Abstract

The authors propose an optical-path-length-shifting digital holography as a technique capable of single-shot recording of three-dimensional information of objects. With a single image sensor, the proposed technique can simultaneously record all of the holograms required for the in-line digital holography that reconstruct the image of an object from two intensity measurements at different planes. The technique can be optically implemented by using an optical-path-length-shifting array device located in the common path of the reference and object waves. The array device has periodic structure of two-step optical-path difference. The configuration of the array device of the proposed technique is simpler than the phase-shifting array device required for parallel phase-shifting digital holographies. Therefore, the optical system of the proposed technique is more suitable for the realization of a single-shot in-line digital holography system that removes the conjugate image from the reconstructed image. The authors conducted both a numerical simulation and a preliminary experiment of the proposed technique. The reconstructed images were quantitatively evaluated by using root mean squared error. In comparison to single-shot digital holography using the Fresnel transform alone, with the proposed technique the root mean squared errors of the technique were reduced to less than 1/6 in amplitude and 1/3 in phase. Also the results of the simulation and experiment agreed well with the images of an object. Thus the effectiveness of the proposed technique is verified.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77-79 (1967).
    [CrossRef]
  2. M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslavskii, “Reconstruction of a hologram with a computer,” Sov. Phys. Tech. Phys. 17, 333-334 (1972).
  3. L. Onural and P. D. Scott, “Digital decoding of in-line holograms,” Opt. Eng. 26, 1124-1132 (1987).
  4. T. -C. Poon, “Recent progress in optical scanning holography,” J. Holography Speckle 1, 6-25 (2004).
    [CrossRef]
  5. Digital Holography and Three-Dimensional Display: Principles and Applications, T. -C. Poon, ed. (Springer, 2006).
    [CrossRef]
  6. G. Pedrini, P. Froning, H. Fessler, and H. J. Tiziani, “In-line digital holographic interferometry,” Appl. Opt. 37, 6262-6269(1998).
    [CrossRef]
  7. Y. Morimoto, T. Nomura, M. Fujigaki, S. Yoneyama, and I. Takahashi, “Deformation measurement by phase-shifting digital holography,” Exp. Mech. 45, 65-70 (2005).
    [CrossRef]
  8. N. Demoli and I. Demoli, “Dynamic modal characterization of musical instruments using digital holography,” Opt. Express 13, 4812-4817 (2005).
    [CrossRef] [PubMed]
  9. I. Yamaguchi, T. Ida, and M. Yokota, “Measurement of surface shape and position by phase-shifting digital holography,” Strain 44, 349-356 (2008).
    [CrossRef]
  10. C. Quan, C. J. Tay, and W. Chen, “Determination of displacement derivative in digital holographic interferometry,” Opt. Commun. 282, 809-815 (2009).
    [CrossRef]
  11. S. Murata and N. Yasuda, “Potential of digital holography in particle measurement,” Opt. Laser Technol. 32, 567-574(2000).
    [CrossRef]
  12. J. Soria and C. Atkinson, “Digital holographic particle image velocimetry: Towards 3C-3D digital holographic fluid velocity vector field measurement--tomographic digital holographic PIV (Tomo-HPIV),” Meas. Sci. Technol. 19, 074002(2008).
    [CrossRef]
  13. S. Kim and S. J. Lee, “Measurement of Dean flow in a curved micro-tube using micro digital holographic particle tracking velocimetry,” Exp. Fluids 46, 255-264 (2009).
    [CrossRef]
  14. V. R. Singh, G. Hegde, and A. Asundi, “Particle field imaging using digital in-line holography,” Curr. Sci. 96, 391-397(2009).
  15. T.-C. Poon, K. Doh, B. Schilling, M. Wu, K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338-1344 (1995).
    [CrossRef]
  16. D. Parshall and M. K. Kim, “Digital holographic microscopy with dual-wavelength phase unwrapping,” Appl. Opt. 45, 451-459 (2006).
    [CrossRef] [PubMed]
  17. L. Denis, T. Fournel, C. Fournier, and D. Jeulin, “Reconstruction of the rose of directions from a digital microhologram of fibres,” J. Microsc. 225, 283-292 (2007).
    [CrossRef] [PubMed]
  18. K. J. Chalut, W. J. Brown, and A. Wax, “Quantitative phase microscopy with asynchronous digital holography,” Opt. Express 15, 3047-3052 (2007).
    [CrossRef] [PubMed]
  19. W. K. Jeon and K. H. Chung, “Phase-contrast microscopy by in-line phase-shifting digital holography: shape measurement of a titanium pattern with nanometer axial resolution,” Opt. Eng. 46, 040506 (2007).
    [CrossRef]
  20. J. Lobera and J. M. Coupland, “Contrast enhancing techniques in digital holographic microscopy,” Meas. Sci. Technol. 19, 025501 (2008).
    [CrossRef]
  21. V. Mico, Z. Zalevsky, and J. Garcia, “Common-path phase-shifting digital holographic microscopy: A way to quantitative phase imaging and superresolution,” Opt. Commun. 281, 4273-4281 (2008).
    [CrossRef]
  22. J. Sheng, E. Malkiel, and J. Katz, “Using digital holographic microscopy for simultaneous measurements of 3D near wall velocity and wall shear stress in a turbulent boundary layer,” Exp. Fluids 45, 1023-1035 (2008).
    [CrossRef]
  23. I. Moon and B. Javidi, “3-D visualization and identification of biological microorganisms using partially temporal incoherent light in-line computational holographic imaging,” IEEE Trans. Med. Imaging 27, 1782-1790 (2008).
    [CrossRef] [PubMed]
  24. H. Janeckova, P. Vesely, and R. Chmelik, “Application of a transmission low-coherence digital holographic microscope in cancer cell biology,” Anticancer Res. 28, 3329-3330 (2008).
  25. F. Dubois and P. Grosfils, “Dark-field digital holographic microscopy to investigate objects that are nanosized or smaller than the optical resolution,” Opt. Lett. 33, 2605-2607(2008).
    [CrossRef] [PubMed]
  26. D. N. Tishko, T. V. Tishko, and V. P. Titar, “Using digital holographic microscopy to study transparent thin films,” J. Opt. Technol. 76, 147-149 (2009).
    [CrossRef]
  27. Y. Fu, H. J. Shi, and H. Miao, “Vibration measurement of a miniature component by high-speed image-plane digital holographic microscopy,” Appl. Opt. 48, 1990-1997 (2009).
    [CrossRef] [PubMed]
  28. T. A. Saucedo, F. M. Santoyo. M. De la Torre Ibarra, G. Pedrini, and W. Osten, “Simultaneous two-dimensional endoscopic pulsed digital holography for evaluation of dynamic displacements,” Appl. Opt. 45, 4534-4539 (2006).
