Abstract

High-spatial-frequency fringes associated with reflection holographic optical elements are difficult to obtain with currently available recording materials. In this work, holographic reflection gratings were stored in a polyvinyl alcohol/acrylamide photopolymer. This material is formed of acrylamide photo polymer, which is considered interesting material for optical storage applications such as holographic memories. The experimental procedure for examining the high-spatial-frequency response of this material is explained, and the experimental results obtained are presented. With the aim of obtaining the best results, the performance of different material compositions is compared.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Pu and D. Psaltis, “High-density recording in photopolymer-based holographic three-dimensional disks,” Appl. Opt. 35, 2389-2398 (1996).
    [CrossRef]
  2. M. Schnoes, B. Ihas, A. Hill, L. Dhar, D. Michaels, S. Setthachayanon, G. Schomberger, and W. L. Wilson, “Holographic data storage media for practical systems,” Proc. SPIE 5005, 29-37 (2003).
    [CrossRef]
  3. R. R. Mcleod, A. J. Daiber, M. E. McDonald, T. L. Robertson, T. Slagle, S. L. Sochava, and L. Hesselink, “Microholographic multilayer optical disk data storage,” Appl. Opt. 44, 3197-3207 (2005).
    [CrossRef]
  4. H. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic Data Storage (Springer-Verlag, 2000).
  5. E. Fernández, C. García, I. Pascual, M. Ortuño, S. Gallego, and A. Beléndez, “Optimization of a thick polyvinyl alcohol-acrylamide photopolymer for data storage using a combination of angular and peristrophic holographic multiplexing,” Appl. Opt. 45, 7661-7666 (2006).
    [CrossRef]
  6. E. Fernández, M. Ortuño, S. Gallego, C. García, A. Beléndez, and I. Pascual, “Comparison of peristrophic multiplexing and a combination of angular and peristrophic holographic multiplexing in a thick PVA/acrylamide photopolymer for data storage,” Appl. Opt. 46, 5368-5373 (2007).
    [CrossRef]
  7. E. Fernández, M. Ortuño, S. Gallego, A. Márquez, C. García, A. Beléndez, and I. Pascual, “Multiplexed holographic data page storage on a PVA/acrylamide photopolymer memory,” Appl. Opt. 47, 4448-4456 (2008).
    [CrossRef]
  8. J. M. Kim, B. S. Choi, Y. S. Choi, H. I. Bjelkhagen, and N. J. Phillips, “Holographic optical elements recorded in silver halide sensitized gelatin emulsions. Part 2. Reflection holographic optical elements,” Appl. Opt. 41, 1522-1533(2002).
    [CrossRef]
  9. S. Gallego, M. Ortuño, C. García, C. Neipp, A. Beléndez, and I. Pascual, “High-efficiency volume holograms recording on acrylamide and N,N'methylene-bis-acrylamide photopolymer with pulsed laser,” J. Mod. Opt. 52, 1575-1584 (2005).
    [CrossRef]
  10. S. Gallego, M. Ortuno, C. Neipp, A. Marquez, A. Belendez, and I. Pascual, “Characterization of polyvinyl alcohol/acrylamide holographic memories with a first-harmonic diffusion model,” Appl. Opt. 44, 6205-6210 (2005).
    [CrossRef]
  11. K. Y. Hsu, S. H. Lin, Y. N. Hsiao, and W. T. Whang, “Experimental characterization of phenanthrenequinone-doped poly(methyl methacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42, 1390-1396 (2003).
    [CrossRef]
  12. F. H. Mok, G. W. Burr, and D. Psaltis, “System metric for holographic memory systems,” Opt. Lett. 21, 896-898 (1996).
    [CrossRef]
  13. M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76, 851-857 (2003).
    [CrossRef]
  14. H. Yao, M. Huang, Z. Chen, L. Hou, and F. Gan, “Optimization of two-monomer-based photopolymer used for holographic recording,” Mater. Lett. 56, 3-8 (2002).
    [CrossRef]
  15. R. Jallapuram, I. Naydenova, R. Howard, S. Frohmann, S. Orlic, and H. J. Eichler, “Acrylamide-based photopolymer for microholographic data storage,” Opt. Mater. 28, 1329-1333(2006).
    [CrossRef]
  16. I. Naydenova, R. Jallapuram, V. Toal, and S. Martin, “A visual indication of environmental humidity using a color changing hologram recorded in a self-developing photopolymer,” Appl. Phys. Lett. 92, 031109 (2008).
    [CrossRef]
  17. M. R. Gleeson, D. Sabol, S. Liu, C. E. Close, J. V. Kelly, and J. Sheridan, “Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length,” J. Opt. Soc. Am. B 25, 396-406 (2008).
    [CrossRef]
  18. A. Beléndez, M. Ortuño, S. Gallego, T. Meléndez, C. Neipp, and I. Pascual, “Determinación de las constantes ópticas y el espesor de materiales holográficos,” Bol. Soc. Esp. Ceram. V. 43, 457-460 (2004).
  19. P. Hariharan, Optical Holography Principles, Techniques and Applications (Cambridge U. Press, 1996).
  20. L. Criante, K. Beev, D. E. Lucchetta, and F. Simoni, “Spectral analysis of shrinkage in holographic materials suitable for optical storage applications,” Proc. SPIE 6252, 62520G (2006).
    [CrossRef]

