Abstract

We propose parallel phase-shifting color digital holography using two phase shifts. This technique enables the instantaneous acquisition of three-dimensional information of a moving color object. The interference fringe image that contains six holograms with two phase shifts for three wavelengths is recorded by a single shot exposure. Decreasing the degree of space-division multiplexing of these holograms makes it possible to suppress the degradation of the image quality owing to the aliasing caused by the multiplexing. Numerical simulation and preliminary experiments demonstrate the validity of the proposed technique; the reconstructed images of the proposed technique are clearer than those of the previously reported single-shot phase-shifting color digital holography that uses four phase steps.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77-79 (1967).
    [CrossRef]
  2. M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslavskii, “Reconstruction of a hologram with a computer,” Sov. Phys. Tech. Phys. 17, 333-334 (1972).
  3. T.-C. Poon, “Recent progress in optical scanning holography,” J. Hologr. Speckle 1, 6-25 (2004).
    [CrossRef]
  4. T -C. Poon, Digital Holography and Three-Dimensional Display: Principles and Applications (Springer, 2006).
    [CrossRef]
  5. S. Murata, S. Hayashida, and Y. Tanaka, “Simultaneous measurement of particle depth and size using digital holography,” in Proceedings of the Ninth International Symposium on Flow Visualization (IOS Press, 2000), pp. 371.1-371.6.
  6. T. Yamaguchi, S. Murata, and T. Morihara, “Three-dimensional flow measurement by digital holographic particle image velocimetry with spatio-temporal derivative method,” JSME Int. J. Ser. B 49, 1133-1140 (2006).
    [CrossRef]
  7. B. Javidi and E. Tajahuerce, “Three-dimensional object recognition by use of digital holography,” Opt. Lett. 25, 610-612(2000).
    [CrossRef]
  8. T. Nomura and B. Javidi, “Object recognition by use of polarimetric phase-shifting digital holography,” Opt. Lett. 32, 2146-2148 (2007).
    [CrossRef] [PubMed]
  9. I. Yamaguchi, T. Ida, M. Yokota, and K. Yamashita, “Surface shape measurement by phase-shifting digital holography with a wavelength shift,” Appl. Opt. 45, 7610-7616 (2006).
    [CrossRef] [PubMed]
  10. See, for example, J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).
  11. D. Gabor, “A new microscope principle,” Nature 161, 777-778(1948).
    [CrossRef] [PubMed]
  12. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268-1270 (1997).
    [CrossRef] [PubMed]
  13. M. Sasada, Y. Awatsuji, and T. Kubota, “Parallel quasi-phase-shifting digital holography that can achieve instantaneous measurement,” in Technical Digest of the 2004 ICO International Conference: Optics and Photonics in Technology Frontier (International Commission for Optics, 2004), pp. 187-188.
  14. M. Sasada, A. Fujii, Y. Awatsuji, and T. Kubota, “Parallel quasi-phase-shifting digital holography implemented by simple optical set up and effective use of image-sensor pixels,” in Technical Digest of the 2004 ICO International Conference: Optics and Photonics in Technology Frontier (International Commission for Optics, 2004), pp. 357-358.
  15. Y. Awatsuji, M. Sasada, and T. Kubota, “Parallel quasi-phase-shifting digital holography,” Appl. Phys. Lett. 85, 1069-1071(2004).
    [CrossRef]
  16. Y. Awatsuji, M. Sasada, A. Fujii, and T. Kubota, “Scheme to improve the reconstructed image in parallel quasi-phase-shifting digital holography,” Appl. Opt. 45, 968-974(2006).
    [CrossRef] [PubMed]
  17. Y. Awatsuji, A. Fujii, T. Kubota, and O. Matoba, “Parallel three-step phase-shifting digital holography,” Appl. Opt. 45, 2995-3002 (2006).
    [CrossRef] [PubMed]
  18. T. Nomura, S. Murata, E. Nitanai, and T. Numata, “Phase-shifting digital holography with a phase difference between orthogonal polarizations,” Appl. Opt. 45, 4873-4877 (2006).
    [CrossRef] [PubMed]
  19. M. P. Arroyo and J. Lobera, “A comparison of temporal, spatial and parallel phase shifting algorithms for digital image plane holography,” Meas. Sci. Technol. 19, 074006 (2008).
    [CrossRef]
  20. S. Yeom, B. Javidi, P. Ferraro, D. Alfieri, S. De Nicola, and A. Finizio, “Three-dimensional color object visualization and recognition using multi-wavelength computational holography,” Opt. Express 15, 9394-9402 (2007).
    [CrossRef] [PubMed]
  21. P. Picart, D. Mounier, and J. M. Desse, “High-resolution digital two-color holographic metrology,” Opt. Lett. 33, 276-278(2008).
    [CrossRef] [PubMed]
  22. P. Ferraro, S. Grilli, L. Miccio, D. Alfieri, S. De Nicola, A. Finizio, and B. Javidi, “Full color 3-D imaging by digital holography and removal of chromatic aberrations,” J. Disp. Technol. 4, 97-100 (2008).
    [CrossRef]
  23. I. Yamaguchi, T. Matsumura, and J. Kato, “Phase-shifting color digital holography,” Opt. Lett. 27, 1108-1110 (2002).
    [CrossRef]
  24. A. Fujii, Y. Awatsuji, and T. Kubota, “Parallel quasi-phase-shifting color digital holography,” in Technical Digest of Annual Meeting of the Optical Society of Japan 2005 (Optics, 2005), pp. 256-257 (2005), in Japanese.
  25. Y. Awatsuji, T. Koyama, A. Kaneko, A. Fujii, K. Nishio, S. Ura, and T. Kubota, “Single-shot phase-shifting color digital holography,” in Conference Proceedings of the IEEE LEOS Annual Meeting (IEEE, 2007), pp. 84-85.
    [CrossRef]
  26. K. Sato, H. Fujiwara, M. Morimoto, and K. Fujii, “Simultaneous recording of practical 3D color images by phase-shifting in-line holography,” Proc. SPIE 6488, 64880S (2007).
    [CrossRef]
  27. P. Guo and A. J. Devaney, “Digital microscopy using phase-shifting digital holography with two reference waves,” Opt. Lett. 29, 857-859 (2004).
    [CrossRef] [PubMed]
  28. X. F. Meng, L. Z. Cai, X. F. Xu, X. L. Yang, X. X. Shen, G. Y. Dong, and Y. R. Wang, “Two-step phase-shifting interferometry and its application in image encryption,” Opt. Lett. 31, 1414-1416 (2006).
    [CrossRef] [PubMed]
  29. Y. Awatsuji, T. Tahara, A. Kaneko, T. Koyama, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel two-step phase-shifting digital holography,” Appl. Opt. 47, D183-D189(2008).
    [CrossRef] [PubMed]

