. Velichansky, “Compact extended-cavity diode laser for atomic spectroscopy and metrology,” Rev. Sci. Instrum. 77, 013102 (2006).
[CrossRef]

Velichansky, V.

V. V. Vassiliev, S. Zibrov, and V. Velichansky, “Compact extended-cavity diode laser for atomic spectroscopy and metrology,” Rev. Sci. Instrum. 77, 013102 (2006).
[CrossRef]

Vuletic, V.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541-549 (1995).
[CrossRef]

Walker, T.

P. Feng and T. Walker, “Inexpensive diode laser microwave modulation for atom trapping,” Am. J. Phys. 63, 905-908(1995).
[CrossRef]

Waxman, A.

A. Waxman, M. Givon, G. Aviv, D. Groswasser, and R. Folman, “Modulation enhancement of a diode laser in an external cavity,” Appl. Phys. B 95, 301-305 (2009).
[CrossRef]

Weber, K. P.

C. J. Hawthorn, K. P. Weber, and R. E. Scholten, “Littrow configuration tunable external cavity diode laser with fixed direction output beam,” Rev. Sci. Instrum. 72, 4477-4479(2001).
[CrossRef]

Weidemüller, M.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541-549 (1995).
[CrossRef]

Wendricha, T.

M. Gilowski, C. Schuberta, M. Zaisera, W. Herra, T. Wübbenaa, T. Wendricha, T. Müllera, E. M. Rasela, and W. Ertmer, “Narrow bandwidth interference filter-stabilized diode laser systems for the manipulation of neutral atoms,” Opt. Commun. 280, 443-447 (2007).
[CrossRef]

Wieman, C.

K. B. MacAdam, A. Steinbach, and C. Wieman, “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098-1111 (1992).
[CrossRef]

Wieman, C. E.

Willems, P. A.

K. G. Libbrecht, R. A. Boyd, P. A. Willems, T. L. Gustavson, and D. K. Kim, “Teaching physics with 670 nm diode lasers-construction of stabilized lasers and lithium cells,” Am. J. Phys. 63, 729-737 (1995).
[CrossRef]

Wilson, J. S.

A. S. Arnold, J. S. Wilson, and M. G. Boshier, “A simple extended-cavity diode laser,” Rev. Sci. Instrum. 69, 1236-1239(1998).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1993), pp. 402-405.

Wübbenaa, T.

M. Gilowski, C. Schuberta, M. Zaisera, W. Herra, T. Wübbenaa, T. Wendricha, T. Müllera, E. M. Rasela, and W. Ertmer, “Narrow bandwidth interference filter-stabilized diode laser systems for the manipulation of neutral atoms,” Opt. Commun. 280, 443-447 (2007).
[CrossRef]

Wyatt, R.

R. Wyatt and W. J. Devlin, “10 kHz linewidth 1.5 μm InGaAsP external cavity laser with 55 nm tuning range,” Electron. Lett. 19, 110-112 (1983).
[CrossRef]

Zaisera, M.

M. Gilowski, C. Schuberta, M. Zaisera, W. Herra, T. Wübbenaa, T. Wendricha, T. Müllera, E. M. Rasela, and W. Ertmer, “Narrow bandwidth interference filter-stabilized diode laser systems for the manipulation of neutral atoms,” Opt. Commun. 280, 443-447 (2007).
[CrossRef]

Zibrov, S.

V. V. Vassiliev, S. Zibrov, and V. Velichansky, “Compact extended-cavity diode laser for atomic spectroscopy and metrology,” Rev. Sci. Instrum. 77, 013102 (2006).
[CrossRef]

Zimmermann, C.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541-549 (1995).
[CrossRef]

Zorabedian, P.

