Abstract

For this study, twisted nematic liquid crystals (TN-LCs) are sandwiched between two cross-embedded wire-grid polarizers (WGPs) as alignment and electrodes for projection displays. In the proposed device, the WGPs replace not only the sheet polarizers in a conventional TN-LC cell, but also the front and rear alignment layers and transparent electrodes. It is found that the structure of a WGP microgroove is suitable for alignment; however, the proposed TN-LC cell exhibits a multidomain phenomenon because there is no apparent pretilt angle on the two WGPs. The multidomain phenonenon can be solved by the annealing method and by blending chiral material with the TN-LC for twisting the LC in the same direction. In addition, the surface resistance of the aluminum WGP is two orders lower than the indium- tin-oxide glass substrates, so that it is suitable for electric conductivity and for use as a transparent electrode. Also, metallic WGPs exhibit a higher heat resistance characteristic than plastic sheet polarizers, making them robust. As a result, the threshold voltages, the saturation voltages, and the response time of the proposed TN-LC cell are almost identical to the conventional TN-LC cell. The contrast ratio of the LCD projector with the proposed TN-LC cell and the quarter-wave plate exhibit the best characteristics in comparisons with the other LCD projectors. Thus, the proposed TN-LC cell represents a simple and feasible solution for the next generation of high-brightness projection display devices.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Yeh and C. Gu, Optics of Liquid Crystal Displays (Wiley, 1999).
  2. G. P. Bryan-Brown and I. C. Sage, “Photoinduced ordering and alignment properties of polyvinylcinnamates,” Liq. Cryst. 20, 825-829 (1996).
    [CrossRef]
  3. D. W. Berreman, “Solid surface shape and the alignment of an adjacent nematic liquid crystal,” Phys. Rev. Lett. 28, 1683-1686 (1972).
    [CrossRef]
  4. C. J. Newsome, M. O'Neill, R. J. Farley, and G. P. Bryan-Brown, “Laser etched gratings on polymer layers for alignment of liquid crystals,” Appl. Phys. Lett. 72, 2078-2080(1998).
    [CrossRef]
  5. X. Lu, Q. Lu, Z. Zhu, J. Yin, and Z. Wang, “Liquid crystal alignment on periodic microstructure induced by single-beam 532 nm polarized laser illumination on poly (urethane-imide) film,” Chem. Phys. Lett. 377, 433-438 (2003).
    [CrossRef]
  6. X. Lu, Q. Lu, and Z. Zhu, “Alignment mechanism of a nematic liquid crystal on a pre-rubbed polyimide film with laser-induced periodic surface structure,” Liq. Cryst. 30, 985-990(2003).
    [CrossRef]
  7. D. R. Chiou, K. Y. Yeh, and L. J. Chen, “Adjustable pretilt angle of nematic 4-n-pentyl-4-cyanobiphenyl on self-assembled monolayers formed from organosilanes on square-wave grating silica surfaces,” Appl. Phys. Lett. 88, 133123 (2006).
    [CrossRef]
  8. Y. F. Lin, M. C. Tsou, and R. P. Pan, “Alignment of liquid crystals by ion etched grooved glass surfaces,” Chin. J. Phys. 43, 1066-1073 (2005).
  9. S. S. Lin and Y. D. Lee, “Orientational microgrooves generated by plasma beam irradiation at surface of polymer films to align liquid crystals,” Jpn. J. Appl. Phys. 45, L708-L710(2006).
    [CrossRef]
  10. T. Sergan, J. Kelly, and M. Lavrentovich, “Liquid crystalline device with reflective wire grid polarizer,” Mol. Cryst. Liq. Cryst. 413, 537-544 (2004).
    [CrossRef]
  11. Z. Ge, T. X. Wu, and S. T. Wu, “Single cell gap and wide-view transflective liquid crystal display using fringe field switching and embedded wire grid polarizer,” Appl. Phys. Lett. 92, 051109 (2008).
    [CrossRef]
  12. C. Y. Chen and Y. L. Lo, “Integration of a-Si:H solar cell with proposed twist nematic liquid crystal cell for adjustable brightness and enhanced power characteristics,” Solar Energy Mater. Sol. Cells 93, 1268-1275 (2009).
    [CrossRef]
  13. C. Pentico, E. Gardner, D. Hansen, and R. Perkins, “New, high performance, durable polarizers for projection displays,” in Society for Information Display Symposium Digest (Society for Information Display, 2001), Vol. 32, pp. 1287-1289.
    [CrossRef]
  14. K. W. Chien and H. P. D. Shieh, “Design and fabrication of an integrated polarized light guide for liquid-crystal-display illumination,” Appl. Opt. 43, 1830-1834 (2004).
    [CrossRef] [PubMed]
  15. D. Yi, Y. Yan, H. Liu, S. Lu, and G. Jin, “Broadband polarizing beam splitter based on the form birefringence of a subwavelength grating in the quasi-static domain,” Opt. Lett. 29, 754-756 (2004).
    [CrossRef] [PubMed]
  16. L. L. Soares and L. Cescato, “Metallized photoresist grating as a polarizing beam splitter,” Appl. Opt. 40, 5906-5910(2001).
    [CrossRef]
  17. Z. Ge and S. T. Wu, “Nanowire grid polarizer for energy efficient and wide-view liquid crystal displays,” Appl. Phys. Lett. 93, 121104 (2008).
    [CrossRef]
  18. S. T. Wu and D. K. Yang, Reflective Liquid Crystal Displays (Wiley, 2002).
  19. D. Darmon, J. R. McNeil, and M. A. Handschy, “LED-Illuminated pico projector architectures,” in Society for Information Display Symposium Digest (Society for Information Display, 2008), Vol. 39, pp. 1070-1073.
    [CrossRef]
  20. M. H. J. Lee and R. J. Collier, “Sheet resistance measurement of thin metallic films and stripes at both 130 GHz and DC,” IEEE Trans. Instrum. Meas. 54, 2412-2415 (2005).
    [CrossRef]
  21. U. Klug, M. Boyle, F. Friederich, R. Kling, and A. Ostendorf, “Laser beam shaping for micromaterial processing using a liquid crystal display,” Proc. SPIE 6882, 688207 (2008).
    [CrossRef]
  22. H. Murat, H. D. Smet, and D. Cuypers, “Compact LED projector with tapered light pipes for moderate light output applications,” Displays 27, 117-123 (2006).
    [CrossRef]
  23. J. Gwag, S. Lee, K. Ho-Park, W. Park, K. Y. Han, T. H. Yoon, J. Kim, K. Y. Han, T. H. Yoon, and J. Kim, “High pretilt angle measurement by extended crystal rotation method,” Mol. Cryst. Liq. Cryst. 412, 331-337 (2004).
    [CrossRef]
  24. S. W. Ko, S. H. Huang, A. Y. G. Fuh, and T. H. Lin, “Measurement of helical twisting power based on axially symmetrical photo-aligned dye-doped liquid crystal film,” Opt. Express 17, 15926-15931 (2009).
    [CrossRef] [PubMed]

