Abstract

In this paper, we propose a novel computational integral-imaging reconstruction (CIIR)-based three- dimensional (3-D) image correlator system for the recognition of 3-D volumetric objects by employing a 3-D reference object. That is, a number of plane object images (POIs) computationally reconstructed from the 3-D reference object are used for the 3-D volumetric target recognition. In other words, simultaneous 3-D image correlations between two sets of target and reference POIs, which are depth- dependently reconstructed by using the CIIR method, are performed for effective recognition of 3-D volumetric objects in the proposed system. Successful experiments with this CIIR-based 3-D image correlator confirmed the feasibility of the proposed method.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Iizuka, “Welcome to the wonderful world of 3D: Introduction, principles and history,” Opt. Photon. News 17 (7), 42-51(2006).
    [CrossRef]
  2. S.-C. Kim and E.-S. Kim, “Performance analysis of stereoscopic three-dimensional projection display systems,” 3D Res. 1, 010101 (2009).
  3. S.-C. Kim, P. Sukhbat, and E.-S. Kim, “Generation of three-dimensional integral images from a holographic pattern of 3-D objects,” Appl. Opt. 47, 3901-3908 (2008).
    [CrossRef] [PubMed]
  4. S.-C. Kim and E.-S. Kim, “Effective generation of digital holograms of 3-D objects using a novel look-up table method,” Appl. Opt. 47, D55-D62 (2008).
    [CrossRef] [PubMed]
  5. T.-C. Poon and T. Kim, “Optical image recognition of three-dimensional objects,” Appl. Opt. 38, 370-381 (1999).
    [CrossRef]
  6. B. Javidi and E. Tajahuerce, “Three-dimensional object recognition by use of digital holography,” Opt. Lett. 25, 610-612(2000).
    [CrossRef]
  7. Y. Frauel, E. Tajahuerce, M. A. Castro, and B. Javidi, “Distortion-tolerant three-dimensional object recognition with digital holography,” Appl. Opt. 40, 3887-3893 (2001).
    [CrossRef]
  8. A. Pu, R. Denkewalter, and D. Psaltis, “Real-time vehicle navigation using a holographic memory,” Opt. Eng. 36, 2737-2746 (1997).
    [CrossRef]
  9. J. Rosen, “Three-dimensional electro-optical correlation,” J. Opt. Soc. Am. A 15, 430-436 (1998).
    [CrossRef]
  10. J. Rosen, “Three-dimensional joint transform correlator,” Appl. Opt. 37, 7538-7544 (1998).
    [CrossRef]
  11. O. Matoba, E. Tajahuerce, and B. Javidi, “Real-time three-dimensional object recognition with multiple perspectives imaging,” Appl. Opt. 40, 3318-3325 (2001).
    [CrossRef]
  12. Y. Frauel and B. Javidi, “Digital three-dimensional image correlation by use of computer-reconstructed integral imaging,” Appl. Opt. 41, 5488-5496 (2002).
    [CrossRef] [PubMed]
  13. S. Kishk and B. Javidi, “Improved resolution 3D object sensing and recognition using time multiplexed computational integral imaging,” Opt. Express 11, 3528-3541 (2003).
    [CrossRef] [PubMed]
  14. J. Park, J. Kim, and B. Lee, “Three-dimensional optical correlator using a sub-image array,” Opt. Express 13, 5116-5126(2005).
    [CrossRef] [PubMed]