2008 (3)

2007 (1)

2006 (3)

E. Fernández, C. García, I. Pascual, M. Ortuño, S. Gallego, and A. Beléndez, “Optimization of a thick polyvinyl alcohol-acrylamide photopolymer for data storage using a combination of angular and peristrophic holographic multiplexing,” Appl. Opt. 45, 7661-7666 (2006).
[CrossRef]

L. Criante, K. Beev, D. E. Lucchetta, and F. Simoni, “Spectral analysis of shrinkage in holographic materials suitable for optical storage applications,” Proc. SPIE 6252, 62520G (2006).
[CrossRef]

R. Jallapuram, I. Naydenova, R. Howard, S. Frohmann, S. Orlic, and H. J. Eichler, “Acrylamide-based photopolymer for microholographic data storage,” Opt. Mater. 28, 1329-1333(2006).
[CrossRef]

2005 (3)

2004 (1)

A. Beléndez, M. Ortuño, S. Gallego, T. Meléndez, C. Neipp, and I. Pascual, “Determinación de las constantes ópticas y el espesor de materiales holográficos,” Bol. Soc. Esp. Ceram. V. 43, 457-460 (2004).

2003 (3)

M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76, 851-857 (2003).
[CrossRef]

M. Schnoes, B. Ihas, A. Hill, L. Dhar, D. Michaels, S. Setthachayanon, G. Schomberger, and W. L. Wilson, “Holographic data storage media for practical systems,” Proc. SPIE 5005, 29-37 (2003).
[CrossRef]

K. Y. Hsu, S. H. Lin, Y. N. Hsiao, and W. T. Whang, “Experimental characterization of phenanthrenequinone-doped poly(methyl methacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42, 1390-1396 (2003).
[CrossRef]

2002 (2)

1996 (2)

Beev, K.

L. Criante, K. Beev, D. E. Lucchetta, and F. Simoni, “Spectral analysis of shrinkage in holographic materials suitable for optical storage applications,” Proc. SPIE 6252, 62520G (2006).
[CrossRef]

Belendez, A.

Beléndez, A.

E. Fernández, M. Ortuño, S. Gallego, A. Márquez, C. García, A. Beléndez, and I. Pascual, “Multiplexed holographic data page storage on a PVA/acrylamide photopolymer memory,” Appl. Opt. 47, 4448-4456 (2008).
[CrossRef]

E. Fernández, M. Ortuño, S. Gallego, C. García, A. Beléndez, and I. Pascual, “Comparison of peristrophic multiplexing and a combination of angular and peristrophic holographic multiplexing in a thick PVA/acrylamide photopolymer for data storage,” Appl. Opt. 46, 5368-5373 (2007).
[CrossRef]

E. Fernández, C. García, I. Pascual, M. Ortuño, S. Gallego, and A. Beléndez, “Optimization of a thick polyvinyl alcohol-acrylamide photopolymer for data storage using a combination of angular and peristrophic holographic multiplexing,” Appl. Opt. 45, 7661-7666 (2006).
[CrossRef]

S. Gallego, M. Ortuño, C. García, C. Neipp, A. Beléndez, and I. Pascual, “High-efficiency volume holograms recording on acrylamide and N,N'methylene-bis-acrylamide photopolymer with pulsed laser,” J. Mod. Opt. 52, 1575-1584 (2005).
[CrossRef]

A. Beléndez, M. Ortuño, S. Gallego, T. Meléndez, C. Neipp, and I. Pascual, “Determinación de las constantes ópticas y el espesor de materiales holográficos,” Bol. Soc. Esp. Ceram. V. 43, 457-460 (2004).