2009 (2)

C. Y. Chen and Y. L. Lo, “Integration of a-Si:H solar cell with proposed twist nematic liquid crystal cell for adjustable brightness and enhanced power characteristics,” Solar Energy Mater. Sol. Cells 93, 1268-1275 (2009).
[CrossRef]

S. W. Ko, S. H. Huang, A. Y. G. Fuh, and T. H. Lin, “Measurement of helical twisting power based on axially symmetrical photo-aligned dye-doped liquid crystal film,” Opt. Express 17, 15926-15931 (2009).
[CrossRef] [PubMed]

2008 (3)

Z. Ge and S. T. Wu, “Nanowire grid polarizer for energy efficient and wide-view liquid crystal displays,” Appl. Phys. Lett. 93, 121104 (2008).
[CrossRef]

Z. Ge, T. X. Wu, and S. T. Wu, “Single cell gap and wide-view transflective liquid crystal display using fringe field switching and embedded wire grid polarizer,” Appl. Phys. Lett. 92, 051109 (2008).
[CrossRef]

U. Klug, M. Boyle, F. Friederich, R. Kling, and A. Ostendorf, “Laser beam shaping for micromaterial processing using a liquid crystal display,” Proc. SPIE 6882, 688207 (2008).
[CrossRef]

2006 (3)

H. Murat, H. D. Smet, and D. Cuypers, “Compact LED projector with tapered light pipes for moderate light output applications,” Displays 27, 117-123 (2006).
[CrossRef]

D. R. Chiou, K. Y. Yeh, and L. J. Chen, “Adjustable pretilt angle of nematic 4-n-pentyl-4-cyanobiphenyl on self-assembled monolayers formed from organosilanes on square-wave grating silica surfaces,” Appl. Phys. Lett. 88, 133123 (2006).
[CrossRef]

S. S. Lin and Y. D. Lee, “Orientational microgrooves generated by plasma beam irradiation at surface of polymer films to align liquid crystals,” Jpn. J. Appl. Phys. 45, L708-L710(2006).
[CrossRef]

2005 (2)

Y. F. Lin, M. C. Tsou, and R. P. Pan, “Alignment of liquid crystals by ion etched grooved glass surfaces,” Chin. J. Phys. 43, 1066-1073 (2005).