    [CrossRef]
  29. T. A. Saucedo, F. M. Santoyo, M. De la Torre Ibarra, G. Pedrini, and W. Osten, “Endoscopic pulsed digital holography for 3D measurements,” Opt. Express 14, 1468-1475 (2006).
    [CrossRef] [PubMed]
  30. A. Stadelmaier and J. H. Massig, “Compensation of lens aberrations in digital holography,” Opt. Lett. 25, 1630-1632(2000).
    [CrossRef]
  31. P. Ferraro, S. Grilli, L. Miccio, D. Alfieri, S. De Nicola, A. Finizio, and B. Javidi, “Full color 3-D imaging by digital holography and removal of chromatic aberrations,” J. Display Technol. 4, 97-100 (2008).
    [CrossRef]
  32. T.-C. Poon and T. Kim, “Optical image recognition of three-dimensional objects,” Appl. Opt. 38, 370-381 (1999).
    [CrossRef]
  33. B. Javidi and E. Tajahuerce, “Three-dimensional object recognition by use of digital holography,” Opt. Lett. 25, 610-612(2000).
    [CrossRef]
  34. E. Tajahuerce, O. Matoba, and B. Javidi, “Shift-invariant three-dimensioal object recognition by means of digital holography,” Appl. Opt. 40, 3877-3886 (2001).
    [CrossRef]
  35. T. J. Naughton, Y. Frauel, B. Javidi, and E. Tajahuerce, “Compression of digital holograms for three-dimensional object reconstruction and recognition,” Appl. Opt. 41, 4124-4132(2002).
    [CrossRef] [PubMed]
  36. Y. Frauel, E. Tajahuerce, O. Matoba, M. Castro, and B. Javidi, “Comparison of passive ranging integral imaging and active imaging digital holography for three-dimensional object recognition,” Appl. Opt. 43, 452-462 (2004).
    [CrossRef] [PubMed]
  37. S. Yeom and B. Javidi, “Automatic identification of biological microorganisms using three-dimensional complex morphology,” J. Biomed. Opt. 11, 024017 (2006).
    [CrossRef] [PubMed]
  38. A. Stern and B. Javidi, “Theoretical analysis of three-dimensional imaging and recognition of micro-organisms with a single-exposure on-line holographic microscope,” J. Opt. Soc. Am. A 24, 163-168 (2007).
    [CrossRef]
  39. B. Javidi and T. Nomura, “Securing information by use of digital holography,” Opt. Lett. 25, 28-30 (2000).
    [CrossRef]
  40. E. Tajahuerce and B. Javidi, “Encrypting three-dimensional information with digital holography,” Appl. Opt. 39, 6595-6601 (2000).
    [CrossRef]
  41. S. Lai and M. A. Neifeld, “Digital wavefront reconstruction and its application to image encryption,” Opt. Commun. 178, 283-289 (2000).
    [CrossRef]
  42. O. Matoba and B. Javidi, “Optical retrieval of encrypted digital holograms for secure real-time display,” Opt. Lett. 27, 321-323 (2002).
    [CrossRef]
  43. T. -C. Poon, T. Kim, and K. Doh, “Optical scanning cryptography of secure wireless transmission,” Appl. Opt. 42, 6496-6503 (2003).
    [CrossRef] [PubMed]
  44. X. G. Wang and D. M. Zhao, “Image encryption based on anamorphic fractional Fourier transform and three-step phase-shifting interferometry,” Opt. Commun. 268, 240-244(2006).
    [CrossRef]
  45. O. E. Okman and G. B. Akar, “Quantization index modulation-based image watermarking using digital holography,” J. Opt. Soc. Am. A 24, 243-252 (2007).
    [CrossRef]
  46. O. Matoba, T. Nomura, E. Perez-Cabre, M. S. Millan, and B. Javidi, “Optical techniques for information security,” Proc. IEEE 97, 1128-1148 (2009).
    [CrossRef]
  47. T. M. Kreis, M. Adams, and W. P. O. Jüptner, “Method of digital holography: A comparison,” Proc. SPIE 3098, 224-232(1997).
    [CrossRef]
  48. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268-1270 (1997).
    [CrossRef] [PubMed]
  49. I. Yamaguchi, J. Kato, and S. Ohta, “Surface shape measurement by phase-shifting digital holography,” Opt. Rev. 8, 85-89 (2001).
    [CrossRef]
  50. I. Yamaguchi, S. Ohta, and J. Kato, “Image formation in phase-shifting digital holography and applications to microscopy,” Appl. Opt. 40, 6177-6186 (2001).
    [CrossRef]
  51. U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179-181 (1994).
    [CrossRef] [PubMed]
  52. Y. Takaki, H. Kawai, and H. Ohzu, “Hybrid-holographic microscopy free of conjugate and zero-order images,” Appl. Opt. 38, 4990-4996 (1999).
    [CrossRef]
  53. E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39, 4070-4075 (2000).
    [CrossRef]
  54. Y. Zhang, Q. Lu, and B. Ge, “Elimination of zero-order diffraction in digital off-axis holography,” Opt. Commun. 240, 261-267 (2004).
    [CrossRef]
  55. M. Sasada, Y. Awatsuji, and T. Kubota, “Parallel quasi-phase-shifting digital holography that can achieve instantaneous measurement,” in Technical Digest of the 2004 ICO International Conference: Optics and Photonics in Technology Frontier (International Commission for Optics, 2004), pp. 187-188.
  56. M. Sasada, A. Fujii, Y. Awatsuji, and T. Kubota, “Parallel quasi-phase-shifting digital holography implemented by simple optical set up and effective use of image-sensor pixels,” in Technical Digest of the 2004 ICO International Conference: Optics and Photonics in Technology Frontier (International Commission for Optics, 2004), pp. 357-358.
  57. Y. Awatsuji, M. Sasada, and T. Kubota, “Parallel quasi-phase-shifting digital holography,” Appl. Phys. Lett. 851069-1071 (2004).
    [CrossRef]
  58. Y. Awatsuji, M. Sasada, A. Fujii, and T. Kubota, “Scheme to improve the reconstructed image in parallel quasi-phase-shifting digital holography,” Appl. Opt. 45968-974 (2006).
    [CrossRef] [PubMed]
  59. Y. Awatsuji, A. Fujii, T. Kubota, and O. Matoba, “Parallel three-step phase-shifting digital holography,” Appl. Opt. 452995-3002 (2006).
    [CrossRef] [PubMed]
  60. T. Nomura, S. Murata, E. Nitanai, and T. Numata, “Phase-shifting digital holography with a phase difference between orthogonal polarizations,” Appl. Opt. 45, 4873-4877(2006).
    [CrossRef] [PubMed]
  61. M. P. Arroyo and J. Lobera, “A comparison of temporal, spatial and parallel phase shifting algorithms for digital image plane holography,” Meas. Sci. Technol. 19, 074006 (2008).
    [CrossRef]
  62. Y. Awatsuji, T. Tahara, A. Kaneko, T. Koyama, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel two-step phase-shifting digital holography,” Appl. Opt. 47, D183-D189(2008).
    [CrossRef] [PubMed]
  63. Y. Zhang, G. Pedrini, W. Osten, and H. J. Tiziani, “Reconstruction of in-line digital holograms from two intensity measurements,” Opt. Lett. 29, 1787-1789 (2004).
    [CrossRef] [PubMed]
  64. D. Gabor, “A new microscopic Principle,” Nature (London) 161, 777-778 (1948).
    [CrossRef]