2008

M. P. Arroyo and J. Lobera, “A comparison of temporal, spatial and parallel phase shifting algorithms for digital image plane holography,” Meas. Sci. Technol. 19, 074006 (2008).
[CrossRef]

P. Picart, D. Mounier, and J. M. Desse, “High-resolution digital two-color holographic metrology,” Opt. Lett. 33, 276-278(2008).
[CrossRef] [PubMed]

P. Ferraro, S. Grilli, L. Miccio, D. Alfieri, S. De Nicola, A. Finizio, and B. Javidi, “Full color 3-D imaging by digital holography and removal of chromatic aberrations,” J. Disp. Technol. 4, 97-100 (2008).
[CrossRef]

Y. Awatsuji, T. Tahara, A. Kaneko, T. Koyama, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel two-step phase-shifting digital holography,” Appl. Opt. 47, D183-D189(2008).
[CrossRef] [PubMed]

2007

2006

2004

Y. Awatsuji, M. Sasada, and T. Kubota, “Parallel quasi-phase-shifting digital holography,” Appl. Phys. Lett. 85, 1069-1071(2004).
[CrossRef]

P. Guo and A. J. Devaney, “Digital microscopy using phase-shifting digital holography with two reference waves,” Opt. Lett. 29, 857-859 (2004).
[CrossRef] [PubMed]

T.-C. Poon, “Recent progress in optical scanning holography,” J. Hologr. Speckle 1, 6-25 (2004).
[CrossRef]

2002

2000

1997

1972

M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslavskii, “Reconstruction of a hologram with a computer,” Sov. Phys. Tech. Phys. 17, 333-334 (1972).