P. Zorabedian and W. R. Trutna, Jr., “Interference-filter-tuned, alignment-stabilized, semiconductor external-cavity laser,” Opt. Lett. 13, 826-828 (1988).
[CrossRef] [PubMed]

P. Zorabedian, “Tunable external-cavity semiconductor lasers,” in Tunable Lasers Handbook, F. J. Duarte, ed. (Academic, 1995), pp. 349-442.
[CrossRef]

Am. J. Phys. (3)

K. B. MacAdam, A. Steinbach, and C. Wieman, “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098-1111 (1992).
[CrossRef]

K. G. Libbrecht, R. A. Boyd, P. A. Willems, T. L. Gustavson, and D. K. Kim, “Teaching physics with 670 nm diode lasers-construction of stabilized lasers and lithium cells,” Am. J. Phys. 63, 729-737 (1995).
[CrossRef]

P. Feng and T. Walker, “Inexpensive diode laser microwave modulation for atom trapping,” Am. J. Phys. 63, 905-908(1995).
[CrossRef]

Appl. Opt. (6)

Appl. Phys. B (1)

A. Waxman, M. Givon, G. Aviv, D. Groswasser, and R. Folman, “Modulation enhancement of a diode laser in an external cavity,” Appl. Phys. B 95, 301-305 (2009).
[CrossRef]

Appl. Spectrosc. Rev. (1)

G. Galbács, “A review of applications and experimental improvements related to diode laser atomic spectroscopy,” Appl. Spectrosc. Rev. 41, 259-303 (2006).
[CrossRef]

Electron. Lett. (1)

R. Wyatt and W. J. Devlin, “10 kHz linewidth 1.5 μm InGaAsP external cavity laser with 55 nm tuning range,” Electron. Lett. 19, 110-112 (1983).
[CrossRef]

Eur. Phys. J. D (1)

J. Ringot, Y. Lecoq, J. C. Garreau, and P. Szriftgiser, “Generation of phase-coherent laser beams for Raman spectroscopy and cooling by direct current modulation of a diode laser,” Eur. Phys. J. D 7, 285-288 (1999).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. W. Fleming and A. Mooradian, “Spectral characteristics of external-cavity controlled semiconductor lasers,” IEEE J. Quantum Electron. 17, 44-59 (1981).
[CrossRef]

J. Lightwave Technol. (1)

W. R. Trutna, Jr., and L. F. Stokes, “Continuously tuned external cavity semiconductor laser,” J. Lightwave Technol. 11, 1279-1286 (1993).
[CrossRef]

J. Phys. B (1)

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B 35, 5141-5151 (2002).
[CrossRef]

Opt. Commun. (6)

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541-549 (1995).
[CrossRef]

T. Hof, D. Fick, and H. J. Jänsch, “Application of diode lasers as a spectroscopic tool at 670 nm,” Opt. Commun. 124, 283-286 (1996).
[CrossRef]

M. Merimaa, H. Talvitie, P. Laakkonen, M. Kuittinen, I. Tittonen, and E. Ikonen, “Compact external-cavity diode laser with a novel transmission geometry,” Opt. Commun. 174, 175-180 (2000).
[CrossRef]

T. Hieta, M. Vainio, C. Moser, and E. Ikonen, “External-cavity lasers based on a volume holographic grating at normal incidence for spectroscopy in the visible range,” Opt. Commun. 282, 3119-3123 (2009).
[CrossRef]

X. Baillard, A. Gauguet, S. Bize, P. Lemonde, P. Laurent, A. Clairon, and P. Rosenbusch, “Interference-filter-stabilized external-cavity diode lasers,” Opt. Commun. 266, 609-613(2006).
[CrossRef]

M. Gilowski, C. Schuberta, M. Zaisera, W. Herra, T. Wübbenaa, T. Wendricha, T. Müllera, E. M. Rasela, and W. Ertmer, “Narrow bandwidth interference filter-stabilized diode laser systems for the manipulation of neutral atoms,” Opt. Commun. 280, 443-447 (2007).
[CrossRef]

Opt. Lett. (3)

Opt. Rev. (1)

T. Nayuki, T. Fujii, K. Nemoto, M. Kozuma, M. Kourogi, and M. Ohtsu, “Continuous wavelength sweep of external cavity laser diode without antireflection coating on output facet,” Opt. Rev. 5, 267-270 (1998).
[CrossRef]

Opto-Electron. Rev. (1)

B. Mroziewicz, “External cavity wavelength tunable semiconductor lasers: a review,” Opto-Electron. Rev. 16, 347-366(2008).
[CrossRef]

Rev. Sci. Instrum. (7)