2009

C. Quan, C. J. Tay, and W. Chen, “Determination of displacement derivative in digital holographic interferometry,” Opt. Commun. 282, 809-815 (2009).
[CrossRef]

S. Kim and S. J. Lee, “Measurement of Dean flow in a curved micro-tube using micro digital holographic particle tracking velocimetry,” Exp. Fluids 46, 255-264 (2009).
[CrossRef]

V. R. Singh, G. Hegde, and A. Asundi, “Particle field imaging using digital in-line holography,” Curr. Sci. 96, 391-397(2009).

D. N. Tishko, T. V. Tishko, and V. P. Titar, “Using digital holographic microscopy to study transparent thin films,” J. Opt. Technol. 76, 147-149 (2009).
[CrossRef]

Y. Fu, H. J. Shi, and H. Miao, “Vibration measurement of a miniature component by high-speed image-plane digital holographic microscopy,” Appl. Opt. 48, 1990-1997 (2009).
[CrossRef] [PubMed]

O. Matoba, T. Nomura, E. Perez-Cabre, M. S. Millan, and B. Javidi, “Optical techniques for information security,” Proc. IEEE 97, 1128-1148 (2009).
[CrossRef]

2008

M. P. Arroyo and J. Lobera, “A comparison of temporal, spatial and parallel phase shifting algorithms for digital image plane holography,” Meas. Sci. Technol. 19, 074006 (2008).
[CrossRef]

Y. Awatsuji, T. Tahara, A. Kaneko, T. Koyama, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel two-step phase-shifting digital holography,” Appl. Opt. 47, D183-D189(2008).
[CrossRef] [PubMed]

J. Lobera and J. M. Coupland, “Contrast enhancing techniques in digital holographic microscopy,” Meas. Sci. Technol. 19, 025501 (2008).
[CrossRef]

V. Mico, Z. Zalevsky, and J. Garcia, “Common-path phase-shifting digital holographic microscopy: A way to quantitative phase imaging and superresolution,” Opt. Commun. 281, 4273-4281 (2008).
[CrossRef]

J. Sheng, E. Malkiel, and J. Katz, “Using digital holographic microscopy for simultaneous measurements of 3D near wall velocity and wall shear stress in a turbulent boundary layer,” Exp. Fluids 45, 1023-1035 (2008).
[CrossRef]

I. Moon and B. Javidi, “3-D visualization and identification of biological microorganisms using partially temporal incoherent light in-line computational holographic imaging,” IEEE Trans. Med. Imaging 27, 1782-1790 (2008).
[CrossRef] [PubMed]

H. Janeckova, P. Vesely, and R. Chmelik, “Application of a transmission low-coherence digital holographic microscope in cancer cell biology,” Anticancer Res. 28, 3329-3330 (2008).

F. Dubois and P. Grosfils, “Dark-field digital holographic microscopy to investigate objects that are nanosized or smaller than the optical resolution,” Opt. Lett. 33, 2605-2607(2008).
[CrossRef] [PubMed]

P. Ferraro, S. Grilli, L. Miccio, D. Alfieri, S. De Nicola, A. Finizio, and B. Javidi, “Full color 3-D imaging by digital holography and removal of chromatic aberrations,” J. Display Technol. 4, 97-100 (2008).
[CrossRef]

J. Soria and C. Atkinson, “Digital holographic particle image velocimetry: Towards 3C-3D digital holographic fluid velocity vector field measurement--tomographic digital holographic PIV (Tomo-HPIV),” Meas. Sci. Technol. 19, 074002(2008).
[CrossRef]

I. Yamaguchi, T. Ida, and M. Yokota, “Measurement of surface shape and position by phase-shifting digital holography,” Strain 44, 349-356 (2008).
[CrossRef]

2007

2006

Y. Awatsuji, M. Sasada, A. Fujii, and T. Kubota, “Scheme to improve the reconstructed image in parallel quasi-phase-shifting digital holography,” Appl. Opt. 45968-974 (2006).
[CrossRef] [PubMed]

Y. Awatsuji, A. Fujii, T. Kubota, and O. Matoba, “Parallel three-step phase-shifting digital holography,” Appl. Opt. 452995-3002 (2006).
[CrossRef] [PubMed]

T. Nomura, S. Murata, E. Nitanai, and T. Numata, “Phase-shifting digital holography with a phase difference between orthogonal polarizations,” Appl. Opt. 45, 4873-4877(2006).
[CrossRef] [PubMed]

X. G. Wang and D. M. Zhao, “Image encryption based on anamorphic fractional Fourier transform and three-step phase-shifting interferometry,” Opt. Commun. 268, 240-244(2006).
[CrossRef]

S. Yeom and B. Javidi, “Automatic identification of biological microorganisms using three-dimensional complex morphology,” J. Biomed. Opt. 11, 024017 (2006).
[CrossRef] [PubMed]

T. A. Saucedo, F. M. Santoyo. M. De la Torre Ibarra, G. Pedrini, and W. Osten, “Simultaneous two-dimensional endoscopic pulsed digital holography for evaluation of dynamic displacements,” Appl. Opt. 45, 4534-4539 (2006).
[CrossRef]

T. A. Saucedo, F. M. Santoyo, M. De la Torre Ibarra, G. Pedrini, and W. Osten, “Endoscopic pulsed digital holography for 3D measurements,” Opt. Express 14, 1468-1475 (2006).
[CrossRef] [PubMed]

D. Parshall and M. K. Kim, “Digital holographic microscopy with dual-wavelength phase unwrapping,” Appl. Opt. 45, 451-459 (2006).
[CrossRef] [PubMed]

2005

Y. Morimoto, T. Nomura, M. Fujigaki, S. Yoneyama, and I. Takahashi, “Deformation measurement by phase-shifting digital holography,” Exp. Mech. 45, 65-70 (2005).
[CrossRef]

N. Demoli and I. Demoli, “Dynamic modal characterization of musical instruments using digital holography,” Opt. Express 13, 4812-4817 (2005).
[CrossRef] [PubMed]

2004

T. -C. Poon, “Recent progress in optical scanning holography,” J. Holography Speckle 1, 6-25 (2004).
[CrossRef]

Y. Frauel, E. Tajahuerce, O. Matoba, M. Castro, and B. Javidi, “Comparison of passive ranging integral imaging and active imaging digital holography for three-dimensional object recognition,” Appl. Opt. 43, 452-462 (2004).
[CrossRef] [PubMed]

Y. Zhang, Q. Lu, and B. Ge, “Elimination of zero-order diffraction in digital off-axis holography,” Opt. Commun. 240, 261-267 (2004).
[CrossRef]

Y. Awatsuji, M. Sasada, and T. Kubota, “Parallel quasi-phase-shifting digital holography,” Appl. Phys. Lett. 851069-1071 (2004).
[CrossRef]

Y. Zhang, G. Pedrini, W. Osten, and H. J. Tiziani, “Reconstruction of in-line digital holograms from two intensity measurements,” Opt. Lett. 29, 1787-1789 (2004).
[CrossRef] [PubMed]

2003

2002

2001

2000

1999

1998

1997

T. M. Kreis, M. Adams, and W. P. O. Jüptner, “Method of digital holography: A comparison,” Proc. SPIE 3098, 224-232(1997).
[CrossRef]

I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268-1270 (1997).
[CrossRef] [PubMed]

1995

T.-C. Poon, K. Doh, B. Schilling, M. Wu, K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338-1344 (1995).
[CrossRef]

1994

1987

L. Onural and P. D. Scott, “Digital decoding of in-line holograms,” Opt. Eng. 26, 1124-1132 (1987).

1972

M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslavskii, “Reconstruction of a hologram with a computer,” Sov. Phys. Tech. Phys. 17, 333-334 (1972).

1967

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77-79 (1967).
[CrossRef]

1948

D. Gabor, “A new microscopic Principle,” Nature (London) 161, 777-778 (1948).
[CrossRef]

Adams, M.

T. M. Kreis, M. Adams, and W. P. O. Jüptner, “Method of digital holography: A comparison,” Proc. SPIE 3098, 224-232(1997).
[CrossRef]

Akar, G. B.

Alfieri, D.

Arroyo, M. P.