1967

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77-79 (1967).
[CrossRef]

1948

D. Gabor, “A new microscope principle,” Nature 161, 777-778(1948).
[CrossRef] [PubMed]

Alfieri, D.

P. Ferraro, S. Grilli, L. Miccio, D. Alfieri, S. De Nicola, A. Finizio, and B. Javidi, “Full color 3-D imaging by digital holography and removal of chromatic aberrations,” J. Disp. Technol. 4, 97-100 (2008).
[CrossRef]

S. Yeom, B. Javidi, P. Ferraro, D. Alfieri, S. De Nicola, and A. Finizio, “Three-dimensional color object visualization and recognition using multi-wavelength computational holography,” Opt. Express 15, 9394-9402 (2007).
[CrossRef] [PubMed]

Arroyo, M. P.

M. P. Arroyo and J. Lobera, “A comparison of temporal, spatial and parallel phase shifting algorithms for digital image plane holography,” Meas. Sci. Technol. 19, 074006 (2008).
[CrossRef]

Awatsuji, Y.

Y. Awatsuji, T. Tahara, A. Kaneko, T. Koyama, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel two-step phase-shifting digital holography,” Appl. Opt. 47, D183-D189(2008).
[CrossRef] [PubMed]

Y. Awatsuji, A. Fujii, T. Kubota, and O. Matoba, “Parallel three-step phase-shifting digital holography,” Appl. Opt. 45, 2995-3002 (2006).
[CrossRef] [PubMed]

Y. Awatsuji, M. Sasada, A. Fujii, and T. Kubota, “Scheme to improve the reconstructed image in parallel quasi-phase-shifting digital holography,” Appl. Opt. 45, 968-974(2006).
[CrossRef] [PubMed]

Y. Awatsuji, M. Sasada, and T. Kubota, “Parallel quasi-phase-shifting digital holography,” Appl. Phys. Lett. 85, 1069-1071(2004).
[CrossRef]

M. Sasada, A. Fujii, Y. Awatsuji, and T. Kubota, “Parallel quasi-phase-shifting digital holography implemented by simple optical set up and effective use of image-sensor pixels,” in Technical Digest of the 2004 ICO International Conference: Optics and Photonics in Technology Frontier (International Commission for Optics, 2004), pp. 357-358.

M. Sasada, Y. Awatsuji, and T. Kubota, “Parallel quasi-phase-shifting digital holography that can achieve instantaneous measurement,” in Technical Digest of the 2004 ICO International Conference: Optics and Photonics in Technology Frontier (International Commission for Optics, 2004), pp. 187-188.

A. Fujii, Y. Awatsuji, and T. Kubota, “Parallel quasi-phase-shifting color digital holography,” in Technical Digest of Annual Meeting of the Optical Society of Japan 2005 (Optics, 2005), pp. 256-257 (2005), in Japanese.

Y. Awatsuji, T. Koyama, A. Kaneko, A. Fujii, K. Nishio, S. Ura, and T. Kubota, “Single-shot phase-shifting color digital holography,” in Conference Proceedings of the IEEE LEOS Annual Meeting (IEEE, 2007), pp. 84-85.
[CrossRef]

Cai, L. Z.

De Nicola, S.

P. Ferraro, S. Grilli, L. Miccio, D. Alfieri, S. De Nicola, A. Finizio, and B. Javidi, “Full color 3-D imaging by digital holography and removal of chromatic aberrations,” J. Disp. Technol. 4, 97-100 (2008).
[CrossRef]

S. Yeom, B. Javidi, P. Ferraro, D. Alfieri, S. De Nicola, and A. Finizio, “Three-dimensional color object visualization and recognition using multi-wavelength computational holography,” Opt. Express 15, 9394-9402 (2007).
[CrossRef] [PubMed]

Desse, J. M.

Devaney, A. J.

Dong, G. Y.

