Abstract

In this paper, we propose a novel approach for resolution-enhanced computational reconstruction of far 3-D objects by employing a direct pixel mapping (DPM) method in the curving-effective integral imaging (CEII) system. In this method, by using the DPM method, an elemental image array (EIA) picked up from a far 3-D object can be computationally transformed into a new EIA, which virtually looks like the EIA picked up from a near object. Therefore, with this newly transformed EIA a much better resolution- enhanced object image can be reconstructed in the CEII system. Good experimental results confirmed the feasibility of the proposed method.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Lippmann, “La photographie integrale,” C. R. Acad. Sci. 146, 446-451 (1908).
  2. S. A. Benton, Selected Papers on Three-Dimensional Displays (SPIE Optical Engineering Press, 2001).
  3. S.-C. Kim and E.-S. Kim, “Performance analysis of stereoscopic three-dimensional projection display systems,” 3D Res. 1, 010101 (2009).
  4. Y. Kim, K. Hong, and B. Lee, “Recent researches based on integral imaging display method,” 3D Res. 1, 010102 (2009).
  5. S.-H. Hong and B. Javidi, “Distortion-tolerant 3D recognition of occluded objects using computational integral imaging,” Opt. Express 14, 12085-12095 (2006).
    [CrossRef] [PubMed]
  6. J. Kim, S.-W. Min, and B. Lee, “Viewing window expansion of integral floating display,” Appl. Opt. 48, 862-867 (2009).
    [CrossRef] [PubMed]
  7. K.-J. Lee, D.-C. Hwang, S.-C. Kim, and E.-S. Kim, “Blur-metric-based resolution enhancement of computationally reconstructed integral images,” Appl. Opt. 47, 2859-2869 (2008).
    [CrossRef] [PubMed]
  8. I. Moon and B. Javidi, “Three-dimensional visualization of objects in scattering medium by use of computational integral imaging,” Opt. Express 16, 13080-13089 (2008).
    [CrossRef] [PubMed]
  9. J.-S. Jang and B. Javidi, “Formation of orthoscopic three-dimensional real images in direct pickup one-step integral imaging,” Opt. Eng. 42, 1869-1870 (2003).
    [CrossRef]
  10. J.-H. Park, J. Kim, Y. Kim, and B. Lee, “Resolution-enhanced three-dimension/two-dimension convertible display based on integral imaging,” Opt. Express 13 , 1875-1884 (2005).
    [CrossRef] [PubMed]
  11. H. Arimoto and B. Javidi, “Integral three-dimensional imaging with digital reconstruction,” Opt. Lett. 26, 157-159 (2001).
    [CrossRef]
  12. H.-H. Kang, D.-H. Shin, and E.-S. Kim, “Compression scheme of sub-images using Karhunen-Loeve Transform in three-dimensional integral imaging,” Opt. Commun. 281, 3640-3647 (2008).
    [CrossRef]
  13. B. Tavakoli, B. Javidi, and E. Watson, “Three-dimensional visualization by photon counting computation integral imaging,” Opt. Express 16, 4426-4436 (2008).
    [CrossRef] [PubMed]
  14. D.-H. Shin, B. Lee, and E.-S. Kim, “Multidirectional curved integral imaging with large depth by additional use of a large-aperture lens,” Appl. Opt. 45, 7375-7381 (2006).
    [CrossRef] [PubMed]
  15. J.-B. Hyun, D.-C. Hwang, D.-H. Shin, and E.-S. Kim, “Curved computational integral imaging reconstruction technique for resolution-enhanced display of three-dimensional object images,” Appl. Opt. 46 , 7697-7708 (2007).
    [CrossRef] [PubMed]
  16. D.-H. Shin and H. Yoo, “Signal model and granular-noise analysis of computational image reconstruction for curved integral imaging systems,” Appl. Opt. 48, 827-833 (2009).
    [CrossRef] [PubMed]
  17. J. Hyun, D.-C. Hwang, D.-H. Shin, B.-G. Lee, and E.-S. Kim, “Curved projection integral imaging using an additional large-aperture convex lens for viewing angle improvement,” ETRI J. 31, 105-110 (2009).
    [CrossRef]
  18. D.-H. Shin, H. Yoo, C.-W. Tan, B.-G. Lee, and J.-J. Lee, “Occlusion removal technique for improved recognition of partially occluded 3D objects in computational integral imaging,” Opt. Commun. 281, 4589-4597 (2008).
    [CrossRef]
  19. D.-C. Hwang, D.-H. Shin, S.-C. Kim, and E.-S. Kim, “Depth extraction of three-dimensional objects in space by the computational integral imaging reconstruction technique,” Appl. Opt. 47, D128-D135 (2008).
    [CrossRef] [PubMed]
  20. D.-H. Shin, B.-G. Lee, and J.-J. Lee, “Occlusion removal method of partially occluded 3D object using sub-image block matching in computational integral imaging,” Opt. Express 16, 16294-16304 (2008).
    [CrossRef] [PubMed]
  21. G. Li, D.-C. Hwang, and E.-S. Kim, “Effective depth detection of 3-D objects in space with picked-up and computationally reconstructed integral images,” Jpn. J. Appl. Phys. 48, 042401 (2009).
    [CrossRef]
  22. Y. Kim, J. Park, H. Choi, S. Jung, S. Min, and B. Lee, “Viewing-angle-enhanced integral imaging system using a curved lens array,” Opt. Express 12, 421-429 (2004).
    [CrossRef] [PubMed]
  23. Y. Kim, J. Park, S. Min, S. Jung, H. Choi, and B. Lee, “Wide-viewing-angle integral three-dimensional imaging system by curving a screen and a lens array,” Appl. Opt. 44, 546-552(2005).
    [CrossRef] [PubMed]
  24. F. L. Pedrotti and L. S. Pedrotti, Introduction to Optics (Prentice-Hall, 1993).