M. P. Arroyo and J. Lobera, “A comparison of temporal, spatial and parallel phase shifting algorithms for digital image plane holography,” Meas. Sci. Technol. 19, 074006 (2008).
[CrossRef]

Asundi, A.

V. R. Singh, G. Hegde, and A. Asundi, “Particle field imaging using digital in-line holography,” Curr. Sci. 96, 391-397(2009).

Atkinson, C.

J. Soria and C. Atkinson, “Digital holographic particle image velocimetry: Towards 3C-3D digital holographic fluid velocity vector field measurement--tomographic digital holographic PIV (Tomo-HPIV),” Meas. Sci. Technol. 19, 074002(2008).
[CrossRef]

Awatsuji, Y.

Y. Awatsuji, T. Tahara, A. Kaneko, T. Koyama, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel two-step phase-shifting digital holography,” Appl. Opt. 47, D183-D189(2008).
[CrossRef] [PubMed]

Y. Awatsuji, A. Fujii, T. Kubota, and O. Matoba, “Parallel three-step phase-shifting digital holography,” Appl. Opt. 452995-3002 (2006).
[CrossRef] [PubMed]

Y. Awatsuji, M. Sasada, A. Fujii, and T. Kubota, “Scheme to improve the reconstructed image in parallel quasi-phase-shifting digital holography,” Appl. Opt. 45968-974 (2006).
[CrossRef] [PubMed]

Y. Awatsuji, M. Sasada, and T. Kubota, “Parallel quasi-phase-shifting digital holography,” Appl. Phys. Lett. 851069-1071 (2004).
[CrossRef]

M. Sasada, A. Fujii, Y. Awatsuji, and T. Kubota, “Parallel quasi-phase-shifting digital holography implemented by simple optical set up and effective use of image-sensor pixels,” in Technical Digest of the 2004 ICO International Conference: Optics and Photonics in Technology Frontier (International Commission for Optics, 2004), pp. 357-358.

M. Sasada, Y. Awatsuji, and T. Kubota, “Parallel quasi-phase-shifting digital holography that can achieve instantaneous measurement,” in Technical Digest of the 2004 ICO International Conference: Optics and Photonics in Technology Frontier (International Commission for Optics, 2004), pp. 187-188.

Brown, W. J.

Castro, M.

Chalut, K. J.

Chen, W.

C. Quan, C. J. Tay, and W. Chen, “Determination of displacement derivative in digital holographic interferometry,” Opt. Commun. 282, 809-815 (2009).
[CrossRef]

Chmelik, R.

H. Janeckova, P. Vesely, and R. Chmelik, “Application of a transmission low-coherence digital holographic microscope in cancer cell biology,” Anticancer Res. 28, 3329-3330 (2008).

Chung, K. H.

W. K. Jeon and K. H. Chung, “Phase-contrast microscopy by in-line phase-shifting digital holography: shape measurement of a titanium pattern with nanometer axial resolution,” Opt. Eng. 46, 040506 (2007).
[CrossRef]

Coupland, J. M.

J. Lobera and J. M. Coupland, “Contrast enhancing techniques in digital holographic microscopy,” Meas. Sci. Technol. 19, 025501 (2008).
[CrossRef]

Cuche, E.

De la Torre Ibarra, M.

De Nicola, S.

Demoli, I.

Demoli, N.

Denis, L.

L. Denis, T. Fournel, C. Fournier, and D. Jeulin, “Reconstruction of the rose of directions from a digital microhologram of fibres,” J. Microsc. 225, 283-292 (2007).
[CrossRef] [PubMed]

Depeursinge, C.

Doh, K.

T. -C. Poon, T. Kim, and K. Doh, “Optical scanning cryptography of secure wireless transmission,” Appl. Opt. 42, 6496-6503 (2003).
[CrossRef] [PubMed]

T.-C. Poon, K. Doh, B. Schilling, M. Wu, K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338-1344 (1995).
[CrossRef]

Dubois, F.

Ferraro, P.

Fessler, H.

Finizio, A.

Fournel, T.

L. Denis, T. Fournel, C. Fournier, and D. Jeulin, “Reconstruction of the rose of directions from a digital microhologram of fibres,” J. Microsc. 225, 283-292 (2007).
[CrossRef] [PubMed]

Fournier, C.

L. Denis, T. Fournel, C. Fournier, and D. Jeulin, “Reconstruction of the rose of directions from a digital microhologram of fibres,” J. Microsc. 225, 283-292 (2007).
[CrossRef] [PubMed]

Frauel, Y.

Froning, P.

Fu, Y.

Fujigaki, M.

Y. Morimoto, T. Nomura, M. Fujigaki, S. Yoneyama, and I. Takahashi, “Deformation measurement by phase-shifting digital holography,” Exp. Mech. 45, 65-70 (2005).
[CrossRef]

Fujii, A.

Y. Awatsuji, M. Sasada, A. Fujii, and T. Kubota, “Scheme to improve the reconstructed image in parallel quasi-phase-shifting digital holography,” Appl. Opt. 45968-974 (2006).
[CrossRef] [PubMed]

Y. Awatsuji, A. Fujii, T. Kubota, and O. Matoba, “Parallel three-step phase-shifting digital holography,” Appl. Opt. 452995-3002 (2006).
[CrossRef] [PubMed]

M. Sasada, A. Fujii, Y. Awatsuji, and T. Kubota, “Parallel quasi-phase-shifting digital holography implemented by simple optical set up and effective use of image-sensor pixels,” in Technical Digest of the 2004 ICO International Conference: Optics and Photonics in Technology Frontier (International Commission for Optics, 2004), pp. 357-358.

Gabor, D.

D. Gabor, “A new microscopic Principle,” Nature (London) 161, 777-778 (1948).
[CrossRef]

Garcia, J.

V. Mico, Z. Zalevsky, and J. Garcia, “Common-path phase-shifting digital holographic microscopy: A way to quantitative phase imaging and superresolution,” Opt. Commun. 281, 4273-4281 (2008).
[CrossRef]

Ge, B.

Y. Zhang, Q. Lu, and B. Ge, “Elimination of zero-order diffraction in digital off-axis holography,” Opt. Commun. 240, 261-267 (2004).
[CrossRef]

Goodman, J. W.

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77-79 (1967).
[CrossRef]

Grilli, S.

Grosfils, P.

Hegde, G.

V. R. Singh, G. Hegde, and A. Asundi, “Particle field imaging using digital in-line holography,” Curr. Sci. 96, 391-397(2009).

Ida, T.

I. Yamaguchi, T. Ida, and M. Yokota, “Measurement of surface shape and position by phase-shifting digital holography,” Strain 44, 349-356 (2008).
[CrossRef]

Janeckova, H.

H. Janeckova, P. Vesely, and R. Chmelik, “Application of a transmission low-coherence digital holographic microscope in cancer cell biology,” Anticancer Res. 28, 3329-3330 (2008).

Javidi, B.