Ferraro, P.

P. Ferraro, S. Grilli, L. Miccio, D. Alfieri, S. De Nicola, A. Finizio, and B. Javidi, “Full color 3-D imaging by digital holography and removal of chromatic aberrations,” J. Disp. Technol. 4, 97-100 (2008).
[CrossRef]

S. Yeom, B. Javidi, P. Ferraro, D. Alfieri, S. De Nicola, and A. Finizio, “Three-dimensional color object visualization and recognition using multi-wavelength computational holography,” Opt. Express 15, 9394-9402 (2007).
[CrossRef] [PubMed]

Finizio, A.

P. Ferraro, S. Grilli, L. Miccio, D. Alfieri, S. De Nicola, A. Finizio, and B. Javidi, “Full color 3-D imaging by digital holography and removal of chromatic aberrations,” J. Disp. Technol. 4, 97-100 (2008).
[CrossRef]

S. Yeom, B. Javidi, P. Ferraro, D. Alfieri, S. De Nicola, and A. Finizio, “Three-dimensional color object visualization and recognition using multi-wavelength computational holography,” Opt. Express 15, 9394-9402 (2007).
[CrossRef] [PubMed]

Fujii, A.

Y. Awatsuji, A. Fujii, T. Kubota, and O. Matoba, “Parallel three-step phase-shifting digital holography,” Appl. Opt. 45, 2995-3002 (2006).
[CrossRef] [PubMed]

Y. Awatsuji, M. Sasada, A. Fujii, and T. Kubota, “Scheme to improve the reconstructed image in parallel quasi-phase-shifting digital holography,” Appl. Opt. 45, 968-974(2006).
[CrossRef] [PubMed]

M. Sasada, A. Fujii, Y. Awatsuji, and T. Kubota, “Parallel quasi-phase-shifting digital holography implemented by simple optical set up and effective use of image-sensor pixels,” in Technical Digest of the 2004 ICO International Conference: Optics and Photonics in Technology Frontier (International Commission for Optics, 2004), pp. 357-358.

A. Fujii, Y. Awatsuji, and T. Kubota, “Parallel quasi-phase-shifting color digital holography,” in Technical Digest of Annual Meeting of the Optical Society of Japan 2005 (Optics, 2005), pp. 256-257 (2005), in Japanese.

Y. Awatsuji, T. Koyama, A. Kaneko, A. Fujii, K. Nishio, S. Ura, and T. Kubota, “Single-shot phase-shifting color digital holography,” in Conference Proceedings of the IEEE LEOS Annual Meeting (IEEE, 2007), pp. 84-85.
[CrossRef]

Fujii, K.

K. Sato, H. Fujiwara, M. Morimoto, and K. Fujii, “Simultaneous recording of practical 3D color images by phase-shifting in-line holography,” Proc. SPIE 6488, 64880S (2007).
[CrossRef]

Fujiwara, H.

K. Sato, H. Fujiwara, M. Morimoto, and K. Fujii, “Simultaneous recording of practical 3D color images by phase-shifting in-line holography,” Proc. SPIE 6488, 64880S (2007).
[CrossRef]

Gabor, D.

D. Gabor, “A new microscope principle,” Nature 161, 777-778(1948).
[CrossRef] [PubMed]

Goodman, J. W.

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77-79 (1967).
[CrossRef]

See, for example, J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).

Grilli, S.

P. Ferraro, S. Grilli, L. Miccio, D. Alfieri, S. De Nicola, A. Finizio, and B. Javidi, “Full color 3-D imaging by digital holography and removal of chromatic aberrations,” J. Disp. Technol. 4, 97-100 (2008).
[CrossRef]

Guo, P.

Hayashida, S.

S. Murata, S. Hayashida, and Y. Tanaka, “Simultaneous measurement of particle depth and size using digital holography,” in Proceedings of the Ninth International Symposium on Flow Visualization (IOS Press, 2000), pp. 371.1-371.6.

Ida, T.

Javidi, B.

Kaneko, A.