C. Petridis, I. D. Lindsay, D. J. M. Stothard, and M. Ebrahimzadeh, “Mode-hop-free tuning over 80 GHz of an extended cavity diode laser without antireflection coating,” Rev. Sci. Instrum. 72, 3811-3815 (2001).
[CrossRef]

H. Talvitie, A. Pietiläinen, H. Ludvigsen, and E. Ikonen, “Passive frequency and intensity stabilization of extended-cavity diode lasers,” Rev. Sci. Instrum. 68, 1-7 (1997).
[CrossRef]

R. Kowalski, S. Root, S. D. Gensemer, and P. L. Gould, “A frequency-modulated injection-locked diode lsaer for two-frequency generation,” Rev. Sci. Instrum. 72, 2532-2534 (2001).
[CrossRef]

C. E. Wieman and L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1-20 (1991).
[CrossRef]

A. S. Arnold, J. S. Wilson, and M. G. Boshier, “A simple extended-cavity diode laser,” Rev. Sci. Instrum. 69, 1236-1239(1998).
[CrossRef]

C. J. Hawthorn, K. P. Weber, and R. E. Scholten, “Littrow configuration tunable external cavity diode laser with fixed direction output beam,” Rev. Sci. Instrum. 72, 4477-4479(2001).
[CrossRef]

V. V. Vassiliev, S. Zibrov, and V. Velichansky, “Compact extended-cavity diode laser for atomic spectroscopy and metrology,” Rev. Sci. Instrum. 77, 013102 (2006).
[CrossRef]

Other (3)

P. Zorabedian, “Tunable external-cavity semiconductor lasers,” in Tunable Lasers Handbook, F. J. Duarte, ed. (Academic, 1995), pp. 349-442.
[CrossRef]

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1993), pp. 402-405.

We used a Thorlabs LT230P-B collimation tube, Newport Ultima and Fine-Adjustment Earth-series kinematic mounts, Spectraphysics 33001FL02-330H gold-coated holographic grating, Melcor CP1.4-71-045L TEC, Tokin AE0203D04 piezoelectric actuator, Sanyo DL-7140-201 diode, High Finesse WS-6 Fizeau wavemeter, and a MOGLabs DLC-202 ECDL controller. Note: certain commercial equipment, instruments, or materials are identified in this paper in order to adequately specify the experimental procedure. Such identification does not imply recommendation or endorsement, nor does it imply that the materials or equipment are necessarily the best available for the purpose.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic of a Littrow configuration ECDL showing a laser diode, collimation lens, and diffraction grating. θ is the Littrow angle, L D is the diode cavity length, and L ext is the external cavity length. The external cavity is formed between the rear facet of the laser diode and the diffraction grating. A single longitudinal cavity mode is selected by dispersive feedback from the grating. L g defines the location of the grating on its pivot mount.

Fig. 2
Fig. 2

Littrow configured ECDL with a fixed output beam direction adapted with permission from C. J. Hawthorn, K. P. Weber, and R. E. Scholten, Rev. Sci. Instrum. 72, 4477 (2001). © 2001 American Institute of Physics.

Fig. 3
Fig. 3

Schematic of a split-cavity ECDL used to test design variations. The laser diode block allows the collimation tube to slide inside the block, hence varying the cavity length. The grating and fold mirror are attached directly to the front plate of a modified kinematic mount, with a small piezoelectric stack to adjust the grating angle. The laser baseplate has a recess that allows translation of the laser diode block across the face of the grating for adjustment of the effective pivot point. The temperature sensor is located in the laser baseplate on the hidden side of the schematic, close to the TEC and underneath the external cavity.

Fig. 4
Fig. 4

Cavity-amplified microwave modulation. Measurements show the modulation sideband peak height as a fraction of the central carrier peak height for cavity lengths of 35, 41, and 50 mm . The peaks at 3.9, 3.23, and 3.08 GHz , respectively, are in excellent agreement with the axial mode spacing condition for the effective cavity lengths.

