Abstract

We report on the simultaneous and two-dimensional measurement of laser-induced fluorescence (LIF) and Raman scattering (Ramanography) applied inside a hydrogen internal combustion (IC) engine. Two different LIF tracer molecules, triethylamine (TEA) and trimethylamine (TMA), were used for the LIF experiments. The LIF and Raman results were found to be in very good agreement. The simultaneous application of Ramanography and LIF imaging indicated that TMA is the more suitable LIF tracer molecule, compared to TEA.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. C. Miles, “Raman line imaging for spatially and temporally resolved mole fraction measurements in internal combustion engines,” Appl. Opt. 38, 1714-1732 (1999).
    [CrossRef]
  2. C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems,” Prog. Energy Combust. Sci. 31, 75-121 (2005).
    [CrossRef]
  3. M. C. Weikl, F. Beyrau, and A. Leipertz, “Simultaneous temperature and exhaust-gas recirculation-measurements in a homogeneous charge-compression ignition engine by use of pure rotational coherent anti-Stokes Raman spectroscopy,” Appl. Opt. 45, 3646-3651 (2006).
    [CrossRef] [PubMed]
  4. H. Zhao and N. Ladommatos, “Optical diagnostics for in-cylinder mixture formation measurements in IC engines,” Prog. Energy Combust. Sci. 24, 297-336 (1998).
    [CrossRef]
  5. J. Egermann, W. Koebcke, and A. Leipertz, “Investigation of the mixture formation inside a GDI engine by means of linear Raman spectroscopy,” Proc. Combust. Inst. 28, 1145-1152(2000).
  6. W. Ipp, J. Egermann, V. Wagner, and A. Leipertz, “Visualization of the qualitative fuel distribution and mixture formation inside a transparent GDI engine with 2D MIE and LIEF techniques and comparison to quantitative measurements of the air/fuel ratio with 1D Raman spectroscopy,” SAE Technical Paper 2000-01-1793 (2000).
  7. S. Einecke, C. Schulz, and V. Sick, “Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combustion,” Appl. Phys. B 71, 717-723 (2000).
    [CrossRef]
  8. V. Sick and N. Wermuth, “Single-shot imaging of OH radicals and simultaneous OH radical/acetone imaging with a tunable ND:YAG laser,” Appl. Phys. B 79, 139-143 (2004).
    [CrossRef]
  9. F. Meier, G. Wiltafsky, J. Köhler, and W. Stolz, “Quantitative time resolved 2-D fuel-air ratio measurements in a hydrogen direct injection SI engine using spontaneous raman scattering,” SAE Technical Paper 961101 (1996).
  10. James D. Smith and V. Sick, “High-speed fuel tracer fluorescence and OH radical chemiluminescence imaging in a spark-ignition direct-injection engine,” Appl. Opt. 44, 6682-6691(2005).
    [CrossRef] [PubMed]
  11. P. Wieske, S. Wissel, G. Grünefeld, and S. Pischinger, “Improvement of LIEF by wavelength-resolved acquisition of multiple images using a single CCD detector--simultaneous 2D measurement of air/fuel ratio, temperature distribution of the liquid phase and qualitative distribution of the liquid phase with the multi-2D technique,” Appl. Phys. B 83, 323-329 (2006).
    [CrossRef]
  12. M. Luong, R. Zhang, C. Schulz, and V. Sick, “Toluene laser-induced fluorescence for in-cylinder temperature imaging in internal combustion engines,” Appl. Phys. B 91, 669-675 (2008).
    [CrossRef]
  13. W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Toluene LIF at elevated temperatures: implications for fuel-air ratio measurements,” Appl. Phys. B 80, 147-150 (2005).
    [CrossRef]
  14. W. Koban, J. Schorr, and C. Schulz, “Oxygen-distribution imaging with a novel two-tracer laser-induced fluorescence technique,” Appl. Phys. B 74, 111-114 (2002).
    [CrossRef]
  15. K. Kuwahara and H. Ando, “Diagnostics of in-cylinder flow, mixing and combustion in gasoline engines,” Meas. Sci. Technol. 11, R95-R111 (2000).
    [CrossRef]
  16. D. A. Hansen and E. K. C. Lee, “Radiative and nonradiative transitions in the first excited singlet state of simple linear aldehydes,” J. Chem. Phys. 63, 3272-3277 (1975).
    [CrossRef]
  17. F. Ossler and M. Alden, “Measurements of picosecond laser induced fluorescence from gas phase 3-pentanone and acetone: implications to combustion diagnostics,” Appl. Phys. B 64, 493-502 (1997).
    [CrossRef]
  18. T. Ni and L. A. Melton, “Fluorescence lifetime imaging: an approach for fuel equivalence ratio imaging,” Appl. Spectrosc. 45, 938-943 (1991).
    [CrossRef]
  19. M. C. Thurber, F. Grisch, B. J. Kirby, M. Votsmeier, and R. K. Hanson, “Measurements and modeling of acetone laser-induced fluorescence with implications for temperature-imaging diagnostics,” Appl. Opt. 37, 4963-4978 (1998).
    [CrossRef]
  20. W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Oxygen quenching of toluene fluorescence at elevated temperatures,” Appl. Phys. B 80, 777-784 (2005).
    [CrossRef]
  21. J. Reboux and D. Puechberty, “A new approach of PLIF applied to fuel/air ratio measurement in the compression stroke of an optical SI engine,” SAE Technical Paper 941988 (1994).
  22. J. M. Brault, D. S. Maymir, M. Samimy, and M. Matsuki, “An investigation of mixture formation processes during start-up of a natural gas powered SI engine," SAE Technical Paper 981387 (1998).
  23. J. Hiltner and M. Samimy, “A study of in-cylinder mixing in a natural gas powered engine by planar laser-induced fluorescence,” SAE Technical Paper 961102 (1996).
  24. P. Medaerts and D. Puechberty, “In-cylinder fuel/air mixture and flame front visualization in a transparent engine using PLIF: a comparison between natural gas and gasoline used as fuel,” SAE Technical Paper 982524 (1998).
  25. A. P. Fröba, F. Rabenstein, K. U. Münch, and A. Leipertz, “Mixture of triethylamine (TEA) and benzene as a new seeding material for the quantitative two-dimensional laser-induced exciplex fluorescence imaging of vapor and liquid fuel inside SI engines,” Combust. Flame 112, 199-209 (1998).
    [CrossRef]
  26. D. L. Hartley, in Laser Raman Gas Diagnostics, M. Lapp and C. M. Penney, eds. (Plenum, 1974), pp. 1151-1157.
  27. R. Schefer, W. Kulatilaka, B. Patterson, and T. Settersten, “Visible emission of hydrogen flames,” Combust. Flame 156, 1234-1241 (2009).
    [CrossRef]
  28. T. Blotevogel, M. Hartmann, H. Rottengruber, and A. Leipertz, “Tracer-based laser-induced fluorescence measurement technique for quantitative fuel/air-ratio measurements in a hydrogen internal combustion engine,” Appl. Opt. 47, 6488-6496(2008).
    [CrossRef] [PubMed]
  29. A. Braeuer and A. Leipertz, “Two-dimensional Raman mole-fraction and temperature measurements for hydrogen-nitrogen mixture analysis,” Appl. Opt. 48, B57-B64(2009).
    [CrossRef] [PubMed]
  30. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Gordon and Breach, 1996).
  31. D. A. Long, Raman Spectroscopy (McGraw-Hill, 1977).
  32. A. Braeuer, F. Beyrau, and A. Leipertz, “Laser-induced fluorescence of ketones at elevated temperatures for pressures up to 20 bars by using a 248 nm excitation laser wavelength: experiments and model improvements,” Appl. Opt. 45, 4982-4989 (2006).
    [CrossRef] [PubMed]
  33. F. Grossmann, P. B. Monkhouse, M. Ridder, V. Sick, and J. Wolfrum, “Temperature and pressure dependences of the laser-induced fluorescence of gas-phase acetone and 3-pentanone,” Appl. Phys. B 62, 249-253 (1996).
    [CrossRef]
  34. V. Modica, C. Morin, and P. Guibert, “3-Pentanone LIF at elevated temperatures and pressures: measurements and modeling,” Appl. Phys. B 87, 193-204 (2007).
    [CrossRef]
  35. A. Leipertz and M. Fiebig, “Using Raman intensity dependence on laser polarization for low gas concentration measurements with giant pulse lasers,” Appl. Opt. 19, 2272-2274(1980).
    [CrossRef] [PubMed]
  36. T. Blotevogel, “Untersuchung der Gemischbildung und Verbrennung bei Wasserstoffmotoren mit Hilfe optischer Messtechniken,” Please check degrees at Refs. 36 and 38.Ph.D. dissertation (University Erlangen-Nuremberg, 2007).
  37. A. Braeuer, F. Beyrau, M. C. Weikl, T. Seeger, J. Kiefer, A. Leipertz, A. Holzwarth, and A. Soika, “Investigation of the combustion process in an auxiliary heating system using dual-pump CARS,” J. Raman Spectrosc. 37, 633-640(2006).
    [CrossRef]
  38. M. Lutz, “Tracerkonzept zur Visualisierung von Gemischbildungsprozessen in Wasserstoffmotoren,” master's thesis (University Erlangen-Nuremberg, Erlangen, 2003).