Y. Awatsuji, T. Tahara, A. Kaneko, T. Koyama, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel two-step phase-shifting digital holography,” Appl. Opt. 47, D183-D189(2008).
[CrossRef] [PubMed]

Y. Awatsuji, T. Koyama, A. Kaneko, A. Fujii, K. Nishio, S. Ura, and T. Kubota, “Single-shot phase-shifting color digital holography,” in Conference Proceedings of the IEEE LEOS Annual Meeting (IEEE, 2007), pp. 84-85.
[CrossRef]

Kato, J.

Koyama, T.

Y. Awatsuji, T. Tahara, A. Kaneko, T. Koyama, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel two-step phase-shifting digital holography,” Appl. Opt. 47, D183-D189(2008).
[CrossRef] [PubMed]

Y. Awatsuji, T. Koyama, A. Kaneko, A. Fujii, K. Nishio, S. Ura, and T. Kubota, “Single-shot phase-shifting color digital holography,” in Conference Proceedings of the IEEE LEOS Annual Meeting (IEEE, 2007), pp. 84-85.
[CrossRef]

Kronrod, M. A.

M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslavskii, “Reconstruction of a hologram with a computer,” Sov. Phys. Tech. Phys. 17, 333-334 (1972).

Kubota, T.

Y. Awatsuji, T. Tahara, A. Kaneko, T. Koyama, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel two-step phase-shifting digital holography,” Appl. Opt. 47, D183-D189(2008).
[CrossRef] [PubMed]

Y. Awatsuji, M. Sasada, A. Fujii, and T. Kubota, “Scheme to improve the reconstructed image in parallel quasi-phase-shifting digital holography,” Appl. Opt. 45, 968-974(2006).
[CrossRef] [PubMed]

Y. Awatsuji, A. Fujii, T. Kubota, and O. Matoba, “Parallel three-step phase-shifting digital holography,” Appl. Opt. 45, 2995-3002 (2006).
[CrossRef] [PubMed]

Y. Awatsuji, M. Sasada, and T. Kubota, “Parallel quasi-phase-shifting digital holography,” Appl. Phys. Lett. 85, 1069-1071(2004).
[CrossRef]

A. Fujii, Y. Awatsuji, and T. Kubota, “Parallel quasi-phase-shifting color digital holography,” in Technical Digest of Annual Meeting of the Optical Society of Japan 2005 (Optics, 2005), pp. 256-257 (2005), in Japanese.

M. Sasada, Y. Awatsuji, and T. Kubota, “Parallel quasi-phase-shifting digital holography that can achieve instantaneous measurement,” in Technical Digest of the 2004 ICO International Conference: Optics and Photonics in Technology Frontier (International Commission for Optics, 2004), pp. 187-188.

M. Sasada, A. Fujii, Y. Awatsuji, and T. Kubota, “Parallel quasi-phase-shifting digital holography implemented by simple optical set up and effective use of image-sensor pixels,” in Technical Digest of the 2004 ICO International Conference: Optics and Photonics in Technology Frontier (International Commission for Optics, 2004), pp. 357-358.

Y. Awatsuji, T. Koyama, A. Kaneko, A. Fujii, K. Nishio, S. Ura, and T. Kubota, “Single-shot phase-shifting color digital holography,” in Conference Proceedings of the IEEE LEOS Annual Meeting (IEEE, 2007), pp. 84-85.
[CrossRef]

Lawrence, R. W.

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77-79 (1967).
[CrossRef]

Lobera, J.

M. P. Arroyo and J. Lobera, “A comparison of temporal, spatial and parallel phase shifting algorithms for digital image plane holography,” Meas. Sci. Technol. 19, 074006 (2008).
[CrossRef]

Matoba, O.

Matsumura, T.

Meng, X. F.

Merzlyakov, N. S.

M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslavskii, “Reconstruction of a hologram with a computer,” Sov. Phys. Tech. Phys. 17, 333-334 (1972).

Miccio, L.

P. Ferraro, S. Grilli, L. Miccio, D. Alfieri, S. De Nicola, A. Finizio, and B. Javidi, “Full color 3-D imaging by digital holography and removal of chromatic aberrations,” J. Disp. Technol. 4, 97-100 (2008).
[CrossRef]

Morihara, T.