O. Matoba, T. Nomura, E. Perez-Cabre, M. S. Millan, and B. Javidi, “Optical techniques for information security,” Proc. IEEE 97, 1128-1148 (2009).
[CrossRef]

I. Moon and B. Javidi, “3-D visualization and identification of biological microorganisms using partially temporal incoherent light in-line computational holographic imaging,” IEEE Trans. Med. Imaging 27, 1782-1790 (2008).
[CrossRef] [PubMed]

P. Ferraro, S. Grilli, L. Miccio, D. Alfieri, S. De Nicola, A. Finizio, and B. Javidi, “Full color 3-D imaging by digital holography and removal of chromatic aberrations,” J. Display Technol. 4, 97-100 (2008).
[CrossRef]

A. Stern and B. Javidi, “Theoretical analysis of three-dimensional imaging and recognition of micro-organisms with a single-exposure on-line holographic microscope,” J. Opt. Soc. Am. A 24, 163-168 (2007).
[CrossRef]

S. Yeom and B. Javidi, “Automatic identification of biological microorganisms using three-dimensional complex morphology,” J. Biomed. Opt. 11, 024017 (2006).
[CrossRef] [PubMed]

Y. Frauel, E. Tajahuerce, O. Matoba, M. Castro, and B. Javidi, “Comparison of passive ranging integral imaging and active imaging digital holography for three-dimensional object recognition,” Appl. Opt. 43, 452-462 (2004).
[CrossRef] [PubMed]

O. Matoba and B. Javidi, “Optical retrieval of encrypted digital holograms for secure real-time display,” Opt. Lett. 27, 321-323 (2002).
[CrossRef]

T. J. Naughton, Y. Frauel, B. Javidi, and E. Tajahuerce, “Compression of digital holograms for three-dimensional object reconstruction and recognition,” Appl. Opt. 41, 4124-4132(2002).
[CrossRef] [PubMed]

E. Tajahuerce, O. Matoba, and B. Javidi, “Shift-invariant three-dimensioal object recognition by means of digital holography,” Appl. Opt. 40, 3877-3886 (2001).
[CrossRef]

B. Javidi and E. Tajahuerce, “Three-dimensional object recognition by use of digital holography,” Opt. Lett. 25, 610-612(2000).
[CrossRef]

E. Tajahuerce and B. Javidi, “Encrypting three-dimensional information with digital holography,” Appl. Opt. 39, 6595-6601 (2000).
[CrossRef]

B. Javidi and T. Nomura, “Securing information by use of digital holography,” Opt. Lett. 25, 28-30 (2000).
[CrossRef]

Jeon, W. K.

W. K. Jeon and K. H. Chung, “Phase-contrast microscopy by in-line phase-shifting digital holography: shape measurement of a titanium pattern with nanometer axial resolution,” Opt. Eng. 46, 040506 (2007).
[CrossRef]

Jeulin, D.

L. Denis, T. Fournel, C. Fournier, and D. Jeulin, “Reconstruction of the rose of directions from a digital microhologram of fibres,” J. Microsc. 225, 283-292 (2007).
[CrossRef] [PubMed]

Jüptner, W.

Jüptner, W. P. O.

T. M. Kreis, M. Adams, and W. P. O. Jüptner, “Method of digital holography: A comparison,” Proc. SPIE 3098, 224-232(1997).
[CrossRef]

Kaneko, A.

Kato, J.

I. Yamaguchi, S. Ohta, and J. Kato, “Image formation in phase-shifting digital holography and applications to microscopy,” Appl. Opt. 40, 6177-6186 (2001).
[CrossRef]

I. Yamaguchi, J. Kato, and S. Ohta, “Surface shape measurement by phase-shifting digital holography,” Opt. Rev. 8, 85-89 (2001).
[CrossRef]

Katz, J.

J. Sheng, E. Malkiel, and J. Katz, “Using digital holographic microscopy for simultaneous measurements of 3D near wall velocity and wall shear stress in a turbulent boundary layer,” Exp. Fluids 45, 1023-1035 (2008).
[CrossRef]

Kawai, H.

Kim, M. K.

Kim, S.

S. Kim and S. J. Lee, “Measurement of Dean flow in a curved micro-tube using micro digital holographic particle tracking velocimetry,” Exp. Fluids 46, 255-264 (2009).
[CrossRef]

Kim, T.

Koyama, T.

Kreis, T. M.

T. M. Kreis, M. Adams, and W. P. O. Jüptner, “Method of digital holography: A comparison,” Proc. SPIE 3098, 224-232(1997).
[CrossRef]

Kronrod, M. A.

M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslavskii, “Reconstruction of a hologram with a computer,” Sov. Phys. Tech. Phys. 17, 333-334 (1972).

Kubota, T.

Y. Awatsuji, T. Tahara, A. Kaneko, T. Koyama, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel two-step phase-shifting digital holography,” Appl. Opt. 47, D183-D189(2008).
[CrossRef] [PubMed]

Y. Awatsuji, A. Fujii, T. Kubota, and O. Matoba, “Parallel three-step phase-shifting digital holography,” Appl. Opt. 452995-3002 (2006).
[CrossRef] [PubMed]

Y. Awatsuji, M. Sasada, A. Fujii, and T. Kubota, “Scheme to improve the reconstructed image in parallel quasi-phase-shifting digital holography,” Appl. Opt. 45968-974 (2006).
[CrossRef] [PubMed]

Y. Awatsuji, M. Sasada, and T. Kubota, “Parallel quasi-phase-shifting digital holography,” Appl. Phys. Lett. 851069-1071 (2004).
[CrossRef]

M. Sasada, A. Fujii, Y. Awatsuji, and T. Kubota, “Parallel quasi-phase-shifting digital holography implemented by simple optical set up and effective use of image-sensor pixels,” in Technical Digest of the 2004 ICO International Conference: Optics and Photonics in Technology Frontier (International Commission for Optics, 2004), pp. 357-358.

M. Sasada, Y. Awatsuji, and T. Kubota, “Parallel quasi-phase-shifting digital holography that can achieve instantaneous measurement,” in Technical Digest of the 2004 ICO International Conference: Optics and Photonics in Technology Frontier (International Commission for Optics, 2004), pp. 187-188.

Lai, S.

S. Lai and M. A. Neifeld, “Digital wavefront reconstruction and its application to image encryption,” Opt. Commun. 178, 283-289 (2000).
[CrossRef]

Lawrence, R. W.

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77-79 (1967).
[CrossRef]

Lee, S. J.

S. Kim and S. J. Lee, “Measurement of Dean flow in a curved micro-tube using micro digital holographic particle tracking velocimetry,” Exp. Fluids 46, 255-264 (2009).
[CrossRef]

Lobera, J.

J. Lobera and J. M. Coupland, “Contrast enhancing techniques in digital holographic microscopy,” Meas. Sci. Technol. 19, 025501 (2008).
[CrossRef]

M. P. Arroyo and J. Lobera, “A comparison of temporal, spatial and parallel phase shifting algorithms for digital image plane holography,” Meas. Sci. Technol. 19, 074006 (2008).
[CrossRef]

Lu, Q.

Y. Zhang, Q. Lu, and B. Ge, “Elimination of zero-order diffraction in digital off-axis holography,” Opt. Commun. 240, 261-267 (2004).
[CrossRef]

Malkiel, E.

J. Sheng, E. Malkiel, and J. Katz, “Using digital holographic microscopy for simultaneous measurements of 3D near wall velocity and wall shear stress in a turbulent boundary layer,” Exp. Fluids 45, 1023-1035 (2008).
[CrossRef]

Marquet, P.

Massig, J. H.

Matoba, O.

Merzlyakov, N. S.

M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslavskii, “Reconstruction of a hologram with a computer,” Sov. Phys. Tech. Phys. 17, 333-334 (1972).

Miao, H.

Miccio, L.

Mico, V.

V. Mico, Z. Zalevsky, and J. Garcia, “Common-path phase-shifting digital holographic microscopy: A way to quantitative phase imaging and superresolution,” Opt. Commun. 281, 4273-4281 (2008).
[CrossRef]

Millan, M. S.