  15. B. Javidi, R. Ronce-Diaz, and S.-H. Hong, “Three-dimensional recognition of occluded objects by using computational integral imaging,” Opt. Lett. 31, 1106-1108 (2006).
    [CrossRef] [PubMed]
  16. A. Stern and B. Javidi, “Three-dimensional image sensing, visualization, and processing using integral imaging,” Proc. IEEE 94, 591-607 (2006).
    [CrossRef]
  17. Y. Kim, K. Hong, and B. Lee, “Recent researches based on integral imaging display method,” 3D Res. 1, 010102 (2009).
  18. F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Three-dimensional video system based on integral photography,” Opt. Eng. 38, 1072-1077 (1999).
    [CrossRef]
  19. B. Lee, S. Y. Jung, S.-W. Min, and J.-H. Park, “Three-dimensional display by use of integral photography with dynamically variable image planes,” Opt. Lett. 26, 1481-1482(2001).
    [CrossRef]
  20. J.-S. Jang and B. Javidi, “Improved viewing resolution of three-dimensional integral imaging by use of nonstationary micro-optics,” Opt. Lett. 27, 324-326 (2002).
    [CrossRef]
  21. D.-H. Shin, B.-H. Lee, and E.-S. Kim, “Multidirectional curved integral imaging with large depth by additional use of a large-aperture lens,” Appl. Opt. 45, 7375-7381 (2006).
    [CrossRef] [PubMed]
  22. H. Arimoto and B. Javidi, “Integral three-dimensional imaging with digital reconstruction,” Opt. Lett. 26, 157-159(2001).
    [CrossRef]
  23. S.-H. Hong, J.-S. Jang, and B. Javidi, “Three-dimensional volumetric object reconstruction using computational integral imaging,” Opt. Express 12, 483-491 (2004).
    [CrossRef] [PubMed]
  24. S.-H. Hong and B. Javidi, “Improved resolution 3D object reconstruction using computational integral imaging with time multiplexing,” Opt. Express 12, 4579-4588 (2004).
    [CrossRef] [PubMed]
  25. D.-H. Shin, E.-S. Kim, and B. Lee, “Computational reconstruction technique of three-dimensional object in integral imaging using a lenslet array,” Jpn. J. Appl. Phys. 44, 8016-8018(2005).
    [CrossRef]
  26. H. Yoo and D.-H. Shin, “Improved analysis on the signal property of computational integral imaging system,” Opt. Express 15, 14107-14114 (2007).
    [CrossRef] [PubMed]
  27. D.-H. Shin and H. Yoo, “Scale-variant magnification for computational integral imaging and its application to 3D object correlator,” Opt. Express 16, 8855-8867 (2008).
    [CrossRef] [PubMed]
  28. D.-C. Hwang, K.-J. Lee, S.-C. Kim, and E.-S. Kim, “Extraction of location coordinates of 3-D objects from computationally reconstructed integral images basing on a blur metric,” Opt. Express 16, 3623-3635 (2008).
    [CrossRef] [PubMed]
  29. G. Li, S.-C. Kim, and E.-S. Kim, “Performance-enhanced 3-D object recognition by use of computational integral imaging with depth data of the picked-up elemental images,” Jpn. J. Appl. Phys. 48, 092401 (2009).
    [CrossRef]
  30. K.-J. Lee, D.-C. Hwang, S.-C. Kim, and E.-S. Kim, “Blur-metric-based resolution enhancement of computationally reconstructed integral images,” Appl. Opt. 47, 2859-2869(2008).
    [CrossRef] [PubMed]