T. Yamaguchi, S. Murata, and T. Morihara, “Three-dimensional flow measurement by digital holographic particle image velocimetry with spatio-temporal derivative method,” JSME Int. J. Ser. B 49, 1133-1140 (2006).
[CrossRef]

Morimoto, M.

K. Sato, H. Fujiwara, M. Morimoto, and K. Fujii, “Simultaneous recording of practical 3D color images by phase-shifting in-line holography,” Proc. SPIE 6488, 64880S (2007).
[CrossRef]

Mounier, D.

Murata, S.

T. Nomura, S. Murata, E. Nitanai, and T. Numata, “Phase-shifting digital holography with a phase difference between orthogonal polarizations,” Appl. Opt. 45, 4873-4877 (2006).
[CrossRef] [PubMed]

T. Yamaguchi, S. Murata, and T. Morihara, “Three-dimensional flow measurement by digital holographic particle image velocimetry with spatio-temporal derivative method,” JSME Int. J. Ser. B 49, 1133-1140 (2006).
[CrossRef]

S. Murata, S. Hayashida, and Y. Tanaka, “Simultaneous measurement of particle depth and size using digital holography,” in Proceedings of the Ninth International Symposium on Flow Visualization (IOS Press, 2000), pp. 371.1-371.6.

Nishio, K.

Y. Awatsuji, T. Tahara, A. Kaneko, T. Koyama, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel two-step phase-shifting digital holography,” Appl. Opt. 47, D183-D189(2008).
[CrossRef] [PubMed]

Y. Awatsuji, T. Koyama, A. Kaneko, A. Fujii, K. Nishio, S. Ura, and T. Kubota, “Single-shot phase-shifting color digital holography,” in Conference Proceedings of the IEEE LEOS Annual Meeting (IEEE, 2007), pp. 84-85.
[CrossRef]

Nitanai, E.

Nomura, T.

Numata, T.

Picart, P.

Poon, T -C.

T -C. Poon, Digital Holography and Three-Dimensional Display: Principles and Applications (Springer, 2006).
[CrossRef]

Poon, T.-C.

T.-C. Poon, “Recent progress in optical scanning holography,” J. Hologr. Speckle 1, 6-25 (2004).
[CrossRef]

Sasada, M.

Y. Awatsuji, M. Sasada, A. Fujii, and T. Kubota, “Scheme to improve the reconstructed image in parallel quasi-phase-shifting digital holography,” Appl. Opt. 45, 968-974(2006).
[CrossRef] [PubMed]

Y. Awatsuji, M. Sasada, and T. Kubota, “Parallel quasi-phase-shifting digital holography,” Appl. Phys. Lett. 85, 1069-1071(2004).
[CrossRef]

M. Sasada, Y. Awatsuji, and T. Kubota, “Parallel quasi-phase-shifting digital holography that can achieve instantaneous measurement,” in Technical Digest of the 2004 ICO International Conference: Optics and Photonics in Technology Frontier (International Commission for Optics, 2004), pp. 187-188.

M. Sasada, A. Fujii, Y. Awatsuji, and T. Kubota, “Parallel quasi-phase-shifting digital holography implemented by simple optical set up and effective use of image-sensor pixels,” in Technical Digest of the 2004 ICO International Conference: Optics and Photonics in Technology Frontier (International Commission for Optics, 2004), pp. 357-358.

Sato, K.

K. Sato, H. Fujiwara, M. Morimoto, and K. Fujii, “Simultaneous recording of practical 3D color images by phase-shifting in-line holography,” Proc. SPIE 6488, 64880S (2007).
[CrossRef]

Shen, X. X.

Tahara, T.

Tajahuerce, E.

Tanaka, Y.

S. Murata, S. Hayashida, and Y. Tanaka, “Simultaneous measurement of particle depth and size using digital holography,” in Proceedings of the Ninth International Symposium on Flow Visualization (IOS Press, 2000), pp. 371.1-371.6.

Ura, S.