M. H. J. Lee and R. J. Collier, “Sheet resistance measurement of thin metallic films and stripes at both 130 GHz and DC,” IEEE Trans. Instrum. Meas. 54, 2412-2415 (2005).
[CrossRef]

2004 (4)

J. Gwag, S. Lee, K. Ho-Park, W. Park, K. Y. Han, T. H. Yoon, J. Kim, K. Y. Han, T. H. Yoon, and J. Kim, “High pretilt angle measurement by extended crystal rotation method,” Mol. Cryst. Liq. Cryst. 412, 331-337 (2004).
[CrossRef]

T. Sergan, J. Kelly, and M. Lavrentovich, “Liquid crystalline device with reflective wire grid polarizer,” Mol. Cryst. Liq. Cryst. 413, 537-544 (2004).
[CrossRef]

K. W. Chien and H. P. D. Shieh, “Design and fabrication of an integrated polarized light guide for liquid-crystal-display illumination,” Appl. Opt. 43, 1830-1834 (2004).
[CrossRef] [PubMed]

D. Yi, Y. Yan, H. Liu, S. Lu, and G. Jin, “Broadband polarizing beam splitter based on the form birefringence of a subwavelength grating in the quasi-static domain,” Opt. Lett. 29, 754-756 (2004).
[CrossRef] [PubMed]

2003 (2)

X. Lu, Q. Lu, Z. Zhu, J. Yin, and Z. Wang, “Liquid crystal alignment on periodic microstructure induced by single-beam 532 nm polarized laser illumination on poly (urethane-imide) film,” Chem. Phys. Lett. 377, 433-438 (2003).
[CrossRef]

X. Lu, Q. Lu, and Z. Zhu, “Alignment mechanism of a nematic liquid crystal on a pre-rubbed polyimide film with laser-induced periodic surface structure,” Liq. Cryst. 30, 985-990(2003).
[CrossRef]

2001 (1)

1998 (1)

C. J. Newsome, M. O'Neill, R. J. Farley, and G. P. Bryan-Brown, “Laser etched gratings on polymer layers for alignment of liquid crystals,” Appl. Phys. Lett. 72, 2078-2080(1998).
[CrossRef]

1996 (1)

G. P. Bryan-Brown and I. C. Sage, “Photoinduced ordering and alignment properties of polyvinylcinnamates,” Liq. Cryst. 20, 825-829 (1996).
[CrossRef]

1972 (1)

D. W. Berreman, “Solid surface shape and the alignment of an adjacent nematic liquid crystal,” Phys. Rev. Lett. 28, 1683-1686 (1972).
[CrossRef]

Berreman, D. W.

D. W. Berreman, “Solid surface shape and the alignment of an adjacent nematic liquid crystal,” Phys. Rev. Lett. 28, 1683-1686 (1972).
[CrossRef]

Boyle, M.

U. Klug, M. Boyle, F. Friederich, R. Kling, and A. Ostendorf, “Laser beam shaping for micromaterial processing using a liquid crystal display,” Proc. SPIE 6882, 688207 (2008).
[CrossRef]

Bryan-Brown, G. P.

C. J. Newsome, M. O'Neill, R. J. Farley, and G. P. Bryan-Brown, “Laser etched gratings on polymer layers for alignment of liquid crystals,” Appl. Phys. Lett. 72, 2078-2080(1998).
[CrossRef]

G. P. Bryan-Brown and I. C. Sage, “Photoinduced ordering and alignment properties of polyvinylcinnamates,” Liq. Cryst. 20, 825-829 (1996).
[CrossRef]

Cescato, L.

Chen, C. Y.

C. Y. Chen and Y. L. Lo, “Integration of a-Si:H solar cell with proposed twist nematic liquid crystal cell for adjustable brightness and enhanced power characteristics,” Solar Energy Mater. Sol. Cells 93, 1268-1275 (2009).
[CrossRef]

Chen, L. J.