2009 (6)

J. Kim, S.-W. Min, and B. Lee, “Viewing window expansion of integral floating display,” Appl. Opt. 48, 862-867 (2009).
[CrossRef] [PubMed]

S.-C. Kim and E.-S. Kim, “Performance analysis of stereoscopic three-dimensional projection display systems,” 3D Res. 1, 010101 (2009).

Y. Kim, K. Hong, and B. Lee, “Recent researches based on integral imaging display method,” 3D Res. 1, 010102 (2009).

D.-H. Shin and H. Yoo, “Signal model and granular-noise analysis of computational image reconstruction for curved integral imaging systems,” Appl. Opt. 48, 827-833 (2009).
[CrossRef] [PubMed]

J. Hyun, D.-C. Hwang, D.-H. Shin, B.-G. Lee, and E.-S. Kim, “Curved projection integral imaging using an additional large-aperture convex lens for viewing angle improvement,” ETRI J. 31, 105-110 (2009).
[CrossRef]

G. Li, D.-C. Hwang, and E.-S. Kim, “Effective depth detection of 3-D objects in space with picked-up and computationally reconstructed integral images,” Jpn. J. Appl. Phys. 48, 042401 (2009).
[CrossRef]

2008 (7)

2007 (1)

2006 (2)

2005 (2)

2004 (1)

2003 (1)

J.-S. Jang and B. Javidi, “Formation of orthoscopic three-dimensional real images in direct pickup one-step integral imaging,” Opt. Eng. 42, 1869-1870 (2003).
[CrossRef]

2001 (1)

1908 (1)

G. Lippmann, “La photographie integrale,” C. R. Acad. Sci. 146, 446-451 (1908).

Arimoto, H.

Benton, S. A.

S. A. Benton, Selected Papers on Three-Dimensional Displays (SPIE Optical Engineering Press, 2001).

Choi, H.

Hong, K.

Y. Kim, K. Hong, and B. Lee, “Recent researches based on integral imaging display method,” 3D Res. 1, 010102 (2009).

Hong, S.-H.

Hwang, D.-C.

Hyun, J.

J. Hyun, D.-C. Hwang, D.-H. Shin, B.-G. Lee, and E.-S. Kim, “Curved projection integral imaging using an additional large-aperture convex lens for viewing angle improvement,” ETRI J. 31, 105-110 (2009).
[CrossRef]

Hyun, J.-B.

Jang, J.-S.

J.-S. Jang and B. Javidi, “Formation of orthoscopic three-dimensional real images in direct pickup one-step integral imaging,” Opt. Eng. 42, 1869-1870 (2003).
[CrossRef]

Javidi, B.