O. Matoba, T. Nomura, E. Perez-Cabre, M. S. Millan, and B. Javidi, “Optical techniques for information security,” Proc. IEEE 97, 1128-1148 (2009).
[CrossRef]

Moon, I.

I. Moon and B. Javidi, “3-D visualization and identification of biological microorganisms using partially temporal incoherent light in-line computational holographic imaging,” IEEE Trans. Med. Imaging 27, 1782-1790 (2008).
[CrossRef] [PubMed]

Morimoto, Y.

Y. Morimoto, T. Nomura, M. Fujigaki, S. Yoneyama, and I. Takahashi, “Deformation measurement by phase-shifting digital holography,” Exp. Mech. 45, 65-70 (2005).
[CrossRef]

Murata, S.

Naughton, T. J.

Neifeld, M. A.

S. Lai and M. A. Neifeld, “Digital wavefront reconstruction and its application to image encryption,” Opt. Commun. 178, 283-289 (2000).
[CrossRef]

Nishio, K.

Nitanai, E.

Nomura, T.

O. Matoba, T. Nomura, E. Perez-Cabre, M. S. Millan, and B. Javidi, “Optical techniques for information security,” Proc. IEEE 97, 1128-1148 (2009).
[CrossRef]

T. Nomura, S. Murata, E. Nitanai, and T. Numata, “Phase-shifting digital holography with a phase difference between orthogonal polarizations,” Appl. Opt. 45, 4873-4877(2006).
[CrossRef] [PubMed]

Y. Morimoto, T. Nomura, M. Fujigaki, S. Yoneyama, and I. Takahashi, “Deformation measurement by phase-shifting digital holography,” Exp. Mech. 45, 65-70 (2005).
[CrossRef]

B. Javidi and T. Nomura, “Securing information by use of digital holography,” Opt. Lett. 25, 28-30 (2000).
[CrossRef]

Numata, T.

Ohta, S.

I. Yamaguchi, J. Kato, and S. Ohta, “Surface shape measurement by phase-shifting digital holography,” Opt. Rev. 8, 85-89 (2001).
[CrossRef]

I. Yamaguchi, S. Ohta, and J. Kato, “Image formation in phase-shifting digital holography and applications to microscopy,” Appl. Opt. 40, 6177-6186 (2001).
[CrossRef]

Ohzu, H.

Okman, O. E.

Onural, L.

L. Onural and P. D. Scott, “Digital decoding of in-line holograms,” Opt. Eng. 26, 1124-1132 (1987).

Osten, W.

Parshall, D.

Pedrini, G.

Perez-Cabre, E.

O. Matoba, T. Nomura, E. Perez-Cabre, M. S. Millan, and B. Javidi, “Optical techniques for information security,” Proc. IEEE 97, 1128-1148 (2009).
[CrossRef]

Poon, T. -C.

Poon, T.-C.

T.-C. Poon and T. Kim, “Optical image recognition of three-dimensional objects,” Appl. Opt. 38, 370-381 (1999).
[CrossRef]

T.-C. Poon, K. Doh, B. Schilling, M. Wu, K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338-1344 (1995).
[CrossRef]

Quan, C.

C. Quan, C. J. Tay, and W. Chen, “Determination of displacement derivative in digital holographic interferometry,” Opt. Commun. 282, 809-815 (2009).
[CrossRef]

Santoyo, F. M.

Sasada, M.

Y. Awatsuji, M. Sasada, A. Fujii, and T. Kubota, “Scheme to improve the reconstructed image in parallel quasi-phase-shifting digital holography,” Appl. Opt. 45968-974 (2006).
[CrossRef] [PubMed]

Y. Awatsuji, M. Sasada, and T. Kubota, “Parallel quasi-phase-shifting digital holography,” Appl. Phys. Lett. 851069-1071 (2004).
[CrossRef]

M. Sasada, A. Fujii, Y. Awatsuji, and T. Kubota, “Parallel quasi-phase-shifting digital holography implemented by simple optical set up and effective use of image-sensor pixels,” in Technical Digest of the 2004 ICO International Conference: Optics and Photonics in Technology Frontier (International Commission for Optics, 2004), pp. 357-358.

M. Sasada, Y. Awatsuji, and T. Kubota, “Parallel quasi-phase-shifting digital holography that can achieve instantaneous measurement,” in Technical Digest of the 2004 ICO International Conference: Optics and Photonics in Technology Frontier (International Commission for Optics, 2004), pp. 187-188.

Saucedo, T. A.

Schilling, B.

T.-C. Poon, K. Doh, B. Schilling, M. Wu, K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338-1344 (1995).
[CrossRef]

Schnars, U.

Scott, P. D.

L. Onural and P. D. Scott, “Digital decoding of in-line holograms,” Opt. Eng. 26, 1124-1132 (1987).

Sheng, J.

J. Sheng, E. Malkiel, and J. Katz, “Using digital holographic microscopy for simultaneous measurements of 3D near wall velocity and wall shear stress in a turbulent boundary layer,” Exp. Fluids 45, 1023-1035 (2008).
[CrossRef]

Shi, H. J.

Shinoda, K.

T.-C. Poon, K. Doh, B. Schilling, M. Wu, K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338-1344 (1995).
[CrossRef]

Singh, V. R.

V. R. Singh, G. Hegde, and A. Asundi, “Particle field imaging using digital in-line holography,” Curr. Sci. 96, 391-397(2009).

Soria, J.

J. Soria and C. Atkinson, “Digital holographic particle image velocimetry: Towards 3C-3D digital holographic fluid velocity vector field measurement--tomographic digital holographic PIV (Tomo-HPIV),” Meas. Sci. Technol. 19, 074002(2008).
[CrossRef]

Stadelmaier, A.

Stern, A.

Suzuki, Y.

T.-C. Poon, K. Doh, B. Schilling, M. Wu, K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338-1344 (1995).
[CrossRef]

Tahara, T.

Tajahuerce, E.

Takahashi, I.

Y. Morimoto, T. Nomura, M. Fujigaki, S. Yoneyama, and I. Takahashi, “Deformation measurement by phase-shifting digital holography,” Exp. Mech. 45, 65-70 (2005).
[CrossRef]

Takaki, Y.

Tay, C. J.

C. Quan, C. J. Tay, and W. Chen, “Determination of displacement derivative in digital holographic interferometry,” Opt. Commun. 282, 809-815 (2009).
[CrossRef]

Tishko, D. N.

Tishko, T. V.

Titar, V. P.

Tiziani, H. J.

Ura, S.

Vesely, P.

H. Janeckova, P. Vesely, and R. Chmelik, “Application of a transmission low-coherence digital holographic microscope in cancer cell biology,” Anticancer Res. 28, 3329-3330 (2008).

Wang, X. G.

X. G. Wang and D. M. Zhao, “Image encryption based on anamorphic fractional Fourier transform and three-step phase-shifting interferometry,” Opt. Commun. 268, 240-244(2006).
[CrossRef]

Wax, A.

Wu, M.

T.-C. Poon, K. Doh, B. Schilling, M. Wu, K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338-1344 (1995).
[CrossRef]

Yamaguchi, I.

I. Yamaguchi, T. Ida, and M. Yokota, “Measurement of surface shape and position by phase-shifting digital holography,” Strain 44, 349-356 (2008).
[CrossRef]

I. Yamaguchi, J. Kato, and S. Ohta, “Surface shape measurement by phase-shifting digital holography,” Opt. Rev. 8, 85-89 (2001).
[CrossRef]

I. Yamaguchi, S. Ohta, and J. Kato, “Image formation in phase-shifting digital holography and applications to microscopy,” Appl. Opt. 40, 6177-6186 (2001).
[CrossRef]

I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268-1270 (1997).
[CrossRef] [PubMed]

Yaroslavskii, L. P.