2009 (2)

R. Schefer, W. Kulatilaka, B. Patterson, and T. Settersten, “Visible emission of hydrogen flames,” Combust. Flame 156, 1234-1241 (2009).
[CrossRef]

A. Braeuer and A. Leipertz, “Two-dimensional Raman mole-fraction and temperature measurements for hydrogen-nitrogen mixture analysis,” Appl. Opt. 48, B57-B64(2009).
[CrossRef] [PubMed]

2008 (2)

T. Blotevogel, M. Hartmann, H. Rottengruber, and A. Leipertz, “Tracer-based laser-induced fluorescence measurement technique for quantitative fuel/air-ratio measurements in a hydrogen internal combustion engine,” Appl. Opt. 47, 6488-6496(2008).
[CrossRef] [PubMed]

M. Luong, R. Zhang, C. Schulz, and V. Sick, “Toluene laser-induced fluorescence for in-cylinder temperature imaging in internal combustion engines,” Appl. Phys. B 91, 669-675 (2008).
[CrossRef]

2007 (1)

V. Modica, C. Morin, and P. Guibert, “3-Pentanone LIF at elevated temperatures and pressures: measurements and modeling,” Appl. Phys. B 87, 193-204 (2007).
[CrossRef]

2006 (4)

A. Braeuer, F. Beyrau, and A. Leipertz, “Laser-induced fluorescence of ketones at elevated temperatures for pressures up to 20 bars by using a 248 nm excitation laser wavelength: experiments and model improvements,” Appl. Opt. 45, 4982-4989 (2006).
[CrossRef] [PubMed]

A. Braeuer, F. Beyrau, M. C. Weikl, T. Seeger, J. Kiefer, A. Leipertz, A. Holzwarth, and A. Soika, “Investigation of the combustion process in an auxiliary heating system using dual-pump CARS,” J. Raman Spectrosc. 37, 633-640(2006).
[CrossRef]

P. Wieske, S. Wissel, G. Grünefeld, and S. Pischinger, “Improvement of LIEF by wavelength-resolved acquisition of multiple images using a single CCD detector--simultaneous 2D measurement of air/fuel ratio, temperature distribution of the liquid phase and qualitative distribution of the liquid phase with the multi-2D technique,” Appl. Phys. B 83, 323-329 (2006).
[CrossRef]

M. C. Weikl, F. Beyrau, and A. Leipertz, “Simultaneous temperature and exhaust-gas recirculation-measurements in a homogeneous charge-compression ignition engine by use of pure rotational coherent anti-Stokes Raman spectroscopy,” Appl. Opt. 45, 3646-3651 (2006).
[CrossRef] [PubMed]

2005 (4)

C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems,” Prog. Energy Combust. Sci. 31, 75-121 (2005).
[CrossRef]

James D. Smith and V. Sick, “High-speed fuel tracer fluorescence and OH radical chemiluminescence imaging in a spark-ignition direct-injection engine,” Appl. Opt. 44, 6682-6691(2005).
[CrossRef] [PubMed]