Jung, S.

Kang, H.-H.

H.-H. Kang, D.-H. Shin, and E.-S. Kim, “Compression scheme of sub-images using Karhunen-Loeve Transform in three-dimensional integral imaging,” Opt. Commun. 281, 3640-3647 (2008).
[CrossRef]

Kim, E.-S.

S.-C. Kim and E.-S. Kim, “Performance analysis of stereoscopic three-dimensional projection display systems,” 3D Res. 1, 010101 (2009).

G. Li, D.-C. Hwang, and E.-S. Kim, “Effective depth detection of 3-D objects in space with picked-up and computationally reconstructed integral images,” Jpn. J. Appl. Phys. 48, 042401 (2009).
[CrossRef]

J. Hyun, D.-C. Hwang, D.-H. Shin, B.-G. Lee, and E.-S. Kim, “Curved projection integral imaging using an additional large-aperture convex lens for viewing angle improvement,” ETRI J. 31, 105-110 (2009).
[CrossRef]

D.-C. Hwang, D.-H. Shin, S.-C. Kim, and E.-S. Kim, “Depth extraction of three-dimensional objects in space by the computational integral imaging reconstruction technique,” Appl. Opt. 47, D128-D135 (2008).
[CrossRef] [PubMed]

K.-J. Lee, D.-C. Hwang, S.-C. Kim, and E.-S. Kim, “Blur-metric-based resolution enhancement of computationally reconstructed integral images,” Appl. Opt. 47, 2859-2869 (2008).
[CrossRef] [PubMed]

H.-H. Kang, D.-H. Shin, and E.-S. Kim, “Compression scheme of sub-images using Karhunen-Loeve Transform in three-dimensional integral imaging,” Opt. Commun. 281, 3640-3647 (2008).
[CrossRef]

J.-B. Hyun, D.-C. Hwang, D.-H. Shin, and E.-S. Kim, “Curved computational integral imaging reconstruction technique for resolution-enhanced display of three-dimensional object images,” Appl. Opt. 46 , 7697-7708 (2007).
[CrossRef] [PubMed]

D.-H. Shin, B. Lee, and E.-S. Kim, “Multidirectional curved integral imaging with large depth by additional use of a large-aperture lens,” Appl. Opt. 45, 7375-7381 (2006).
[CrossRef] [PubMed]

Kim, J.

Kim, S.-C.

Kim, Y.

Lee, B.

Lee, B.-G.

J. Hyun, D.-C. Hwang, D.-H. Shin, B.-G. Lee, and E.-S. Kim, “Curved projection integral imaging using an additional large-aperture convex lens for viewing angle improvement,” ETRI J. 31, 105-110 (2009).
[CrossRef]

D.-H. Shin, H. Yoo, C.-W. Tan, B.-G. Lee, and J.-J. Lee, “Occlusion removal technique for improved recognition of partially occluded 3D objects in computational integral imaging,” Opt. Commun. 281, 4589-4597 (2008).
[CrossRef]

D.-H. Shin, B.-G. Lee, and J.-J. Lee, “Occlusion removal method of partially occluded 3D object using sub-image block matching in computational integral imaging,” Opt. Express 16, 16294-16304 (2008).
[CrossRef] [PubMed]

Lee, J.-J.

D.-H. Shin, B.-G. Lee, and J.-J. Lee, “Occlusion removal method of partially occluded 3D object using sub-image block matching in computational integral imaging,” Opt. Express 16, 16294-16304 (2008).
[CrossRef] [PubMed]

D.-H. Shin, H. Yoo, C.-W. Tan, B.-G. Lee, and J.-J. Lee, “Occlusion removal technique for improved recognition of partially occluded 3D objects in computational integral imaging,” Opt. Commun. 281, 4589-4597 (2008).
[CrossRef]

Lee, K.-J.

Li, G.

G. Li, D.-C. Hwang, and E.-S. Kim, “Effective depth detection of 3-D objects in space with picked-up and computationally reconstructed integral images,” Jpn. J. Appl. Phys. 48, 042401 (2009).
[CrossRef]

Lippmann, G.

G. Lippmann, “La photographie integrale,” C. R. Acad. Sci. 146, 446-451 (1908).

Min, S.

Min, S.-W.

Moon, I.

Park, J.