Fig. 5
Fig. 5

Schematic representation for the various frequency-dependent factors of an ECDL (top) calculated for λ = 780 nm , L D = 0.25 mm , n D = 3.5 , L ext = 15 mm , R 1 = 0.85 , and R 2 = 0.02 . The diffracted grating intensity was calculated assuming a square-slit grating profile with a slit width equal to half of the period, a beam diameter of 2 a = 2.2 mm , and p polarization. The diode gain curve is assumed Gaussian, with a standard deviation of σ = 8.5 nm [20]. The calculated frequency responses of the combined ECDL mode spectrum for AR-coated and uncoated diodes are also shown (bottom). The grating (1800 grooves/mm), laser diode cavity mode, laser diode gain profile, and external cavity mode dispersions are all included. For the AR-coated diode, the front facet intensity reflectivity was taken to be R 2 = 10 4 .

Fig. 6
Fig. 6

Geometry for calculating cavity length change L e that is due to grating rotation θ s about pivot point P caused by a piezoelectric actuator extension L s perpendicular to the pivot arm at a distance of L a . θ is the grating angle, AV is the distance along the grating normal from V to the pivot arm, and P A = L g is the distance along the pivot arm to AV. P A V is the rotation of P A V about P by angle θ s . If the stack length increases by L s , the laser strikes the grating at C, hence the cavity length change is L e = V C . The distance from pivot arm to grating face is L o = A V = B C .

Fig. 7
Fig. 7

Tuning mismatch between grating and cavity mode frequencies δ ν = ν g ν ext as the grating is rotated by a piezoelectric actuator at L a = 38 mm from the pivot, grating offset of L g = 15 mm , and matched cavity length L ext = L g tan θ / cos θ = 20.8 mm . The piezo actuator extension range of L s = ± 2 μm changes the laser frequency by ± 20 GHz .

Fig. 8
Fig. 8

Maximum tuning mismatch for a change in laser frequency of 20 GHz for different errors in cavity length Δ L ext relative to the optimum. L a = 38 mm , L g = 5 to 25 mm in 5 mm steps.

Fig. 9
Fig. 9

Mode-hop-free tuning range for the split cavity laser with standard and AR-coated diodes at fixed injection currents (88 and 90 mA ) for a range of cavity lengths. The tuning range is clearly enhanced by appropriate adjustment of the external cavity length for a given grating pivot location: L a = 38 mm and grating offset L g = 15 mm from the pivot. The cavity length was determined from a measure of the cavity free spectral range (FSR), obtained by scanning the diode current and observing the change in laser frequency as the laser mode hopped to the adjacent longitudinal cavity mode. The uncertainty bars were derived from the estimated accuracy of ± 0.25 GHz in determining the maximum mode-hop-free range and FSR and propagating that to the calculated cavity length.

Fig. 10
Fig. 10

Temperature fluctuations for a sensor position close to the diode ( < 5 mm ) results in persistent small scale oscillations. A sensor close to the TEC/external cavity responds more slowly to temperature fluctuations at the diode ( 25 mm away), yet the proximity to the TEC ( < 5 mm ) and external cavity provides better thermal stability. The time constants were calculated by fitting an exponential decay to the oscillation peaks.

Fig. 11
Fig. 11

Comparison of the temperature response to a sudden change (diode turned on) in the reference design [13] and the split cavity design. Inset: a comparison of the temperature stability over a long time scale from 1000 to 2000 s . The temperature variances were Var ( T ) = 1.21 × 10 6 K and Var ( T ) = 3.55 × 10 7 K .

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

T total = G D D T D T inner T outer ,
D = [ sin ( k N d sin θ ) N sin ( k N d sin θ ) ] 2 sinc 2 ( k d sin θ 2 ) ,
T D = 1 1 + F sin 2 ( δ ( ν ) / 2 ) ,
ν ext = m c 2 ( L ext L e ) ,
ν g = c 2 d sin ( θ θ s ) ,
L e = L o ( 1 cos θ s ) + L g sin θ s cos ( θ θ s ) ,
d L e d θ s = L g cos θ + L o ( sin θ sin ( θ θ s ) ) cos 2 ( θ θ s ) ,
d L e d θ s = L g cos θ
d ν ext d θ s = ν ext L ext L g cos θ , d ν g d θ s = ν g tan θ .
L ext = L g tan θ cos θ .
d ν d T = ν 0 L D k D + L ext k A l L D + L ext .

Metrics