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Toluene LIF at elevated temperatures: implications for fuel-air ratio measurements,” Appl. Phys. B 80, 147-150 (2005).
[CrossRef]

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Oxygen quenching of toluene fluorescence at elevated temperatures,” Appl. Phys. B 80, 777-784 (2005).
[CrossRef]

2004 (1)

V. Sick and N. Wermuth, “Single-shot imaging of OH radicals and simultaneous OH radical/acetone imaging with a tunable ND:YAG laser,” Appl. Phys. B 79, 139-143 (2004).
[CrossRef]

2002 (1)

W. Koban, J. Schorr, and C. Schulz, “Oxygen-distribution imaging with a novel two-tracer laser-induced fluorescence technique,” Appl. Phys. B 74, 111-114 (2002).
[CrossRef]

2000 (3)

K. Kuwahara and H. Ando, “Diagnostics of in-cylinder flow, mixing and combustion in gasoline engines,” Meas. Sci. Technol. 11, R95-R111 (2000).
[CrossRef]

J. Egermann, W. Koebcke, and A. Leipertz, “Investigation of the mixture formation inside a GDI engine by means of linear Raman spectroscopy,” Proc. Combust. Inst. 28, 1145-1152(2000).

S. Einecke, C. Schulz, and V. Sick, “Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combustion,” Appl. Phys. B 71, 717-723 (2000).
[CrossRef]

1999 (1)

1998 (3)

H. Zhao and N. Ladommatos, “Optical diagnostics for in-cylinder mixture formation measurements in IC engines,” Prog. Energy Combust. Sci. 24, 297-336 (1998).
[CrossRef]

M. C. Thurber, F. Grisch, B. J. Kirby, M. Votsmeier, and R. K. Hanson, “Measurements and modeling of acetone laser-induced fluorescence with implications for temperature-imaging diagnostics,” Appl. Opt. 37, 4963-4978 (1998).
[CrossRef]

A. P. Fröba, F. Rabenstein, K. U. Münch, and A. Leipertz, “Mixture of triethylamine (TEA) and benzene as a new seeding material for the quantitative two-dimensional laser-induced exciplex fluorescence imaging of vapor and liquid fuel inside SI engines,” Combust. Flame 112, 199-209 (1998).
[CrossRef]

1997 (1)

F. Ossler and M. Alden, “Measurements of picosecond laser induced fluorescence from gas phase 3-pentanone and acetone: implications to combustion diagnostics,” Appl. Phys. B 64, 493-502 (1997).
[CrossRef]

1996 (1)

F. Grossmann, P. B. Monkhouse, M. Ridder, V. Sick, and J. Wolfrum, “Temperature and pressure dependences of the laser-induced fluorescence of gas-phase acetone and 3-pentanone,” Appl. Phys. B 62, 249-253 (1996).
[CrossRef]

1991 (1)

1980 (1)

1975 (1)

D. A. Hansen and E. K. C. Lee, “Radiative and nonradiative transitions in the first excited singlet state of simple linear aldehydes,” J. Chem. Phys. 63, 3272-3277 (1975).
[CrossRef]

Alden, M.

F. Ossler and M. Alden, “Measurements of picosecond laser induced fluorescence from gas phase 3-pentanone and acetone: implications to combustion diagnostics,” Appl. Phys. B 64, 493-502 (1997).
[CrossRef]

Ando, H.

K. Kuwahara and H. Ando, “Diagnostics of in-cylinder flow, mixing and combustion in gasoline engines,” Meas. Sci. Technol. 11, R95-R111 (2000).
[CrossRef]

Beyrau, F.

Blotevogel, T.

T. Blotevogel, M. Hartmann, H. Rottengruber, and A. Leipertz, “Tracer-based laser-induced fluorescence measurement technique for quantitative fuel/air-ratio measurements in a hydrogen internal combustion engine,” Appl. Opt. 47, 6488-6496(2008).
[CrossRef] [PubMed]

T. Blotevogel, “Untersuchung der Gemischbildung und Verbrennung bei Wasserstoffmotoren mit Hilfe optischer Messtechniken,” Please check degrees at Refs. 36 and 38.Ph.D. dissertation (University Erlangen-Nuremberg, 2007).

Braeuer, A.

Brault, J. M.

J. M. Brault, D. S. Maymir, M. Samimy, and M. Matsuki, “An investigation of mixture formation processes during start-up of a natural gas powered SI engine," SAE Technical Paper 981387 (1998).

Eckbreth, A. C.

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Gordon and Breach, 1996).

Egermann, J.

J. Egermann, W. Koebcke, and A. Leipertz, “Investigation of the mixture formation inside a GDI engine by means of linear Raman spectroscopy,” Proc. Combust. Inst. 28, 1145-1152(2000).

W. Ipp, J. Egermann, V. Wagner, and A. Leipertz, “Visualization of the qualitative fuel distribution and mixture formation inside a transparent GDI engine with 2D MIE and LIEF techniques and comparison to quantitative measurements of the air/fuel ratio with 1D Raman spectroscopy,” SAE Technical Paper 2000-01-1793 (2000).

Einecke, S.

S. Einecke, C. Schulz, and V. Sick, “Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combustion,” Appl. Phys. B 71, 717-723 (2000).
[CrossRef]

Fiebig, M.

Fröba, A. P.

A. P. Fröba, F. Rabenstein, K. U. Münch, and A. Leipertz, “Mixture of triethylamine (TEA) and benzene as a new seeding material for the quantitative two-dimensional laser-induced exciplex fluorescence imaging of vapor and liquid fuel inside SI engines,” Combust. Flame 112, 199-209 (1998).
[CrossRef]

Grisch, F.

Grossmann, F.

F. Grossmann, P. B. Monkhouse, M. Ridder, V. Sick, and J. Wolfrum, “Temperature and pressure dependences of the laser-induced fluorescence of gas-phase acetone and 3-pentanone,” Appl. Phys. B 62, 249-253 (1996).
[CrossRef]

Grünefeld, G.