2009 (3)

S.-C. Kim and E.-S. Kim, “Performance analysis of stereoscopic three-dimensional projection display systems,” 3D Res. 1, 010101 (2009).

G. Li, S.-C. Kim, and E.-S. Kim, “Performance-enhanced 3-D object recognition by use of computational integral imaging with depth data of the picked-up elemental images,” Jpn. J. Appl. Phys. 48, 092401 (2009).
[CrossRef]

Y. Kim, K. Hong, and B. Lee, “Recent researches based on integral imaging display method,” 3D Res. 1, 010102 (2009).

2008 (5)

2007 (1)

2006 (4)

B. Javidi, R. Ronce-Diaz, and S.-H. Hong, “Three-dimensional recognition of occluded objects by using computational integral imaging,” Opt. Lett. 31, 1106-1108 (2006).
[CrossRef] [PubMed]

D.-H. Shin, B.-H. Lee, and E.-S. Kim, “Multidirectional curved integral imaging with large depth by additional use of a large-aperture lens,” Appl. Opt. 45, 7375-7381 (2006).
[CrossRef] [PubMed]

A. Stern and B. Javidi, “Three-dimensional image sensing, visualization, and processing using integral imaging,” Proc. IEEE 94, 591-607 (2006).
[CrossRef]

K. Iizuka, “Welcome to the wonderful world of 3D: Introduction, principles and history,” Opt. Photon. News 17 (7), 42-51(2006).
[CrossRef]

2005 (2)

D.-H. Shin, E.-S. Kim, and B. Lee, “Computational reconstruction technique of three-dimensional object in integral imaging using a lenslet array,” Jpn. J. Appl. Phys. 44, 8016-8018(2005).
[CrossRef]

J. Park, J. Kim, and B. Lee, “Three-dimensional optical correlator using a sub-image array,” Opt. Express 13, 5116-5126(2005).
[CrossRef] [PubMed]

2004 (2)

2003 (1)

2002 (2)

2001 (4)

2000 (1)

1999 (2)

T.-C. Poon and T. Kim, “Optical image recognition of three-dimensional objects,” Appl. Opt. 38, 370-381 (1999).
[CrossRef]

F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Three-dimensional video system based on integral photography,” Opt. Eng. 38, 1072-1077 (1999).
[CrossRef]

1998 (2)

1997 (1)

A. Pu, R. Denkewalter, and D. Psaltis, “Real-time vehicle navigation using a holographic memory,” Opt. Eng. 36, 2737-2746 (1997).
[CrossRef]

Arai, J.

F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Three-dimensional video system based on integral photography,” Opt. Eng. 38, 1072-1077 (1999).
[CrossRef]

Arimoto, H.

Castro, M. A.

Denkewalter, R.

A. Pu, R. Denkewalter, and D. Psaltis, “Real-time vehicle navigation using a holographic memory,” Opt. Eng. 36, 2737-2746 (1997).
[CrossRef]

Frauel, Y.

Hong, K.

Y. Kim, K. Hong, and B. Lee, “Recent researches based on integral imaging display method,” 3D Res. 1, 010102 (2009).

Hong, S.-H.

Hoshino, H.

F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Three-dimensional video system based on integral photography,” Opt. Eng. 38, 1072-1077 (1999).
[CrossRef]

Hwang, D.-C.

Iizuka, K.

K. Iizuka, “Welcome to the wonderful world of 3D: Introduction, principles and history,” Opt. Photon. News 17 (7), 42-51(2006).
[CrossRef]

Jang, J.-S.

Javidi, B.

B. Javidi, R. Ronce-Diaz, and S.-H. Hong, “Three-dimensional recognition of occluded objects by using computational integral imaging,” Opt. Lett. 31, 1106-1108 (2006).
[CrossRef] [PubMed]

A. Stern and B. Javidi, “Three-dimensional image sensing, visualization, and processing using integral imaging,” Proc. IEEE 94, 591-607 (2006).
[CrossRef]

S.-H. Hong, J.-S. Jang, and B. Javidi, “Three-dimensional volumetric object reconstruction using computational integral imaging,” Opt. Express 12, 483-491 (2004).
[CrossRef] [PubMed]

S.-H. Hong and B. Javidi, “Improved resolution 3D object reconstruction using computational integral imaging with time multiplexing,” Opt. Express 12, 4579-4588 (2004).
[CrossRef] [PubMed]

S. Kishk and B. Javidi, “Improved resolution 3D object sensing and recognition using time multiplexed computational integral imaging,” Opt. Express 11, 3528-3541 (2003).
[CrossRef] [PubMed]

Y. Frauel and B. Javidi, “Digital three-dimensional image correlation by use of computer-reconstructed integral imaging,” Appl. Opt. 41, 5488-5496 (2002).
[CrossRef] [PubMed]

J.-S. Jang and B. Javidi, “Improved viewing resolution of three-dimensional integral imaging by use of nonstationary micro-optics,” Opt. Lett. 27, 324-326 (2002).
[CrossRef]

O. Matoba, E. Tajahuerce, and B. Javidi, “Real-time three-dimensional object recognition with multiple perspectives imaging,” Appl. Opt. 40, 3318-3325 (2001).
[CrossRef]

Y. Frauel, E. Tajahuerce, M. A. Castro, and B. Javidi, “Distortion-tolerant three-dimensional object recognition with digital holography,” Appl. Opt. 40, 3887-3893 (2001).
[CrossRef]

H. Arimoto and B. Javidi, “Integral three-dimensional imaging with digital reconstruction,” Opt. Lett. 26, 157-159(2001).
[CrossRef]

B. Javidi and E. Tajahuerce, “Three-dimensional object recognition by use of digital holography,” Opt. Lett. 25, 610-612(2000).
[CrossRef]

Jung, S. Y.