D. R. Chiou, K. Y. Yeh, and L. J. Chen, “Adjustable pretilt angle of nematic 4-n-pentyl-4-cyanobiphenyl on self-assembled monolayers formed from organosilanes on square-wave grating silica surfaces,” Appl. Phys. Lett. 88, 133123 (2006).
[CrossRef]

Chien, K. W.

Chiou, D. R.

D. R. Chiou, K. Y. Yeh, and L. J. Chen, “Adjustable pretilt angle of nematic 4-n-pentyl-4-cyanobiphenyl on self-assembled monolayers formed from organosilanes on square-wave grating silica surfaces,” Appl. Phys. Lett. 88, 133123 (2006).
[CrossRef]

Collier, R. J.

M. H. J. Lee and R. J. Collier, “Sheet resistance measurement of thin metallic films and stripes at both 130 GHz and DC,” IEEE Trans. Instrum. Meas. 54, 2412-2415 (2005).
[CrossRef]

Cuypers, D.

H. Murat, H. D. Smet, and D. Cuypers, “Compact LED projector with tapered light pipes for moderate light output applications,” Displays 27, 117-123 (2006).
[CrossRef]

Darmon, D.

D. Darmon, J. R. McNeil, and M. A. Handschy, “LED-Illuminated pico projector architectures,” in Society for Information Display Symposium Digest (Society for Information Display, 2008), Vol. 39, pp. 1070-1073.
[CrossRef]

Farley, R. J.

C. J. Newsome, M. O'Neill, R. J. Farley, and G. P. Bryan-Brown, “Laser etched gratings on polymer layers for alignment of liquid crystals,” Appl. Phys. Lett. 72, 2078-2080(1998).
[CrossRef]

Friederich, F.

U. Klug, M. Boyle, F. Friederich, R. Kling, and A. Ostendorf, “Laser beam shaping for micromaterial processing using a liquid crystal display,” Proc. SPIE 6882, 688207 (2008).
[CrossRef]

Fuh, A. Y. G.

Gardner, E.

C. Pentico, E. Gardner, D. Hansen, and R. Perkins, “New, high performance, durable polarizers for projection displays,” in Society for Information Display Symposium Digest (Society for Information Display, 2001), Vol. 32, pp. 1287-1289.
[CrossRef]

Ge, Z.

Z. Ge, T. X. Wu, and S. T. Wu, “Single cell gap and wide-view transflective liquid crystal display using fringe field switching and embedded wire grid polarizer,” Appl. Phys. Lett. 92, 051109 (2008).
[CrossRef]

Z. Ge and S. T. Wu, “Nanowire grid polarizer for energy efficient and wide-view liquid crystal displays,” Appl. Phys. Lett. 93, 121104 (2008).
[CrossRef]

Gu, C.

P. Yeh and C. Gu, Optics of Liquid Crystal Displays (Wiley, 1999).

Gwag, J.

J. Gwag, S. Lee, K. Ho-Park, W. Park, K. Y. Han, T. H. Yoon, J. Kim, K. Y. Han, T. H. Yoon, and J. Kim, “High pretilt angle measurement by extended crystal rotation method,” Mol. Cryst. Liq. Cryst. 412, 331-337 (2004).
[CrossRef]

Han, K. Y.

J. Gwag, S. Lee, K. Ho-Park, W. Park, K. Y. Han, T. H. Yoon, J. Kim, K. Y. Han, T. H. Yoon, and J. Kim, “High pretilt angle measurement by extended crystal rotation method,” Mol. Cryst. Liq. Cryst. 412, 331-337 (2004).
[CrossRef]

J. Gwag, S. Lee, K. Ho-Park, W. Park, K. Y. Han, T. H. Yoon, J. Kim, K. Y. Han, T. H. Yoon, and J. Kim, “High pretilt angle measurement by extended crystal rotation method,” Mol. Cryst. Liq. Cryst. 412, 331-337 (2004).
[CrossRef]

Handschy, M. A.

D. Darmon, J. R. McNeil, and M. A. Handschy, “LED-Illuminated pico projector architectures,” in Society for Information Display Symposium Digest (Society for Information Display, 2008), Vol. 39, pp. 1070-1073.
[CrossRef]

Hansen, D.

C. Pentico, E. Gardner, D. Hansen, and R. Perkins, “New, high performance, durable polarizers for projection displays,” in Society for Information Display Symposium Digest (Society for Information Display, 2001), Vol. 32, pp. 1287-1289.
[CrossRef]

Ho-Park, K.