P. Wieske, S. Wissel, G. Grünefeld, and S. Pischinger, “Improvement of LIEF by wavelength-resolved acquisition of multiple images using a single CCD detector--simultaneous 2D measurement of air/fuel ratio, temperature distribution of the liquid phase and qualitative distribution of the liquid phase with the multi-2D technique,” Appl. Phys. B 83, 323-329 (2006).
[CrossRef]

Guibert, P.

V. Modica, C. Morin, and P. Guibert, “3-Pentanone LIF at elevated temperatures and pressures: measurements and modeling,” Appl. Phys. B 87, 193-204 (2007).
[CrossRef]

Hansen, D. A.

D. A. Hansen and E. K. C. Lee, “Radiative and nonradiative transitions in the first excited singlet state of simple linear aldehydes,” J. Chem. Phys. 63, 3272-3277 (1975).
[CrossRef]

Hanson, R. K.

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Toluene LIF at elevated temperatures: implications for fuel-air ratio measurements,” Appl. Phys. B 80, 147-150 (2005).
[CrossRef]

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Oxygen quenching of toluene fluorescence at elevated temperatures,” Appl. Phys. B 80, 777-784 (2005).
[CrossRef]

M. C. Thurber, F. Grisch, B. J. Kirby, M. Votsmeier, and R. K. Hanson, “Measurements and modeling of acetone laser-induced fluorescence with implications for temperature-imaging diagnostics,” Appl. Opt. 37, 4963-4978 (1998).
[CrossRef]

Hartley, D. L.

D. L. Hartley, in Laser Raman Gas Diagnostics, M. Lapp and C. M. Penney, eds. (Plenum, 1974), pp. 1151-1157.

Hartmann, M.

Hiltner, J.

J. Hiltner and M. Samimy, “A study of in-cylinder mixing in a natural gas powered engine by planar laser-induced fluorescence,” SAE Technical Paper 961102 (1996).

Holzwarth, A.

A. Braeuer, F. Beyrau, M. C. Weikl, T. Seeger, J. Kiefer, A. Leipertz, A. Holzwarth, and A. Soika, “Investigation of the combustion process in an auxiliary heating system using dual-pump CARS,” J. Raman Spectrosc. 37, 633-640(2006).
[CrossRef]

Ipp, W.

W. Ipp, J. Egermann, V. Wagner, and A. Leipertz, “Visualization of the qualitative fuel distribution and mixture formation inside a transparent GDI engine with 2D MIE and LIEF techniques and comparison to quantitative measurements of the air/fuel ratio with 1D Raman spectroscopy,” SAE Technical Paper 2000-01-1793 (2000).

Kiefer, J.

A. Braeuer, F. Beyrau, M. C. Weikl, T. Seeger, J. Kiefer, A. Leipertz, A. Holzwarth, and A. Soika, “Investigation of the combustion process in an auxiliary heating system using dual-pump CARS,” J. Raman Spectrosc. 37, 633-640(2006).
[CrossRef]

Kirby, B. J.

Koban, W.

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Oxygen quenching of toluene fluorescence at elevated temperatures,” Appl. Phys. B 80, 777-784 (2005).
[CrossRef]

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Toluene LIF at elevated temperatures: implications for fuel-air ratio measurements,” Appl. Phys. B 80, 147-150 (2005).
[CrossRef]

W. Koban, J. Schorr, and C. Schulz, “Oxygen-distribution imaging with a novel two-tracer laser-induced fluorescence technique,” Appl. Phys. B 74, 111-114 (2002).
[CrossRef]

Koch, J. D.

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Oxygen quenching of toluene fluorescence at elevated temperatures,” Appl. Phys. B 80, 777-784 (2005).
[CrossRef]

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Toluene LIF at elevated temperatures: implications for fuel-air ratio measurements,” Appl. Phys. B 80, 147-150 (2005).
[CrossRef]

Koebcke, W.

J. Egermann, W. Koebcke, and A. Leipertz, “Investigation of the mixture formation inside a GDI engine by means of linear Raman spectroscopy,” Proc. Combust. Inst. 28, 1145-1152(2000).

Köhler, J.

F. Meier, G. Wiltafsky, J. Köhler, and W. Stolz, “Quantitative time resolved 2-D fuel-air ratio measurements in a hydrogen direct injection SI engine using spontaneous raman scattering,” SAE Technical Paper 961101 (1996).

Kulatilaka, W.

R. Schefer, W. Kulatilaka, B. Patterson, and T. Settersten, “Visible emission of hydrogen flames,” Combust. Flame 156, 1234-1241 (2009).
[CrossRef]

Kuwahara, K.

K. Kuwahara and H. Ando, “Diagnostics of in-cylinder flow, mixing and combustion in gasoline engines,” Meas. Sci. Technol. 11, R95-R111 (2000).
[CrossRef]

Ladommatos, N.

H. Zhao and N. Ladommatos, “Optical diagnostics for in-cylinder mixture formation measurements in IC engines,” Prog. Energy Combust. Sci. 24, 297-336 (1998).
[CrossRef]

Lee, E. K. C.

D. A. Hansen and E. K. C. Lee, “Radiative and nonradiative transitions in the first excited singlet state of simple linear aldehydes,” J. Chem. Phys. 63, 3272-3277 (1975).
[CrossRef]

Leipertz, A.

A. Braeuer and A. Leipertz, “Two-dimensional Raman mole-fraction and temperature measurements for hydrogen-nitrogen mixture analysis,” Appl. Opt. 48, B57-B64(2009).
[CrossRef] [PubMed]

T. Blotevogel, M. Hartmann, H. Rottengruber, and A. Leipertz, “Tracer-based laser-induced fluorescence measurement technique for quantitative fuel/air-ratio measurements in a hydrogen internal combustion engine,” Appl. Opt. 47, 6488-6496(2008).
[CrossRef] [PubMed]

A. Braeuer, F. Beyrau, M. C. Weikl, T. Seeger, J. Kiefer, A. Leipertz, A. Holzwarth, and A. Soika, “Investigation of the combustion process in an auxiliary heating system using dual-pump CARS,” J. Raman Spectrosc. 37, 633-640(2006).
[CrossRef]

A. Braeuer, F. Beyrau, and A. Leipertz, “Laser-induced fluorescence of ketones at elevated temperatures for pressures up to 20 bars by using a 248 nm excitation laser wavelength: experiments and model improvements,” Appl. Opt. 45, 4982-4989 (2006).
[CrossRef] [PubMed]

M. C. Weikl, F. Beyrau, and A. Leipertz, “Simultaneous temperature and exhaust-gas recirculation-measurements in a homogeneous charge-compression ignition engine by use of pure rotational coherent anti-Stokes Raman spectroscopy,” Appl. Opt. 45, 3646-3651 (2006).
[CrossRef] [PubMed]

J. Egermann, W. Koebcke, and A. Leipertz, “Investigation of the mixture formation inside a GDI engine by means of linear Raman spectroscopy,” Proc. Combust. Inst. 28, 1145-1152(2000).