Park, J.-H.

Pedrotti, F. L.

F. L. Pedrotti and L. S. Pedrotti, Introduction to Optics (Prentice-Hall, 1993).

Pedrotti, L. S.

F. L. Pedrotti and L. S. Pedrotti, Introduction to Optics (Prentice-Hall, 1993).

Shin, D.-H.

D.-H. Shin and H. Yoo, “Signal model and granular-noise analysis of computational image reconstruction for curved integral imaging systems,” Appl. Opt. 48, 827-833 (2009).
[CrossRef] [PubMed]

J. Hyun, D.-C. Hwang, D.-H. Shin, B.-G. Lee, and E.-S. Kim, “Curved projection integral imaging using an additional large-aperture convex lens for viewing angle improvement,” ETRI J. 31, 105-110 (2009).
[CrossRef]

D.-C. Hwang, D.-H. Shin, S.-C. Kim, and E.-S. Kim, “Depth extraction of three-dimensional objects in space by the computational integral imaging reconstruction technique,” Appl. Opt. 47, D128-D135 (2008).
[CrossRef] [PubMed]

D.-H. Shin, H. Yoo, C.-W. Tan, B.-G. Lee, and J.-J. Lee, “Occlusion removal technique for improved recognition of partially occluded 3D objects in computational integral imaging,” Opt. Commun. 281, 4589-4597 (2008).
[CrossRef]

D.-H. Shin, B.-G. Lee, and J.-J. Lee, “Occlusion removal method of partially occluded 3D object using sub-image block matching in computational integral imaging,” Opt. Express 16, 16294-16304 (2008).
[CrossRef] [PubMed]

H.-H. Kang, D.-H. Shin, and E.-S. Kim, “Compression scheme of sub-images using Karhunen-Loeve Transform in three-dimensional integral imaging,” Opt. Commun. 281, 3640-3647 (2008).
[CrossRef]

J.-B. Hyun, D.-C. Hwang, D.-H. Shin, and E.-S. Kim, “Curved computational integral imaging reconstruction technique for resolution-enhanced display of three-dimensional object images,” Appl. Opt. 46 , 7697-7708 (2007).
[CrossRef] [PubMed]

D.-H. Shin, B. Lee, and E.-S. Kim, “Multidirectional curved integral imaging with large depth by additional use of a large-aperture lens,” Appl. Opt. 45, 7375-7381 (2006).
[CrossRef] [PubMed]

Tan, C.-W.

D.-H. Shin, H. Yoo, C.-W. Tan, B.-G. Lee, and J.-J. Lee, “Occlusion removal technique for improved recognition of partially occluded 3D objects in computational integral imaging,” Opt. Commun. 281, 4589-4597 (2008).
[CrossRef]

Tavakoli, B.

Watson, E.

Yoo, H.

D.-H. Shin and H. Yoo, “Signal model and granular-noise analysis of computational image reconstruction for curved integral imaging systems,” Appl. Opt. 48, 827-833 (2009).
[CrossRef] [PubMed]

D.-H. Shin, H. Yoo, C.-W. Tan, B.-G. Lee, and J.-J. Lee, “Occlusion removal technique for improved recognition of partially occluded 3D objects in computational integral imaging,” Opt. Commun. 281, 4589-4597 (2008).
[CrossRef]

3D Res. (2)

S.-C. Kim and E.-S. Kim, “Performance analysis of stereoscopic three-dimensional projection display systems,” 3D Res. 1, 010101 (2009).

Y. Kim, K. Hong, and B. Lee, “Recent researches based on integral imaging display method,” 3D Res. 1, 010102 (2009).

Appl. Opt. (7)

C. R. Acad. Sci. (1)

G. Lippmann, “La photographie integrale,” C. R. Acad. Sci. 146, 446-451 (1908).

ETRI J. (1)

J. Hyun, D.-C. Hwang, D.-H. Shin, B.-G. Lee, and E.-S. Kim, “Curved projection integral imaging using an additional large-aperture convex lens for viewing angle improvement,” ETRI J. 31, 105-110 (2009).
[CrossRef]

Jpn. J. Appl. Phys. (1)

G. Li, D.-C. Hwang, and E.-S. Kim, “Effective depth detection of 3-D objects in space with picked-up and computationally reconstructed integral images,” Jpn. J. Appl. Phys. 48, 042401 (2009).
[CrossRef]