J. Gwag, S. Lee, K. Ho-Park, W. Park, K. Y. Han, T. H. Yoon, J. Kim, K. Y. Han, T. H. Yoon, and J. Kim, “High pretilt angle measurement by extended crystal rotation method,” Mol. Cryst. Liq. Cryst. 412, 331-337 (2004).
[CrossRef]

Huang, S. H.

Jin, G.

Kelly, J.

T. Sergan, J. Kelly, and M. Lavrentovich, “Liquid crystalline device with reflective wire grid polarizer,” Mol. Cryst. Liq. Cryst. 413, 537-544 (2004).
[CrossRef]

Kim, J.

J. Gwag, S. Lee, K. Ho-Park, W. Park, K. Y. Han, T. H. Yoon, J. Kim, K. Y. Han, T. H. Yoon, and J. Kim, “High pretilt angle measurement by extended crystal rotation method,” Mol. Cryst. Liq. Cryst. 412, 331-337 (2004).
[CrossRef]

J. Gwag, S. Lee, K. Ho-Park, W. Park, K. Y. Han, T. H. Yoon, J. Kim, K. Y. Han, T. H. Yoon, and J. Kim, “High pretilt angle measurement by extended crystal rotation method,” Mol. Cryst. Liq. Cryst. 412, 331-337 (2004).
[CrossRef]

Kling, R.

U. Klug, M. Boyle, F. Friederich, R. Kling, and A. Ostendorf, “Laser beam shaping for micromaterial processing using a liquid crystal display,” Proc. SPIE 6882, 688207 (2008).
[CrossRef]

Klug, U.

U. Klug, M. Boyle, F. Friederich, R. Kling, and A. Ostendorf, “Laser beam shaping for micromaterial processing using a liquid crystal display,” Proc. SPIE 6882, 688207 (2008).
[CrossRef]

Ko, S. W.

Lavrentovich, M.

T. Sergan, J. Kelly, and M. Lavrentovich, “Liquid crystalline device with reflective wire grid polarizer,” Mol. Cryst. Liq. Cryst. 413, 537-544 (2004).
[CrossRef]

Lee, M. H. J.

M. H. J. Lee and R. J. Collier, “Sheet resistance measurement of thin metallic films and stripes at both 130 GHz and DC,” IEEE Trans. Instrum. Meas. 54, 2412-2415 (2005).
[CrossRef]

Lee, S.

J. Gwag, S. Lee, K. Ho-Park, W. Park, K. Y. Han, T. H. Yoon, J. Kim, K. Y. Han, T. H. Yoon, and J. Kim, “High pretilt angle measurement by extended crystal rotation method,” Mol. Cryst. Liq. Cryst. 412, 331-337 (2004).
[CrossRef]

Lee, Y. D.

S. S. Lin and Y. D. Lee, “Orientational microgrooves generated by plasma beam irradiation at surface of polymer films to align liquid crystals,” Jpn. J. Appl. Phys. 45, L708-L710(2006).
[CrossRef]

Lin, S. S.

S. S. Lin and Y. D. Lee, “Orientational microgrooves generated by plasma beam irradiation at surface of polymer films to align liquid crystals,” Jpn. J. Appl. Phys. 45, L708-L710(2006).
[CrossRef]

Lin, T. H.

Lin, Y. F.

Y. F. Lin, M. C. Tsou, and R. P. Pan, “Alignment of liquid crystals by ion etched grooved glass surfaces,” Chin. J. Phys. 43, 1066-1073 (2005).

Liu, H.

Lo, Y. L.

C. Y. Chen and Y. L. Lo, “Integration of a-Si:H solar cell with proposed twist nematic liquid crystal cell for adjustable brightness and enhanced power characteristics,” Solar Energy Mater. Sol. Cells 93, 1268-1275 (2009).
[CrossRef]

Lu, Q.

X. Lu, Q. Lu, Z. Zhu, J. Yin, and Z. Wang, “Liquid crystal alignment on periodic microstructure induced by single-beam 532 nm polarized laser illumination on poly (urethane-imide) film,” Chem. Phys. Lett. 377, 433-438 (2003).
[CrossRef]

X. Lu, Q. Lu, and Z. Zhu, “Alignment mechanism of a nematic liquid crystal on a pre-rubbed polyimide film with laser-induced periodic surface structure,” Liq. Cryst. 30, 985-990(2003).
[CrossRef]

Lu, S.

Lu, X.