A. P. Fröba, F. Rabenstein, K. U. Münch, and A. Leipertz, “Mixture of triethylamine (TEA) and benzene as a new seeding material for the quantitative two-dimensional laser-induced exciplex fluorescence imaging of vapor and liquid fuel inside SI engines,” Combust. Flame 112, 199-209 (1998).
[CrossRef]

A. Leipertz and M. Fiebig, “Using Raman intensity dependence on laser polarization for low gas concentration measurements with giant pulse lasers,” Appl. Opt. 19, 2272-2274(1980).
[CrossRef] [PubMed]

W. Ipp, J. Egermann, V. Wagner, and A. Leipertz, “Visualization of the qualitative fuel distribution and mixture formation inside a transparent GDI engine with 2D MIE and LIEF techniques and comparison to quantitative measurements of the air/fuel ratio with 1D Raman spectroscopy,” SAE Technical Paper 2000-01-1793 (2000).

Long, D. A.

D. A. Long, Raman Spectroscopy (McGraw-Hill, 1977).

Luong, M.

M. Luong, R. Zhang, C. Schulz, and V. Sick, “Toluene laser-induced fluorescence for in-cylinder temperature imaging in internal combustion engines,” Appl. Phys. B 91, 669-675 (2008).
[CrossRef]

Lutz, M.

M. Lutz, “Tracerkonzept zur Visualisierung von Gemischbildungsprozessen in Wasserstoffmotoren,” master's thesis (University Erlangen-Nuremberg, Erlangen, 2003).

Matsuki, M.

J. M. Brault, D. S. Maymir, M. Samimy, and M. Matsuki, “An investigation of mixture formation processes during start-up of a natural gas powered SI engine," SAE Technical Paper 981387 (1998).

Maymir, D. S.

J. M. Brault, D. S. Maymir, M. Samimy, and M. Matsuki, “An investigation of mixture formation processes during start-up of a natural gas powered SI engine," SAE Technical Paper 981387 (1998).

Medaerts, P.

P. Medaerts and D. Puechberty, “In-cylinder fuel/air mixture and flame front visualization in a transparent engine using PLIF: a comparison between natural gas and gasoline used as fuel,” SAE Technical Paper 982524 (1998).

Meier, F.

F. Meier, G. Wiltafsky, J. Köhler, and W. Stolz, “Quantitative time resolved 2-D fuel-air ratio measurements in a hydrogen direct injection SI engine using spontaneous raman scattering,” SAE Technical Paper 961101 (1996).

Melton, L. A.

Miles, P. C.

Modica, V.

V. Modica, C. Morin, and P. Guibert, “3-Pentanone LIF at elevated temperatures and pressures: measurements and modeling,” Appl. Phys. B 87, 193-204 (2007).
[CrossRef]

Monkhouse, P. B.

F. Grossmann, P. B. Monkhouse, M. Ridder, V. Sick, and J. Wolfrum, “Temperature and pressure dependences of the laser-induced fluorescence of gas-phase acetone and 3-pentanone,” Appl. Phys. B 62, 249-253 (1996).
[CrossRef]

Morin, C.

V. Modica, C. Morin, and P. Guibert, “3-Pentanone LIF at elevated temperatures and pressures: measurements and modeling,” Appl. Phys. B 87, 193-204 (2007).
[CrossRef]

Münch, K. U.

A. P. Fröba, F. Rabenstein, K. U. Münch, and A. Leipertz, “Mixture of triethylamine (TEA) and benzene as a new seeding material for the quantitative two-dimensional laser-induced exciplex fluorescence imaging of vapor and liquid fuel inside SI engines,” Combust. Flame 112, 199-209 (1998).
[CrossRef]

Ni, T.

Ossler, F.

F. Ossler and M. Alden, “Measurements of picosecond laser induced fluorescence from gas phase 3-pentanone and acetone: implications to combustion diagnostics,” Appl. Phys. B 64, 493-502 (1997).
[CrossRef]

Patterson, B.

R. Schefer, W. Kulatilaka, B. Patterson, and T. Settersten, “Visible emission of hydrogen flames,” Combust. Flame 156, 1234-1241 (2009).
[CrossRef]

Pischinger, S.

P. Wieske, S. Wissel, G. Grünefeld, and S. Pischinger, “Improvement of LIEF by wavelength-resolved acquisition of multiple images using a single CCD detector--simultaneous 2D measurement of air/fuel ratio, temperature distribution of the liquid phase and qualitative distribution of the liquid phase with the multi-2D technique,” Appl. Phys. B 83, 323-329 (2006).
[CrossRef]

Puechberty, D.

P. Medaerts and D. Puechberty, “In-cylinder fuel/air mixture and flame front visualization in a transparent engine using PLIF: a comparison between natural gas and gasoline used as fuel,” SAE Technical Paper 982524 (1998).

J. Reboux and D. Puechberty, “A new approach of PLIF applied to fuel/air ratio measurement in the compression stroke of an optical SI engine,” SAE Technical Paper 941988 (1994).

Rabenstein, F.

A. P. Fröba, F. Rabenstein, K. U. Münch, and A. Leipertz, “Mixture of triethylamine (TEA) and benzene as a new seeding material for the quantitative two-dimensional laser-induced exciplex fluorescence imaging of vapor and liquid fuel inside SI engines,” Combust. Flame 112, 199-209 (1998).
[CrossRef]

Reboux, J.

J. Reboux and D. Puechberty, “A new approach of PLIF applied to fuel/air ratio measurement in the compression stroke of an optical SI engine,” SAE Technical Paper 941988 (1994).