M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslavskii, “Reconstruction of a hologram with a computer,” Sov. Phys. Tech. Phys. 17, 333-334 (1972).

Yasuda, N.

S. Murata and N. Yasuda, “Potential of digital holography in particle measurement,” Opt. Laser Technol. 32, 567-574(2000).
[CrossRef]

Yeom, S.

S. Yeom and B. Javidi, “Automatic identification of biological microorganisms using three-dimensional complex morphology,” J. Biomed. Opt. 11, 024017 (2006).
[CrossRef] [PubMed]

Yokota, M.

I. Yamaguchi, T. Ida, and M. Yokota, “Measurement of surface shape and position by phase-shifting digital holography,” Strain 44, 349-356 (2008).
[CrossRef]

Yoneyama, S.

Y. Morimoto, T. Nomura, M. Fujigaki, S. Yoneyama, and I. Takahashi, “Deformation measurement by phase-shifting digital holography,” Exp. Mech. 45, 65-70 (2005).
[CrossRef]

Zalevsky, Z.

V. Mico, Z. Zalevsky, and J. Garcia, “Common-path phase-shifting digital holographic microscopy: A way to quantitative phase imaging and superresolution,” Opt. Commun. 281, 4273-4281 (2008).
[CrossRef]

Zhang, T.

Zhang, Y.

Y. Zhang, G. Pedrini, W. Osten, and H. J. Tiziani, “Reconstruction of in-line digital holograms from two intensity measurements,” Opt. Lett. 29, 1787-1789 (2004).
[CrossRef] [PubMed]

Y. Zhang, Q. Lu, and B. Ge, “Elimination of zero-order diffraction in digital off-axis holography,” Opt. Commun. 240, 261-267 (2004).
[CrossRef]

Zhao, D. M.

X. G. Wang and D. M. Zhao, “Image encryption based on anamorphic fractional Fourier transform and three-step phase-shifting interferometry,” Opt. Commun. 268, 240-244(2006).
[CrossRef]

Anticancer Res.

H. Janeckova, P. Vesely, and R. Chmelik, “Application of a transmission low-coherence digital holographic microscope in cancer cell biology,” Anticancer Res. 28, 3329-3330 (2008).

Appl. Opt.

Y. Fu, H. J. Shi, and H. Miao, “Vibration measurement of a miniature component by high-speed image-plane digital holographic microscopy,” Appl. Opt. 48, 1990-1997 (2009).
[CrossRef] [PubMed]

T. A. Saucedo, F. M. Santoyo. M. De la Torre Ibarra, G. Pedrini, and W. Osten, “Simultaneous two-dimensional endoscopic pulsed digital holography for evaluation of dynamic displacements,” Appl. Opt. 45, 4534-4539 (2006).
[CrossRef]

T.-C. Poon and T. Kim, “Optical image recognition of three-dimensional objects,” Appl. Opt. 38, 370-381 (1999).
[CrossRef]

G. Pedrini, P. Froning, H. Fessler, and H. J. Tiziani, “In-line digital holographic interferometry,” Appl. Opt. 37, 6262-6269(1998).
[CrossRef]

D. Parshall and M. K. Kim, “Digital holographic microscopy with dual-wavelength phase unwrapping,” Appl. Opt. 45, 451-459 (2006).
[CrossRef] [PubMed]

E. Tajahuerce, O. Matoba, and B. Javidi, “Shift-invariant three-dimensioal object recognition by means of digital holography,” Appl. Opt. 40, 3877-3886 (2001).
[CrossRef]

T. J. Naughton, Y. Frauel, B. Javidi, and E. Tajahuerce, “Compression of digital holograms for three-dimensional object reconstruction and recognition,” Appl. Opt. 41, 4124-4132(2002).
[CrossRef] [PubMed]

Y. Frauel, E. Tajahuerce, O. Matoba, M. Castro, and B. Javidi, “Comparison of passive ranging integral imaging and active imaging digital holography for three-dimensional object recognition,” Appl. Opt. 43, 452-462 (2004).
[CrossRef] [PubMed]

E. Tajahuerce and B. Javidi, “Encrypting three-dimensional information with digital holography,” Appl. Opt. 39, 6595-6601 (2000).
[CrossRef]

T. -C. Poon, T. Kim, and K. Doh, “Optical scanning cryptography of secure wireless transmission,” Appl. Opt. 42, 6496-6503 (2003).
[CrossRef] [PubMed]

I. Yamaguchi, S. Ohta, and J. Kato, “Image formation in phase-shifting digital holography and applications to microscopy,” Appl. Opt. 40, 6177-6186 (2001).
[CrossRef]

U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179-181 (1994).
[CrossRef] [PubMed]

Y. Takaki, H. Kawai, and H. Ohzu, “Hybrid-holographic microscopy free of conjugate and zero-order images,” Appl. Opt. 38, 4990-4996 (1999).
[CrossRef]

E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39, 4070-4075 (2000).
[CrossRef]

Y. Awatsuji, M. Sasada, A. Fujii, and T. Kubota, “Scheme to improve the reconstructed image in parallel quasi-phase-shifting digital holography,” Appl. Opt. 45968-974 (2006).
[CrossRef] [PubMed]

Y. Awatsuji, A. Fujii, T. Kubota, and O. Matoba, “Parallel three-step phase-shifting digital holography,” Appl. Opt. 452995-3002 (2006).
[CrossRef] [PubMed]

T. Nomura, S. Murata, E. Nitanai, and T. Numata, “Phase-shifting digital holography with a phase difference between orthogonal polarizations,” Appl. Opt. 45, 4873-4877(2006).
[CrossRef] [PubMed]

Y. Awatsuji, T. Tahara, A. Kaneko, T. Koyama, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel two-step phase-shifting digital holography,” Appl. Opt. 47, D183-D189(2008).
[CrossRef] [PubMed]

Appl. Phys. Lett.

Y. Awatsuji, M. Sasada, and T. Kubota, “Parallel quasi-phase-shifting digital holography,” Appl. Phys. Lett. 851069-1071 (2004).
[CrossRef]

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77-79 (1967).
[CrossRef]

Curr. Sci.

V. R. Singh, G. Hegde, and A. Asundi, “Particle field imaging using digital in-line holography,” Curr. Sci. 96, 391-397(2009).

Exp. Fluids

J. Sheng, E. Malkiel, and J. Katz, “Using digital holographic microscopy for simultaneous measurements of 3D near wall velocity and wall shear stress in a turbulent boundary layer,” Exp. Fluids 45, 1023-1035 (2008).
[CrossRef]

S. Kim and S. J. Lee, “Measurement of Dean flow in a curved micro-tube using micro digital holographic particle tracking velocimetry,” Exp. Fluids 46, 255-264 (2009).
[CrossRef]

Exp. Mech.