X. Lu, Q. Lu, and Z. Zhu, “Alignment mechanism of a nematic liquid crystal on a pre-rubbed polyimide film with laser-induced periodic surface structure,” Liq. Cryst. 30, 985-990(2003).
[CrossRef]

X. Lu, Q. Lu, Z. Zhu, J. Yin, and Z. Wang, “Liquid crystal alignment on periodic microstructure induced by single-beam 532 nm polarized laser illumination on poly (urethane-imide) film,” Chem. Phys. Lett. 377, 433-438 (2003).
[CrossRef]

McNeil, J. R.

D. Darmon, J. R. McNeil, and M. A. Handschy, “LED-Illuminated pico projector architectures,” in Society for Information Display Symposium Digest (Society for Information Display, 2008), Vol. 39, pp. 1070-1073.
[CrossRef]

Murat, H.

H. Murat, H. D. Smet, and D. Cuypers, “Compact LED projector with tapered light pipes for moderate light output applications,” Displays 27, 117-123 (2006).
[CrossRef]

Newsome, C. J.

C. J. Newsome, M. O'Neill, R. J. Farley, and G. P. Bryan-Brown, “Laser etched gratings on polymer layers for alignment of liquid crystals,” Appl. Phys. Lett. 72, 2078-2080(1998).
[CrossRef]

O'Neill, M.

C. J. Newsome, M. O'Neill, R. J. Farley, and G. P. Bryan-Brown, “Laser etched gratings on polymer layers for alignment of liquid crystals,” Appl. Phys. Lett. 72, 2078-2080(1998).
[CrossRef]

Ostendorf, A.

U. Klug, M. Boyle, F. Friederich, R. Kling, and A. Ostendorf, “Laser beam shaping for micromaterial processing using a liquid crystal display,” Proc. SPIE 6882, 688207 (2008).
[CrossRef]

Pan, R. P.

Y. F. Lin, M. C. Tsou, and R. P. Pan, “Alignment of liquid crystals by ion etched grooved glass surfaces,” Chin. J. Phys. 43, 1066-1073 (2005).

Park, W.

J. Gwag, S. Lee, K. Ho-Park, W. Park, K. Y. Han, T. H. Yoon, J. Kim, K. Y. Han, T. H. Yoon, and J. Kim, “High pretilt angle measurement by extended crystal rotation method,” Mol. Cryst. Liq. Cryst. 412, 331-337 (2004).
[CrossRef]

Pentico, C.

C. Pentico, E. Gardner, D. Hansen, and R. Perkins, “New, high performance, durable polarizers for projection displays,” in Society for Information Display Symposium Digest (Society for Information Display, 2001), Vol. 32, pp. 1287-1289.
[CrossRef]

Perkins, R.

C. Pentico, E. Gardner, D. Hansen, and R. Perkins, “New, high performance, durable polarizers for projection displays,” in Society for Information Display Symposium Digest (Society for Information Display, 2001), Vol. 32, pp. 1287-1289.
[CrossRef]

Sage, I. C.

G. P. Bryan-Brown and I. C. Sage, “Photoinduced ordering and alignment properties of polyvinylcinnamates,” Liq. Cryst. 20, 825-829 (1996).
[CrossRef]

Sergan, T.

T. Sergan, J. Kelly, and M. Lavrentovich, “Liquid crystalline device with reflective wire grid polarizer,” Mol. Cryst. Liq. Cryst. 413, 537-544 (2004).
[CrossRef]

Shieh, H. P. D.

Smet, H. D.

H. Murat, H. D. Smet, and D. Cuypers, “Compact LED projector with tapered light pipes for moderate light output applications,” Displays 27, 117-123 (2006).
[CrossRef]

Soares, L. L.

Tsou, M. C.

Y. F. Lin, M. C. Tsou, and R. P. Pan, “Alignment of liquid crystals by ion etched grooved glass surfaces,” Chin. J. Phys. 43, 1066-1073 (2005).

Wang, Z.

X. Lu, Q. Lu, Z. Zhu, J. Yin, and Z. Wang, “Liquid crystal alignment on periodic microstructure induced by single-beam 532 nm polarized laser illumination on poly (urethane-imide) film,” Chem. Phys. Lett. 377, 433-438 (2003).
[CrossRef]

Wu, S. T.