Ridder, M.

F. Grossmann, P. B. Monkhouse, M. Ridder, V. Sick, and J. Wolfrum, “Temperature and pressure dependences of the laser-induced fluorescence of gas-phase acetone and 3-pentanone,” Appl. Phys. B 62, 249-253 (1996).
[CrossRef]

Rottengruber, H.

Samimy, M.

J. M. Brault, D. S. Maymir, M. Samimy, and M. Matsuki, “An investigation of mixture formation processes during start-up of a natural gas powered SI engine," SAE Technical Paper 981387 (1998).

J. Hiltner and M. Samimy, “A study of in-cylinder mixing in a natural gas powered engine by planar laser-induced fluorescence,” SAE Technical Paper 961102 (1996).

Schefer, R.

R. Schefer, W. Kulatilaka, B. Patterson, and T. Settersten, “Visible emission of hydrogen flames,” Combust. Flame 156, 1234-1241 (2009).
[CrossRef]

Schorr, J.

W. Koban, J. Schorr, and C. Schulz, “Oxygen-distribution imaging with a novel two-tracer laser-induced fluorescence technique,” Appl. Phys. B 74, 111-114 (2002).
[CrossRef]

Schulz, C.

M. Luong, R. Zhang, C. Schulz, and V. Sick, “Toluene laser-induced fluorescence for in-cylinder temperature imaging in internal combustion engines,” Appl. Phys. B 91, 669-675 (2008).
[CrossRef]

C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems,” Prog. Energy Combust. Sci. 31, 75-121 (2005).
[CrossRef]

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Toluene LIF at elevated temperatures: implications for fuel-air ratio measurements,” Appl. Phys. B 80, 147-150 (2005).
[CrossRef]

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Oxygen quenching of toluene fluorescence at elevated temperatures,” Appl. Phys. B 80, 777-784 (2005).
[CrossRef]

W. Koban, J. Schorr, and C. Schulz, “Oxygen-distribution imaging with a novel two-tracer laser-induced fluorescence technique,” Appl. Phys. B 74, 111-114 (2002).
[CrossRef]

S. Einecke, C. Schulz, and V. Sick, “Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combustion,” Appl. Phys. B 71, 717-723 (2000).
[CrossRef]

Seeger, T.

A. Braeuer, F. Beyrau, M. C. Weikl, T. Seeger, J. Kiefer, A. Leipertz, A. Holzwarth, and A. Soika, “Investigation of the combustion process in an auxiliary heating system using dual-pump CARS,” J. Raman Spectrosc. 37, 633-640(2006).
[CrossRef]

Settersten, T.

R. Schefer, W. Kulatilaka, B. Patterson, and T. Settersten, “Visible emission of hydrogen flames,” Combust. Flame 156, 1234-1241 (2009).
[CrossRef]

Sick, V.

M. Luong, R. Zhang, C. Schulz, and V. Sick, “Toluene laser-induced fluorescence for in-cylinder temperature imaging in internal combustion engines,” Appl. Phys. B 91, 669-675 (2008).
[CrossRef]

James D. Smith and V. Sick, “High-speed fuel tracer fluorescence and OH radical chemiluminescence imaging in a spark-ignition direct-injection engine,” Appl. Opt. 44, 6682-6691(2005).
[CrossRef] [PubMed]

C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems,” Prog. Energy Combust. Sci. 31, 75-121 (2005).
[CrossRef]

V. Sick and N. Wermuth, “Single-shot imaging of OH radicals and simultaneous OH radical/acetone imaging with a tunable ND:YAG laser,” Appl. Phys. B 79, 139-143 (2004).
[CrossRef]

S. Einecke, C. Schulz, and V. Sick, “Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combustion,” Appl. Phys. B 71, 717-723 (2000).
[CrossRef]

F. Grossmann, P. B. Monkhouse, M. Ridder, V. Sick, and J. Wolfrum, “Temperature and pressure dependences of the laser-induced fluorescence of gas-phase acetone and 3-pentanone,” Appl. Phys. B 62, 249-253 (1996).
[CrossRef]

Smith, James D.

Soika, A.

A. Braeuer, F. Beyrau, M. C. Weikl, T. Seeger, J. Kiefer, A. Leipertz, A. Holzwarth, and A. Soika, “Investigation of the combustion process in an auxiliary heating system using dual-pump CARS,” J. Raman Spectrosc. 37, 633-640(2006).
[CrossRef]

Stolz, W.

F. Meier, G. Wiltafsky, J. Köhler, and W. Stolz, “Quantitative time resolved 2-D fuel-air ratio measurements in a hydrogen direct injection SI engine using spontaneous raman scattering,” SAE Technical Paper 961101 (1996).

Thurber, M. C.

Votsmeier, M.

Wagner, V.

W. Ipp, J. Egermann, V. Wagner, and A. Leipertz, “Visualization of the qualitative fuel distribution and mixture formation inside a transparent GDI engine with 2D MIE and LIEF techniques and comparison to quantitative measurements of the air/fuel ratio with 1D Raman spectroscopy,” SAE Technical Paper 2000-01-1793 (2000).

Weikl, M. C.

M. C. Weikl, F. Beyrau, and A. Leipertz, “Simultaneous temperature and exhaust-gas recirculation-measurements in a homogeneous charge-compression ignition engine by use of pure rotational coherent anti-Stokes Raman spectroscopy,” Appl. Opt. 45, 3646-3651 (2006).
[CrossRef] [PubMed]

A. Braeuer, F. Beyrau, M. C. Weikl, T. Seeger, J. Kiefer, A. Leipertz, A. Holzwarth, and A. Soika, “Investigation of the combustion process in an auxiliary heating system using dual-pump CARS,” J. Raman Spectrosc. 37, 633-640(2006).
[CrossRef]

Wermuth, N.

V. Sick and N. Wermuth, “Single-shot imaging of OH radicals and simultaneous OH radical/acetone imaging with a tunable ND:YAG laser,” Appl. Phys. B 79, 139-143 (2004).
[CrossRef]

Wieske, P.