Y. Awatsuji, T. Tahara, A. Kaneko, T. Koyama, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel two-step phase-shifting digital holography,” Appl. Opt. 47, D183-D189(2008).
[CrossRef] [PubMed]

Y. Awatsuji, T. Koyama, A. Kaneko, A. Fujii, K. Nishio, S. Ura, and T. Kubota, “Single-shot phase-shifting color digital holography,” in Conference Proceedings of the IEEE LEOS Annual Meeting (IEEE, 2007), pp. 84-85.
[CrossRef]

Wang, Y. R.

Xu, X. F.

Yamaguchi, I.

Yamaguchi, T.

T. Yamaguchi, S. Murata, and T. Morihara, “Three-dimensional flow measurement by digital holographic particle image velocimetry with spatio-temporal derivative method,” JSME Int. J. Ser. B 49, 1133-1140 (2006).
[CrossRef]

Yamashita, K.

Yang, X. L.

Yaroslavskii, L. P.

M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslavskii, “Reconstruction of a hologram with a computer,” Sov. Phys. Tech. Phys. 17, 333-334 (1972).

Yeom, S.

Yokota, M.

Zhang, T.

Appl. Opt.

Appl. Phys. Lett.

Y. Awatsuji, M. Sasada, and T. Kubota, “Parallel quasi-phase-shifting digital holography,” Appl. Phys. Lett. 85, 1069-1071(2004).
[CrossRef]

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77-79 (1967).
[CrossRef]

J. Disp. Technol.

P. Ferraro, S. Grilli, L. Miccio, D. Alfieri, S. De Nicola, A. Finizio, and B. Javidi, “Full color 3-D imaging by digital holography and removal of chromatic aberrations,” J. Disp. Technol. 4, 97-100 (2008).
[CrossRef]

J. Hologr. Speckle

T.-C. Poon, “Recent progress in optical scanning holography,” J. Hologr. Speckle 1, 6-25 (2004).
[CrossRef]

JSME Int. J. Ser. B

T. Yamaguchi, S. Murata, and T. Morihara, “Three-dimensional flow measurement by digital holographic particle image velocimetry with spatio-temporal derivative method,” JSME Int. J. Ser. B 49, 1133-1140 (2006).
[CrossRef]

Meas. Sci. Technol.

M. P. Arroyo and J. Lobera, “A comparison of temporal, spatial and parallel phase shifting algorithms for digital image plane holography,” Meas. Sci. Technol. 19, 074006 (2008).
[CrossRef]

Nature

D. Gabor, “A new microscope principle,” Nature 161, 777-778(1948).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Proc. SPIE

K. Sato, H. Fujiwara, M. Morimoto, and K. Fujii, “Simultaneous recording of practical 3D color images by phase-shifting in-line holography,” Proc. SPIE 6488, 64880S (2007).
[CrossRef]

Sov. Phys. Tech. Phys.

M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslavskii, “Reconstruction of a hologram with a computer,” Sov. Phys. Tech. Phys. 17, 333-334 (1972).

Other

T -C. Poon, Digital Holography and Three-Dimensional Display: Principles and Applications (Springer, 2006).
[CrossRef]

S. Murata, S. Hayashida, and Y. Tanaka, “Simultaneous measurement of particle depth and size using digital holography,” in Proceedings of the Ninth International Symposium on Flow Visualization (IOS Press, 2000), pp. 371.1-371.6.

See, for example, J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).

M. Sasada, Y. Awatsuji, and T. Kubota, “Parallel quasi-phase-shifting digital holography that can achieve instantaneous measurement,” in Technical Digest of the 2004 ICO International Conference: Optics and Photonics in Technology Frontier (International Commission for Optics, 2004), pp. 187-188.

M. Sasada, A. Fujii, Y. Awatsuji, and T. Kubota, “Parallel quasi-phase-shifting digital holography implemented by simple optical set up and effective use of image-sensor pixels,” in Technical Digest of the 2004 ICO International Conference: Optics and Photonics in Technology Frontier (International Commission for Optics, 2004), pp. 357-358.

A. Fujii, Y. Awatsuji, and T. Kubota, “Parallel quasi-phase-shifting color digital holography,” in Technical Digest of Annual Meeting of the Optical Society of Japan 2005 (Optics, 2005), pp. 256-257 (2005), in Japanese.