Opt. Commun. (2)

D.-H. Shin, H. Yoo, C.-W. Tan, B.-G. Lee, and J.-J. Lee, “Occlusion removal technique for improved recognition of partially occluded 3D objects in computational integral imaging,” Opt. Commun. 281, 4589-4597 (2008).
[CrossRef]

H.-H. Kang, D.-H. Shin, and E.-S. Kim, “Compression scheme of sub-images using Karhunen-Loeve Transform in three-dimensional integral imaging,” Opt. Commun. 281, 3640-3647 (2008).
[CrossRef]

Opt. Eng. (1)

J.-S. Jang and B. Javidi, “Formation of orthoscopic three-dimensional real images in direct pickup one-step integral imaging,” Opt. Eng. 42, 1869-1870 (2003).
[CrossRef]

Opt. Express (6)

Opt. Lett. (1)

Other (2)

S. A. Benton, Selected Papers on Three-Dimensional Displays (SPIE Optical Engineering Press, 2001).

F. L. Pedrotti and L. S. Pedrotti, Introduction to Optics (Prentice-Hall, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Two types of integral imaging system: (a) conversional integral imaging system, (b) curved integral imaging system.

Fig. 2
Fig. 2

Schematic of the CEII system: (a) pickup process, (b) reconstruction process.

Fig. 3
Fig. 3

Schematic diagram of the C-CIIR model for the CEII system.

Fig. 4
Fig. 4

Block diagram of the proposed resolution-enhanced computational CEII system: (a) pickup process, (b) direct pixel mapping process, (c) reconstruction process.

Fig. 5
Fig. 5

Operational principle of the DPM method in the CEII system.

Fig. 6
Fig. 6

Originally picked-up and transformed EIAs: (a) original EIA, (b) transformed EIA.

Fig. 7
Fig. 7

Reconstruction of POIs basing on (a) C-CIIR method, (b) proposed method.

Fig. 8
Fig. 8

Experiment setup for picking up the EIA of the test object in the CEII system.

Fig. 9
Fig. 9

Test objects, picked-up EIAs, and the newly transformed EIA: (a) test objects Tree, Cow, and House; (b) EIA picked up by the conventional system; (c) EIA picked up by the CEII system; (d)  EIA newly transformed by using the DPM method.

Fig. 10
Fig. 10

Zoom-in portions of the (a) EIA picked up by the conventional system, (b) EIA picked up by the CEII, (c) newly transformed EIA by the proposed method.

Fig. 11
Fig. 11

Experimental setup for reconstruction of object images from the newly transformed EIAs.

Fig. 12
Fig. 12

Reconstructed object images by using the (a) CIIR, (b) C-CIIR, (c) proposed method.

Fig. 13
Fig. 13

Zoom-in portions of the object image House reconstructed by the (a) CIIR, (b) C-CIIR, (c) proposed method.

Tables (2)

Tables Icon

Table 1 List of Abbreviations

Tables Icon

Table 2 Comparison of PSNRs Among the CIIR, C-CIIR, and Proposed Methods

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

[ H n x k x ( z ) H n y k y ( z ) ] = [ k x P ( 1 z f ) z · n x d g k y P ( 1 z f ) z · n y d g ] ,
E s x i , s y j ( l x m , l y n ) = E m , n ( i , j ) ,
f 2 < z eff < f ,
z S = f z L .
PSNR = 10 log 10 255 2 MSE ,
MSE = 1 M N x = 1 M y = 1 N [ O ( x , y ) R ( x , y ) ] 2 ,
[ H n x k x ( z = g ) H n y k y ( z = g ) A n x k x ( z = g ) A n y k y ( z = g ) ] = [ k x P + n x d k y P + n y d n x d g n y d g ] ,
[ H n x k x ( 0 ) H n y k y ( 0 ) A n x k x ( 0 ) A n y k y ( 0 ) ] = [ k x P k y P n x d g n y d g ] .
T = [ 1 z 0 1 ] [ 1 0 1 / f 1 ]
[ H n x k x ( z ) H n y k y ( z ) ] = [ k x P ( 1 z f ) z · n x d g k y P ( 1 z f ) z · n y d g ] .

Metrics