P. Wieske, S. Wissel, G. Grünefeld, and S. Pischinger, “Improvement of LIEF by wavelength-resolved acquisition of multiple images using a single CCD detector--simultaneous 2D measurement of air/fuel ratio, temperature distribution of the liquid phase and qualitative distribution of the liquid phase with the multi-2D technique,” Appl. Phys. B 83, 323-329 (2006).
[CrossRef]

Wiltafsky, G.

F. Meier, G. Wiltafsky, J. Köhler, and W. Stolz, “Quantitative time resolved 2-D fuel-air ratio measurements in a hydrogen direct injection SI engine using spontaneous raman scattering,” SAE Technical Paper 961101 (1996).

Wissel, S.

P. Wieske, S. Wissel, G. Grünefeld, and S. Pischinger, “Improvement of LIEF by wavelength-resolved acquisition of multiple images using a single CCD detector--simultaneous 2D measurement of air/fuel ratio, temperature distribution of the liquid phase and qualitative distribution of the liquid phase with the multi-2D technique,” Appl. Phys. B 83, 323-329 (2006).
[CrossRef]

Wolfrum, J.

F. Grossmann, P. B. Monkhouse, M. Ridder, V. Sick, and J. Wolfrum, “Temperature and pressure dependences of the laser-induced fluorescence of gas-phase acetone and 3-pentanone,” Appl. Phys. B 62, 249-253 (1996).
[CrossRef]

Zhang, R.

M. Luong, R. Zhang, C. Schulz, and V. Sick, “Toluene laser-induced fluorescence for in-cylinder temperature imaging in internal combustion engines,” Appl. Phys. B 91, 669-675 (2008).
[CrossRef]

Zhao, H.

H. Zhao and N. Ladommatos, “Optical diagnostics for in-cylinder mixture formation measurements in IC engines,” Prog. Energy Combust. Sci. 24, 297-336 (1998).
[CrossRef]

Appl. Opt. (8)

M. C. Weikl, F. Beyrau, and A. Leipertz, “Simultaneous temperature and exhaust-gas recirculation-measurements in a homogeneous charge-compression ignition engine by use of pure rotational coherent anti-Stokes Raman spectroscopy,” Appl. Opt. 45, 3646-3651 (2006).
[CrossRef] [PubMed]

P. C. Miles, “Raman line imaging for spatially and temporally resolved mole fraction measurements in internal combustion engines,” Appl. Opt. 38, 1714-1732 (1999).
[CrossRef]

James D. Smith and V. Sick, “High-speed fuel tracer fluorescence and OH radical chemiluminescence imaging in a spark-ignition direct-injection engine,” Appl. Opt. 44, 6682-6691(2005).
[CrossRef] [PubMed]

M. C. Thurber, F. Grisch, B. J. Kirby, M. Votsmeier, and R. K. Hanson, “Measurements and modeling of acetone laser-induced fluorescence with implications for temperature-imaging diagnostics,” Appl. Opt. 37, 4963-4978 (1998).
[CrossRef]

T. Blotevogel, M. Hartmann, H. Rottengruber, and A. Leipertz, “Tracer-based laser-induced fluorescence measurement technique for quantitative fuel/air-ratio measurements in a hydrogen internal combustion engine,” Appl. Opt. 47, 6488-6496(2008).
[CrossRef] [PubMed]

A. Braeuer and A. Leipertz, “Two-dimensional Raman mole-fraction and temperature measurements for hydrogen-nitrogen mixture analysis,” Appl. Opt. 48, B57-B64(2009).
[CrossRef] [PubMed]

A. Braeuer, F. Beyrau, and A. Leipertz, “Laser-induced fluorescence of ketones at elevated temperatures for pressures up to 20 bars by using a 248 nm excitation laser wavelength: experiments and model improvements,” Appl. Opt. 45, 4982-4989 (2006).
[CrossRef] [PubMed]

A. Leipertz and M. Fiebig, “Using Raman intensity dependence on laser polarization for low gas concentration measurements with giant pulse lasers,” Appl. Opt. 19, 2272-2274(1980).
[CrossRef] [PubMed]

Appl. Phys. B (10)

F. Grossmann, P. B. Monkhouse, M. Ridder, V. Sick, and J. Wolfrum, “Temperature and pressure dependences of the laser-induced fluorescence of gas-phase acetone and 3-pentanone,” Appl. Phys. B 62, 249-253 (1996).
[CrossRef]

V. Modica, C. Morin, and P. Guibert, “3-Pentanone LIF at elevated temperatures and pressures: measurements and modeling,” Appl. Phys. B 87, 193-204 (2007).
[CrossRef]

F. Ossler and M. Alden, “Measurements of picosecond laser induced fluorescence from gas phase 3-pentanone and acetone: implications to combustion diagnostics,” Appl. Phys. B 64, 493-502 (1997).
[CrossRef]

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Oxygen quenching of toluene fluorescence at elevated temperatures,” Appl. Phys. B 80, 777-784 (2005).
[CrossRef]

P. Wieske, S. Wissel, G. Grünefeld, and S. Pischinger, “Improvement of LIEF by wavelength-resolved acquisition of multiple images using a single CCD detector--simultaneous 2D measurement of air/fuel ratio, temperature distribution of the liquid phase and qualitative distribution of the liquid phase with the multi-2D technique,” Appl. Phys. B 83, 323-329 (2006).
[CrossRef]

M. Luong, R. Zhang, C. Schulz, and V. Sick, “Toluene laser-induced fluorescence for in-cylinder temperature imaging in internal combustion engines,” Appl. Phys. B 91, 669-675 (2008).
[CrossRef]

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Toluene LIF at elevated temperatures: implications for fuel-air ratio measurements,” Appl. Phys. B 80, 147-150 (2005).
[CrossRef]

W. Koban, J. Schorr, and C. Schulz, “Oxygen-distribution imaging with a novel two-tracer laser-induced fluorescence technique,” Appl. Phys. B 74, 111-114 (2002).
[CrossRef]

S. Einecke, C. Schulz, and V. Sick, “Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combustion,” Appl. Phys. B 71, 717-723 (2000).
[CrossRef]