Kim, E.-S.

G. Li, S.-C. Kim, and E.-S. Kim, “Performance-enhanced 3-D object recognition by use of computational integral imaging with depth data of the picked-up elemental images,” Jpn. J. Appl. Phys. 48, 092401 (2009).
[CrossRef]

S.-C. Kim and E.-S. Kim, “Performance analysis of stereoscopic three-dimensional projection display systems,” 3D Res. 1, 010101 (2009).

K.-J. Lee, D.-C. Hwang, S.-C. Kim, and E.-S. Kim, “Blur-metric-based resolution enhancement of computationally reconstructed integral images,” Appl. Opt. 47, 2859-2869(2008).
[CrossRef] [PubMed]

D.-C. Hwang, K.-J. Lee, S.-C. Kim, and E.-S. Kim, “Extraction of location coordinates of 3-D objects from computationally reconstructed integral images basing on a blur metric,” Opt. Express 16, 3623-3635 (2008).
[CrossRef] [PubMed]

S.-C. Kim and E.-S. Kim, “Effective generation of digital holograms of 3-D objects using a novel look-up table method,” Appl. Opt. 47, D55-D62 (2008).
[CrossRef] [PubMed]

S.-C. Kim, P. Sukhbat, and E.-S. Kim, “Generation of three-dimensional integral images from a holographic pattern of 3-D objects,” Appl. Opt. 47, 3901-3908 (2008).
[CrossRef] [PubMed]

D.-H. Shin, B.-H. Lee, and E.-S. Kim, “Multidirectional curved integral imaging with large depth by additional use of a large-aperture lens,” Appl. Opt. 45, 7375-7381 (2006).
[CrossRef] [PubMed]

D.-H. Shin, E.-S. Kim, and B. Lee, “Computational reconstruction technique of three-dimensional object in integral imaging using a lenslet array,” Jpn. J. Appl. Phys. 44, 8016-8018(2005).
[CrossRef]

Kim, J.

Kim, S.-C.

Kim, T.

Kim, Y.

Y. Kim, K. Hong, and B. Lee, “Recent researches based on integral imaging display method,” 3D Res. 1, 010102 (2009).

Kishk, S.

Lee, B.

Y. Kim, K. Hong, and B. Lee, “Recent researches based on integral imaging display method,” 3D Res. 1, 010102 (2009).

D.-H. Shin, E.-S. Kim, and B. Lee, “Computational reconstruction technique of three-dimensional object in integral imaging using a lenslet array,” Jpn. J. Appl. Phys. 44, 8016-8018(2005).
[CrossRef]

J. Park, J. Kim, and B. Lee, “Three-dimensional optical correlator using a sub-image array,” Opt. Express 13, 5116-5126(2005).
[CrossRef] [PubMed]

B. Lee, S. Y. Jung, S.-W. Min, and J.-H. Park, “Three-dimensional display by use of integral photography with dynamically variable image planes,” Opt. Lett. 26, 1481-1482(2001).
[CrossRef]

Lee, B.-H.

Lee, K.-J.

Li, G.

G. Li, S.-C. Kim, and E.-S. Kim, “Performance-enhanced 3-D object recognition by use of computational integral imaging with depth data of the picked-up elemental images,” Jpn. J. Appl. Phys. 48, 092401 (2009).
[CrossRef]

Matoba, O.

Min, S.-W.

Okano, F.

F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Three-dimensional video system based on integral photography,” Opt. Eng. 38, 1072-1077 (1999).
[CrossRef]

Park, J.

Park, J.-H.

Poon, T.-C.

Psaltis, D.

A. Pu, R. Denkewalter, and D. Psaltis, “Real-time vehicle navigation using a holographic memory,” Opt. Eng. 36, 2737-2746 (1997).
[CrossRef]

Pu, A.