Y. Morimoto, T. Nomura, M. Fujigaki, S. Yoneyama, and I. Takahashi, “Deformation measurement by phase-shifting digital holography,” Exp. Mech. 45, 65-70 (2005).
[CrossRef]

IEEE Trans. Med. Imaging

I. Moon and B. Javidi, “3-D visualization and identification of biological microorganisms using partially temporal incoherent light in-line computational holographic imaging,” IEEE Trans. Med. Imaging 27, 1782-1790 (2008).
[CrossRef] [PubMed]

J. Biomed. Opt.

S. Yeom and B. Javidi, “Automatic identification of biological microorganisms using three-dimensional complex morphology,” J. Biomed. Opt. 11, 024017 (2006).
[CrossRef] [PubMed]

J. Display Technol.

J. Holography Speckle

T. -C. Poon, “Recent progress in optical scanning holography,” J. Holography Speckle 1, 6-25 (2004).
[CrossRef]

J. Microsc.

L. Denis, T. Fournel, C. Fournier, and D. Jeulin, “Reconstruction of the rose of directions from a digital microhologram of fibres,” J. Microsc. 225, 283-292 (2007).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

J. Opt. Technol.

Meas. Sci. Technol.

J. Lobera and J. M. Coupland, “Contrast enhancing techniques in digital holographic microscopy,” Meas. Sci. Technol. 19, 025501 (2008).
[CrossRef]

J. Soria and C. Atkinson, “Digital holographic particle image velocimetry: Towards 3C-3D digital holographic fluid velocity vector field measurement--tomographic digital holographic PIV (Tomo-HPIV),” Meas. Sci. Technol. 19, 074002(2008).
[CrossRef]

M. P. Arroyo and J. Lobera, “A comparison of temporal, spatial and parallel phase shifting algorithms for digital image plane holography,” Meas. Sci. Technol. 19, 074006 (2008).
[CrossRef]

Nature (London)

D. Gabor, “A new microscopic Principle,” Nature (London) 161, 777-778 (1948).
[CrossRef]

Opt. Commun.

Y. Zhang, Q. Lu, and B. Ge, “Elimination of zero-order diffraction in digital off-axis holography,” Opt. Commun. 240, 261-267 (2004).
[CrossRef]

X. G. Wang and D. M. Zhao, “Image encryption based on anamorphic fractional Fourier transform and three-step phase-shifting interferometry,” Opt. Commun. 268, 240-244(2006).
[CrossRef]

S. Lai and M. A. Neifeld, “Digital wavefront reconstruction and its application to image encryption,” Opt. Commun. 178, 283-289 (2000).
[CrossRef]

C. Quan, C. J. Tay, and W. Chen, “Determination of displacement derivative in digital holographic interferometry,” Opt. Commun. 282, 809-815 (2009).
[CrossRef]

V. Mico, Z. Zalevsky, and J. Garcia, “Common-path phase-shifting digital holographic microscopy: A way to quantitative phase imaging and superresolution,” Opt. Commun. 281, 4273-4281 (2008).
[CrossRef]

Opt. Eng.

W. K. Jeon and K. H. Chung, “Phase-contrast microscopy by in-line phase-shifting digital holography: shape measurement of a titanium pattern with nanometer axial resolution,” Opt. Eng. 46, 040506 (2007).
[CrossRef]

L. Onural and P. D. Scott, “Digital decoding of in-line holograms,” Opt. Eng. 26, 1124-1132 (1987).

T.-C. Poon, K. Doh, B. Schilling, M. Wu, K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338-1344 (1995).
[CrossRef]

Opt. Express

Opt. Laser Technol.

S. Murata and N. Yasuda, “Potential of digital holography in particle measurement,” Opt. Laser Technol. 32, 567-574(2000).
[CrossRef]

Opt. Lett.

Opt. Rev.

I. Yamaguchi, J. Kato, and S. Ohta, “Surface shape measurement by phase-shifting digital holography,” Opt. Rev. 8, 85-89 (2001).
[CrossRef]

Proc. IEEE

O. Matoba, T. Nomura, E. Perez-Cabre, M. S. Millan, and B. Javidi, “Optical techniques for information security,” Proc. IEEE 97, 1128-1148 (2009).
[CrossRef]

Proc. SPIE

T. M. Kreis, M. Adams, and W. P. O. Jüptner, “Method of digital holography: A comparison,” Proc. SPIE 3098, 224-232(1997).
[CrossRef]

Sov. Phys. Tech. Phys.

M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslavskii, “Reconstruction of a hologram with a computer,” Sov. Phys. Tech. Phys. 17, 333-334 (1972).

Strain

I. Yamaguchi, T. Ida, and M. Yokota, “Measurement of surface shape and position by phase-shifting digital holography,” Strain 44, 349-356 (2008).
[CrossRef]

Other

Digital Holography and Three-Dimensional Display: Principles and Applications, T. -C. Poon, ed. (Springer, 2006).
[CrossRef]

M. Sasada, Y. Awatsuji, and T. Kubota, “Parallel quasi-phase-shifting digital holography that can achieve instantaneous measurement,” in Technical Digest of the 2004 ICO International Conference: Optics and Photonics in Technology Frontier (International Commission for Optics, 2004), pp. 187-188.

M. Sasada, A. Fujii, Y. Awatsuji, and T. Kubota, “Parallel quasi-phase-shifting digital holography implemented by simple optical set up and effective use of image-sensor pixels,” in Technical Digest of the 2004 ICO International Conference: Optics and Photonics in Technology Frontier (International Commission for Optics, 2004), pp. 357-358.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Principle of parallel optical-path-length-shifting digital holography.

Fig. 2
Fig. 2

Optical implementation of parallel optical-path-length-shifting digital holography.

Fig. 3
Fig. 3

Schematic diagram of the reconstruction of parallel optical-path-length-shifting digital holography.

Fig. 4
Fig. 4

Numerical results. Image of the object: (a) amplitude and (b) phase distribution. Images reconstructed by the sequential optical-path length-shifting digital holography [(c) amplitude, (d) phase distribution], by the proposed technique [(e) amplitude, (f) phase distribution], by sequential phase-shifting digital holography [(g) amplitude, (h) phase distribution], and by single-shot digital holography using the Fresnel transformation alone [(i) amplitude, (j) phase distribution].

Fig. 5
Fig. 5

Magnified images around the eye in the reconstructed images of Figs. 4c, 4e. (a) Sequential optical-path length-shifting digital holography, (b) proposed technique.

Fig. 6
Fig. 6

Optical system of the preliminary experiment. (a) Schematic diagram of the whole optical system, (b) photograph of object 1 located on z = 27 cm , (c) photograph of object 2 located on z = 32 cm .

Fig. 7
Fig. 7

Reconstructed images obtained by the preliminary experiment: by sequential optical-path length-shifting digital holography [(a)  z = 27 cm , (b)  32 cm ], by the proposed technique [(c)  27 cm , (d)  32 cm ], by the Fresnel transform alone [(e)  27 cm , (f)  32 cm ].

Fig. 8
Fig. 8

RMSE of the reconstructed image of the proposed technique in terms of the ratio of the reference-wave intensity to the object-wave intensity is changed in the numerical simulation. (a) Amplitude, (b) phase.

Tables (1)

Tables Icon

Table 1 Root Mean Squared Errors of the Reconstructed Images by Each Method of Digital Holography in the Simulation

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

u ( x , y , 0 ) = F 1 [ F [ ( x , y , z ) ] F [ ( x , y , z + Δ z ) ] H ( f x , f y , Δ z ) H ( f x , f y , z ) { 1 H ( f x , f y , 2 Δ z ) } ] .
( x , y , z ) = log { I ( x , y , z ) | A r ( x , y , z ) | 2 } ,
H ( f x , f y , z ) = exp { 2 π i z λ 1 ( λ f x ) 2 ( λ f y ) 2 } ,

Metrics