Z. Ge, T. X. Wu, and S. T. Wu, “Single cell gap and wide-view transflective liquid crystal display using fringe field switching and embedded wire grid polarizer,” Appl. Phys. Lett. 92, 051109 (2008).
[CrossRef]

Z. Ge and S. T. Wu, “Nanowire grid polarizer for energy efficient and wide-view liquid crystal displays,” Appl. Phys. Lett. 93, 121104 (2008).
[CrossRef]

S. T. Wu and D. K. Yang, Reflective Liquid Crystal Displays (Wiley, 2002).

Wu, T. X.

Z. Ge, T. X. Wu, and S. T. Wu, “Single cell gap and wide-view transflective liquid crystal display using fringe field switching and embedded wire grid polarizer,” Appl. Phys. Lett. 92, 051109 (2008).
[CrossRef]

Yan, Y.

Yang, D. K.

S. T. Wu and D. K. Yang, Reflective Liquid Crystal Displays (Wiley, 2002).

Yeh, K. Y.

D. R. Chiou, K. Y. Yeh, and L. J. Chen, “Adjustable pretilt angle of nematic 4-n-pentyl-4-cyanobiphenyl on self-assembled monolayers formed from organosilanes on square-wave grating silica surfaces,” Appl. Phys. Lett. 88, 133123 (2006).
[CrossRef]

Yeh, P.

P. Yeh and C. Gu, Optics of Liquid Crystal Displays (Wiley, 1999).

Yi, D.

Yin, J.

X. Lu, Q. Lu, Z. Zhu, J. Yin, and Z. Wang, “Liquid crystal alignment on periodic microstructure induced by single-beam 532 nm polarized laser illumination on poly (urethane-imide) film,” Chem. Phys. Lett. 377, 433-438 (2003).
[CrossRef]

Yoon, T. H.

J. Gwag, S. Lee, K. Ho-Park, W. Park, K. Y. Han, T. H. Yoon, J. Kim, K. Y. Han, T. H. Yoon, and J. Kim, “High pretilt angle measurement by extended crystal rotation method,” Mol. Cryst. Liq. Cryst. 412, 331-337 (2004).
[CrossRef]

J. Gwag, S. Lee, K. Ho-Park, W. Park, K. Y. Han, T. H. Yoon, J. Kim, K. Y. Han, T. H. Yoon, and J. Kim, “High pretilt angle measurement by extended crystal rotation method,” Mol. Cryst. Liq. Cryst. 412, 331-337 (2004).
[CrossRef]

Zhu, Z.

X. Lu, Q. Lu, Z. Zhu, J. Yin, and Z. Wang, “Liquid crystal alignment on periodic microstructure induced by single-beam 532 nm polarized laser illumination on poly (urethane-imide) film,” Chem. Phys. Lett. 377, 433-438 (2003).
[CrossRef]

X. Lu, Q. Lu, and Z. Zhu, “Alignment mechanism of a nematic liquid crystal on a pre-rubbed polyimide film with laser-induced periodic surface structure,” Liq. Cryst. 30, 985-990(2003).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (4)

C. J. Newsome, M. O'Neill, R. J. Farley, and G. P. Bryan-Brown, “Laser etched gratings on polymer layers for alignment of liquid crystals,” Appl. Phys. Lett. 72, 2078-2080(1998).
[CrossRef]

D. R. Chiou, K. Y. Yeh, and L. J. Chen, “Adjustable pretilt angle of nematic 4-n-pentyl-4-cyanobiphenyl on self-assembled monolayers formed from organosilanes on square-wave grating silica surfaces,” Appl. Phys. Lett. 88, 133123 (2006).
[CrossRef]

Z. Ge, T. X. Wu, and S. T. Wu, “Single cell gap and wide-view transflective liquid crystal display using fringe field switching and embedded wire grid polarizer,” Appl. Phys. Lett. 92, 051109 (2008).
[CrossRef]

Z. Ge and S. T. Wu, “Nanowire grid polarizer for energy efficient and wide-view liquid crystal displays,” Appl. Phys. Lett. 93, 121104 (2008).
[CrossRef]

Chem. Phys. Lett. (1)

X. Lu, Q. Lu, Z. Zhu, J. Yin, and Z. Wang, “Liquid crystal alignment on periodic microstructure induced by single-beam 532 nm polarized laser illumination on poly (urethane-imide) film,” Chem. Phys. Lett. 377, 433-438 (2003).
[CrossRef]

Chin. J. Phys. (1)

Y. F. Lin, M. C. Tsou, and R. P. Pan, “Alignment of liquid crystals by ion etched grooved glass surfaces,” Chin. J. Phys. 43, 1066-1073 (2005).