A. Pu, R. Denkewalter, and D. Psaltis, “Real-time vehicle navigation using a holographic memory,” Opt. Eng. 36, 2737-2746 (1997).
[CrossRef]

Ronce-Diaz, R.

Rosen, J.

Shin, D.-H.

Stern, A.

A. Stern and B. Javidi, “Three-dimensional image sensing, visualization, and processing using integral imaging,” Proc. IEEE 94, 591-607 (2006).
[CrossRef]

Sukhbat, P.

Tajahuerce, E.

Yoo, H.

Yuyama, I.

F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Three-dimensional video system based on integral photography,” Opt. Eng. 38, 1072-1077 (1999).
[CrossRef]

3D Res. (2)

S.-C. Kim and E.-S. Kim, “Performance analysis of stereoscopic three-dimensional projection display systems,” 3D Res. 1, 010101 (2009).

Y. Kim, K. Hong, and B. Lee, “Recent researches based on integral imaging display method,” 3D Res. 1, 010102 (2009).

Appl. Opt. (9)

O. Matoba, E. Tajahuerce, and B. Javidi, “Real-time three-dimensional object recognition with multiple perspectives imaging,” Appl. Opt. 40, 3318-3325 (2001).
[CrossRef]

Y. Frauel, E. Tajahuerce, M. A. Castro, and B. Javidi, “Distortion-tolerant three-dimensional object recognition with digital holography,” Appl. Opt. 40, 3887-3893 (2001).
[CrossRef]

Y. Frauel and B. Javidi, “Digital three-dimensional image correlation by use of computer-reconstructed integral imaging,” Appl. Opt. 41, 5488-5496 (2002).
[CrossRef] [PubMed]

J. Rosen, “Three-dimensional joint transform correlator,” Appl. Opt. 37, 7538-7544 (1998).
[CrossRef]

T.-C. Poon and T. Kim, “Optical image recognition of three-dimensional objects,” Appl. Opt. 38, 370-381 (1999).
[CrossRef]

D.-H. Shin, B.-H. Lee, and E.-S. Kim, “Multidirectional curved integral imaging with large depth by additional use of a large-aperture lens,” Appl. Opt. 45, 7375-7381 (2006).
[CrossRef] [PubMed]

S.-C. Kim and E.-S. Kim, “Effective generation of digital holograms of 3-D objects using a novel look-up table method,” Appl. Opt. 47, D55-D62 (2008).
[CrossRef] [PubMed]

K.-J. Lee, D.-C. Hwang, S.-C. Kim, and E.-S. Kim, “Blur-metric-based resolution enhancement of computationally reconstructed integral images,” Appl. Opt. 47, 2859-2869(2008).
[CrossRef] [PubMed]

S.-C. Kim, P. Sukhbat, and E.-S. Kim, “Generation of three-dimensional integral images from a holographic pattern of 3-D objects,” Appl. Opt. 47, 3901-3908 (2008).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

Jpn. J. Appl. Phys. (2)

D.-H. Shin, E.-S. Kim, and B. Lee, “Computational reconstruction technique of three-dimensional object in integral imaging using a lenslet array,” Jpn. J. Appl. Phys. 44, 8016-8018(2005).
[CrossRef]

G. Li, S.-C. Kim, and E.-S. Kim, “Performance-enhanced 3-D object recognition by use of computational integral imaging with depth data of the picked-up elemental images,” Jpn. J. Appl. Phys. 48, 092401 (2009).
[CrossRef]

Opt. Eng. (2)

F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Three-dimensional video system based on integral photography,” Opt. Eng. 38, 1072-1077 (1999).
[CrossRef]

A. Pu, R. Denkewalter, and D. Psaltis, “Real-time vehicle navigation using a holographic memory,” Opt. Eng. 36, 2737-2746 (1997).
[CrossRef]

Opt. Express (7)

Opt. Lett. (5)

Opt. Photon. News (1)

K. Iizuka, “Welcome to the wonderful world of 3D: Introduction, principles and history,” Opt. Photon. News 17 (7), 42-51(2006).
[CrossRef]

Proc. IEEE (1)

A. Stern and B. Javidi, “Three-dimensional image sensing, visualization, and processing using integral imaging,” Proc. IEEE 94, 591-607 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Operational principle of the conventional CIIR algorithm.