Y. Awatsuji, T. Koyama, A. Kaneko, A. Fujii, K. Nishio, S. Ura, and T. Kubota, “Single-shot phase-shifting color digital holography,” in Conference Proceedings of the IEEE LEOS Annual Meeting (IEEE, 2007), pp. 84-85.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Recorded hologram and processing procedure of image reconstruction of a previous parallel phase-shifting color digital holography using three phase shifts: I B ( 0 ) , I B ( 2 π / 3 ) , I B ( 4 π / 3 ) , I G ( 0 ) , I G ( 2 π / 3 ) , I G ( 4 π / 3 ) , I R ( 0 ) , I R ( 2 π / 3 ) , and I R ( 4 π / 3 ) are nine holograms required for the technique. Subscripts B, G, and R indicate blue, green, and red, respectively; 0, 2 π / 3 , and 4 π / 3 represent phase shifts of the reference wave.

Fig. 2
Fig. 2

Example of the optical setup for parallel phase-shifting color digital holography by use of two phase shifts: M, mirror; HM, half-mirror; OB, microscope objective; CL, collimator lens.

Fig. 3
Fig. 3

Configurations of the polarizer and wavelength-filter arrays attached to the image sensor: (a) polarizer array, (b) wavelength-filter array, (c)  interference fringe image that contains six holograms.

Fig. 4
Fig. 4

Processing procedure for image reconstruction of parallel phase-shifting color digital holography by use of two phase shifts: I B ( 0 ) , I B ( π / 2 ) , I G ( 0 ) , I G ( π / 2 ) , I R ( 0 ) , and I R ( π / 2 ) are the six holograms that are necessary for the technique. Subscripts B, G, and R indicate blue, green, and red, respectively; 0 and π / 2 represent phase shifts of the reference wave.

Fig. 5
Fig. 5

Object used in the numerical simulation for (a) amplitude distribution and (b) phase distribution.

Fig. 6
Fig. 6

Reconstructed images obtained with the proposed technique. Amplitude distributions of (a) blue, (b) green, (c) red; phase distributions of (d) blue, (e) green, (f) red.

Fig. 7
Fig. 7

Reconstructed images obtained with the previous parallel phase-shifting technique using four phase shifts. Amplitude distributions of (a) blue, (b) green, (c) red; phase distributions of (d) blue, (e) green (f) red.

Fig. 8
Fig. 8

Color-synthesized images: (a) obtained with the proposed technique, (b) magnified image of (a), (c) obtained with the previous technique, (d) magnified image of (c).

Fig. 9
Fig. 9

Optical setup of the preliminary experiment: (a) schematic diagram of the recording system and (b) photograph of the color object.

Fig. 10
Fig. 10

Reconstructed images of the proposed technique (a) blue, (b) green, (c) red and previous technique (d) blue, (e) green, (f) red.

Fig. 11
Fig. 11

Color-synthesized images obtained with (a) the proposed technique and (b) the previous technique.

Fig. 12
Fig. 12

Other configurations of (a)  the polarizer array, (b) the wavelength-filter array, (c) an interference fringe image that contains six holograms.

Fig. 13
Fig. 13

Reconstructed images obtained with the configuration in Fig. 12: (a) blue, (b) green, (c) red, (d) color-synthesized image.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

u j ( x , y ) = 1 3 { I j ( 0 ) + I j ( 2 π 3 ) exp ( 2 π 3 i ) + I j ( 4 π 3 ) exp ( 4 π 3 i ) } ,
U j ( X , Y ) = u j ( x , y ) exp [ 2 π λ j i { Z + ( X x ) 2 + ( Y y ) 2 2 Z } ] d x d y .
u j ( x , y ) = 1 2 A r j [ { I j ( 0 ) a j ( x , y ) } i { I j ( π 2 ) a j ( x , y ) } ] .
a j ( x , y ) = v j v j 2 2 w j 2 ,
v j = I j ( 0 ) + I j ( π 2 ) + 2 A r j 2 ,
w j = I j ( 0 ) 2 + I j ( π 2 ) 2 + 4 A r j 2 .

Metrics