Displays (1)

H. Murat, H. D. Smet, and D. Cuypers, “Compact LED projector with tapered light pipes for moderate light output applications,” Displays 27, 117-123 (2006).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

M. H. J. Lee and R. J. Collier, “Sheet resistance measurement of thin metallic films and stripes at both 130 GHz and DC,” IEEE Trans. Instrum. Meas. 54, 2412-2415 (2005).
[CrossRef]

Jpn. J. Appl. Phys. (1)

S. S. Lin and Y. D. Lee, “Orientational microgrooves generated by plasma beam irradiation at surface of polymer films to align liquid crystals,” Jpn. J. Appl. Phys. 45, L708-L710(2006).
[CrossRef]

Liq. Cryst. (2)

X. Lu, Q. Lu, and Z. Zhu, “Alignment mechanism of a nematic liquid crystal on a pre-rubbed polyimide film with laser-induced periodic surface structure,” Liq. Cryst. 30, 985-990(2003).
[CrossRef]

G. P. Bryan-Brown and I. C. Sage, “Photoinduced ordering and alignment properties of polyvinylcinnamates,” Liq. Cryst. 20, 825-829 (1996).
[CrossRef]

Mol. Cryst. Liq. Cryst. (2)

T. Sergan, J. Kelly, and M. Lavrentovich, “Liquid crystalline device with reflective wire grid polarizer,” Mol. Cryst. Liq. Cryst. 413, 537-544 (2004).
[CrossRef]

J. Gwag, S. Lee, K. Ho-Park, W. Park, K. Y. Han, T. H. Yoon, J. Kim, K. Y. Han, T. H. Yoon, and J. Kim, “High pretilt angle measurement by extended crystal rotation method,” Mol. Cryst. Liq. Cryst. 412, 331-337 (2004).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

D. W. Berreman, “Solid surface shape and the alignment of an adjacent nematic liquid crystal,” Phys. Rev. Lett. 28, 1683-1686 (1972).
[CrossRef]

Proc. SPIE (1)

U. Klug, M. Boyle, F. Friederich, R. Kling, and A. Ostendorf, “Laser beam shaping for micromaterial processing using a liquid crystal display,” Proc. SPIE 6882, 688207 (2008).
[CrossRef]

Solar Energy Mater. Sol. Cells (1)

C. Y. Chen and Y. L. Lo, “Integration of a-Si:H solar cell with proposed twist nematic liquid crystal cell for adjustable brightness and enhanced power characteristics,” Solar Energy Mater. Sol. Cells 93, 1268-1275 (2009).
[CrossRef]

Other (4)

C. Pentico, E. Gardner, D. Hansen, and R. Perkins, “New, high performance, durable polarizers for projection displays,” in Society for Information Display Symposium Digest (Society for Information Display, 2001), Vol. 32, pp. 1287-1289.
[CrossRef]

S. T. Wu and D. K. Yang, Reflective Liquid Crystal Displays (Wiley, 2002).

D. Darmon, J. R. McNeil, and M. A. Handschy, “LED-Illuminated pico projector architectures,” in Society for Information Display Symposium Digest (Society for Information Display, 2008), Vol. 39, pp. 1070-1073.
[CrossRef]

P. Yeh and C. Gu, Optics of Liquid Crystal Displays (Wiley, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic illustration of proposed TN-LC cell for projection displays.

Fig. 2
Fig. 2

Schematic illustration of WGP structure used in proposed TN-LC.

Fig. 3
Fig. 3

Typical structures of LCD projectors.

Fig. 4
Fig. 4

Voltage-dependent transmittance (V-T) curves of conventional and proposed TN-LC cells.

Fig. 5
Fig. 5

Response time curves of conventional and proposed TN-LC cells.

Fig. 6
Fig. 6

Experimental setup for transmittance measurements.

Fig. 7
Fig. 7

Transmittance characteristics of LCD projectors in the “off” state.

Fig. 8
Fig. 8

Transmittance characteristics of LCD projectors in the “on” state.

Tables (1)

Tables Icon

Table 1 Transmittance Characteristics and Contrast Ratio Values of LCD Projectors

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

T off , λ cell = cos 2 X + Γ 2 sin 2 X 4 X 2 ,
η λ q = ( T off , λ q T off , λ n ) / [ R s , λ f · ( 2 · T p , λ f ) · T off , λ cell · ( 2 · T p , λ r ) ] ,

Metrics