Fig. 2
Fig. 2

POIs reconstructed along the output plane by using the CIIR algorithm.

Fig. 3
Fig. 3

Block diagram of the proposed CIIR-based 3-D target recognition system.

Fig. 4
Fig. 4

Experimental setup for pickup of the EIA of three 3-D target objects: (a) top view, (b) side view.

Fig. 5
Fig. 5

Picked-up EIA for the 3-D target objects.

Fig. 6
Fig. 6

Target POIs reconstructed from the picked-up EIA along the output plane: (a)  z r tar = 3 mm , (b)  z r tar = 6 mm , (c)  z r tar = 9 mm , (d)  z r tar = 12 mm , (e)  z r tar = 15 mm , (f)  z r tar = 18 mm , (g)  z r tar = 21 mm , (h)  z r tar = 24 mm , (i)  z r tar = 27 mm , (j)  z r tar = 30 mm .

Fig. 7
Fig. 7

Experimental setup for pickup of the EIA of the reference 3-D object of Car 2: (a) top view, (b) side view.

Fig. 8
Fig. 8

Picked-up EIA of the 3-D volumetric reference object of Car 2: (a)  z p ref = 3 mm , (b)  z p ref = 6 mm , (c)  z p ref = 9 mm , (d)  z p ref = 12 mm , (e)  z p ref = 15 mm , (f)  z p ref = 18 mm , (g)  z p ref = 21 mm , (h)  z p ref = 24 mm , (i)  z p ref = 27 mm , (j)  z p ref = 30 mm .

Fig. 9
Fig. 9

Examples of reference POIs reconstructed with the picked-up EIA: (a) reference POIs reconstructed with the EIA picked up at z p ref = 9 mm , (b) Reference POIs reconstructed with the EIA picked up at z p ref = 18 mm .

Fig. 10
Fig. 10

Reconstructed POIs at same position of reference 3-D object Car 2: (a)  z p ref = 3 mm , z r ref = 6 mm , (b)  z p ref = 6 mm , z r ref = 9 mm , (c)  z p ref = 9 mm , z r ref = 12 mm , (d)  z p ref = 12 mm , z r ref = 15 mm , (e)  z p ref = 15 mm , z r ref = 18 mm , (f)  z p ref = 18 mm , z r ref = 21 mm , (g)  z p ref = 21 mm , z r ref = 24 mm , (h)  z p ref = 24 mm , z r ref = 27 mm , (i)  z p ref = 27 mm , z r ref = 30 mm .

Fig. 11
Fig. 11

Calculated NCC values between the computationally reconstructed target and reference POIs for Car 2.

Fig. 12
Fig. 12

Averaged correlation values for three cases of the reference object: (a) conventional method, (b) proposed method.

Fig. 13
Fig. 13

Correlation outputs for Car 1, Car 2, and Car 3 obtained with the conventional and proposed methods: (a) Conventional method: peak (0.7995) in ( 320 , 245 , 21 ) for Car 1 (View 1). (b) Conventional method: peak (0.8097) in ( 100 , 102 , 27 ) for Car 2 (View 2). (c) Conventional method: peak (0.7832) in (293, 278, 27) for Car 3 (View 3). (d) Proposed method: peak (0.9878) in ( 320 , 245 , 15 ) for Car 1 (View 4). (e) Proposed method: peak (0.9867) in ( 98 , 102 , 18 ) for Car 2 (View 5). (f) Proposed method: peak (0.9960) in (294, 280, 21) for Car 3 (View 6).

Datasets

Datasets associated with ISP articles are stored in an online database called MIDAS. Clicking a "View" link in an OSA ISP article will launch the ISP software (if installed) and pull the relevant data from MIDAS. Visit MIDAS to browse and download the datasets directly. A package containing the PDF article and full datasets is available in MIDAS for offline viewing.

Questions or Problems? See the ISP FAQ. Already used the ISP software? Take a quick survey to tell us what you think.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

NCC ( S , T ) = | T E ( T ) S E ( S ) | ( T E ( T ) ) 2 ( S E ( S ) ) 2 2 .

Metrics