V. Sick and N. Wermuth, “Single-shot imaging of OH radicals and simultaneous OH radical/acetone imaging with a tunable ND:YAG laser,” Appl. Phys. B 79, 139-143 (2004).
[CrossRef]

Appl. Spectrosc. (1)

Combust. Flame (2)

A. P. Fröba, F. Rabenstein, K. U. Münch, and A. Leipertz, “Mixture of triethylamine (TEA) and benzene as a new seeding material for the quantitative two-dimensional laser-induced exciplex fluorescence imaging of vapor and liquid fuel inside SI engines,” Combust. Flame 112, 199-209 (1998).
[CrossRef]

R. Schefer, W. Kulatilaka, B. Patterson, and T. Settersten, “Visible emission of hydrogen flames,” Combust. Flame 156, 1234-1241 (2009).
[CrossRef]

J. Chem. Phys. (1)

D. A. Hansen and E. K. C. Lee, “Radiative and nonradiative transitions in the first excited singlet state of simple linear aldehydes,” J. Chem. Phys. 63, 3272-3277 (1975).
[CrossRef]

J. Raman Spectrosc. (1)

A. Braeuer, F. Beyrau, M. C. Weikl, T. Seeger, J. Kiefer, A. Leipertz, A. Holzwarth, and A. Soika, “Investigation of the combustion process in an auxiliary heating system using dual-pump CARS,” J. Raman Spectrosc. 37, 633-640(2006).
[CrossRef]

Meas. Sci. Technol. (1)

K. Kuwahara and H. Ando, “Diagnostics of in-cylinder flow, mixing and combustion in gasoline engines,” Meas. Sci. Technol. 11, R95-R111 (2000).
[CrossRef]

Prog. Energy Combust. Sci. (2)

C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems,” Prog. Energy Combust. Sci. 31, 75-121 (2005).
[CrossRef]

H. Zhao and N. Ladommatos, “Optical diagnostics for in-cylinder mixture formation measurements in IC engines,” Prog. Energy Combust. Sci. 24, 297-336 (1998).
[CrossRef]

Other (12)

J. Egermann, W. Koebcke, and A. Leipertz, “Investigation of the mixture formation inside a GDI engine by means of linear Raman spectroscopy,” Proc. Combust. Inst. 28, 1145-1152(2000).

W. Ipp, J. Egermann, V. Wagner, and A. Leipertz, “Visualization of the qualitative fuel distribution and mixture formation inside a transparent GDI engine with 2D MIE and LIEF techniques and comparison to quantitative measurements of the air/fuel ratio with 1D Raman spectroscopy,” SAE Technical Paper 2000-01-1793 (2000).

F. Meier, G. Wiltafsky, J. Köhler, and W. Stolz, “Quantitative time resolved 2-D fuel-air ratio measurements in a hydrogen direct injection SI engine using spontaneous raman scattering,” SAE Technical Paper 961101 (1996).

J. Reboux and D. Puechberty, “A new approach of PLIF applied to fuel/air ratio measurement in the compression stroke of an optical SI engine,” SAE Technical Paper 941988 (1994).

J. M. Brault, D. S. Maymir, M. Samimy, and M. Matsuki, “An investigation of mixture formation processes during start-up of a natural gas powered SI engine," SAE Technical Paper 981387 (1998).

J. Hiltner and M. Samimy, “A study of in-cylinder mixing in a natural gas powered engine by planar laser-induced fluorescence,” SAE Technical Paper 961102 (1996).

P. Medaerts and D. Puechberty, “In-cylinder fuel/air mixture and flame front visualization in a transparent engine using PLIF: a comparison between natural gas and gasoline used as fuel,” SAE Technical Paper 982524 (1998).

M. Lutz, “Tracerkonzept zur Visualisierung von Gemischbildungsprozessen in Wasserstoffmotoren,” master's thesis (University Erlangen-Nuremberg, Erlangen, 2003).

T. Blotevogel, “Untersuchung der Gemischbildung und Verbrennung bei Wasserstoffmotoren mit Hilfe optischer Messtechniken,” Please check degrees at Refs. 36 and 38.Ph.D. dissertation (University Erlangen-Nuremberg, 2007).

D. L. Hartley, in Laser Raman Gas Diagnostics, M. Lapp and C. M. Penney, eds. (Plenum, 1974), pp. 1151-1157.

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Gordon and Breach, 1996).

D. A. Long, Raman Spectroscopy (McGraw-Hill, 1977).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Optical accessible engine and optical setup for LIF/Raman measurements. Optical excitation pathways are shown for LIF and Ramanography.

Fig. 2
Fig. 2

Fuel/air ratio distribution inside the combustion chamber of a hydrogen IC engine measured with (a) Raman imaging and (b) TEA-LIF-imaging averaged over 16 hydrogen jet injections. Measurements were carried out 42 ° CA before firing TDC.

Fig. 3
Fig. 3

Fuel/air ratio distribution inside the combustion chamber of a hydrogen IC-engine measured with (a) Raman imaging and (b) TMA-LIF-imaging averaged over 16 hydrogen jet injections. Measurements were carried out 42 ° CA before firing TDC.

Fig. 4
Fig. 4

Comparison of Raman and TEA-LIF measured equivalence ratio distributions shown in Fig. 2. The location of the vertical and the horizontal line profiles used here are visualized by the white solid lines in Fig. 2.

Fig. 5
Fig. 5

Comparison of Raman and TMA-LIF measured equivalence ratio distributions shown in Fig. 3. The location of the vertical and the horizontal line profiles used here are visualized by the white solid lines in Fig. 3.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

S f = E h c / λ n tracer σ ( λ , T ) Φ ( λ , T , p , i χ i ) .
S f n tracer · Φ ( i χ i ) .
ϕ = k f k f + k n r + k n r , quench ,
k n r , quench = k quench · n quench .
S f n tracer · k f k f + k n r k f + k n r + k quench · n quench k f + k n r ,
S f n t · b 1 + k Stern Volmer n quench ,
k Stern Volmer = k quench k f + k n r .
k Stern Volmer · n quench 1
S f n tracer n quench n fuel n oxygen .
S f n tracer n fuel .
I ( i ) = I Laser h υ Laser · ( d σ d Ω ) · Ω · N ( i ) ν , J · K ,

Metrics