M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76, 851-857 (2003).
[CrossRef]

Bjelkhagen, H. I.

Burr, G. W.

Chen, Z.

H. Yao, M. Huang, Z. Chen, L. Hou, and F. Gan, “Optimization of two-monomer-based photopolymer used for holographic recording,” Mater. Lett. 56, 3-8 (2002).
[CrossRef]

Choi, B. S.

Choi, Y. S.

Close, C. E.

Coufal, H.

H. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic Data Storage (Springer-Verlag, 2000).

Criante, L.

L. Criante, K. Beev, D. E. Lucchetta, and F. Simoni, “Spectral analysis of shrinkage in holographic materials suitable for optical storage applications,” Proc. SPIE 6252, 62520G (2006).
[CrossRef]

Daiber, A. J.

Dhar, L.

M. Schnoes, B. Ihas, A. Hill, L. Dhar, D. Michaels, S. Setthachayanon, G. Schomberger, and W. L. Wilson, “Holographic data storage media for practical systems,” Proc. SPIE 5005, 29-37 (2003).
[CrossRef]

Eichler, H. J.

R. Jallapuram, I. Naydenova, R. Howard, S. Frohmann, S. Orlic, and H. J. Eichler, “Acrylamide-based photopolymer for microholographic data storage,” Opt. Mater. 28, 1329-1333(2006).
[CrossRef]

Fernández, E.

Frohmann, S.

R. Jallapuram, I. Naydenova, R. Howard, S. Frohmann, S. Orlic, and H. J. Eichler, “Acrylamide-based photopolymer for microholographic data storage,” Opt. Mater. 28, 1329-1333(2006).
[CrossRef]

Gallego, S.

E. Fernández, M. Ortuño, S. Gallego, A. Márquez, C. García, A. Beléndez, and I. Pascual, “Multiplexed holographic data page storage on a PVA/acrylamide photopolymer memory,” Appl. Opt. 47, 4448-4456 (2008).
[CrossRef]

E. Fernández, M. Ortuño, S. Gallego, C. García, A. Beléndez, and I. Pascual, “Comparison of peristrophic multiplexing and a combination of angular and peristrophic holographic multiplexing in a thick PVA/acrylamide photopolymer for data storage,” Appl. Opt. 46, 5368-5373 (2007).
[CrossRef]

E. Fernández, C. García, I. Pascual, M. Ortuño, S. Gallego, and A. Beléndez, “Optimization of a thick polyvinyl alcohol-acrylamide photopolymer for data storage using a combination of angular and peristrophic holographic multiplexing,” Appl. Opt. 45, 7661-7666 (2006).
[CrossRef]

S. Gallego, M. Ortuno, C. Neipp, A. Marquez, A. Belendez, and I. Pascual, “Characterization of polyvinyl alcohol/acrylamide holographic memories with a first-harmonic diffusion model,” Appl. Opt. 44, 6205-6210 (2005).
[CrossRef]

S. Gallego, M. Ortuño, C. García, C. Neipp, A. Beléndez, and I. Pascual, “High-efficiency volume holograms recording on acrylamide and N,N'methylene-bis-acrylamide photopolymer with pulsed laser,” J. Mod. Opt. 52, 1575-1584 (2005).
[CrossRef]

A. Beléndez, M. Ortuño, S. Gallego, T. Meléndez, C. Neipp, and I. Pascual, “Determinación de las constantes ópticas y el espesor de materiales holográficos,” Bol. Soc. Esp. Ceram. V. 43, 457-460 (2004).

M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76, 851-857 (2003).
[CrossRef]

Gan, F.

H. Yao, M. Huang, Z. Chen, L. Hou, and F. Gan, “Optimization of two-monomer-based photopolymer used for holographic recording,” Mater. Lett. 56, 3-8 (2002).
[CrossRef]

García, C.

Gleeson, M. R.

Hariharan, P.

P. Hariharan, Optical Holography Principles, Techniques and Applications (Cambridge U. Press, 1996).

Hesselink, L.

Hill, A.

M. Schnoes, B. Ihas, A. Hill, L. Dhar, D. Michaels, S. Setthachayanon, G. Schomberger, and W. L. Wilson, “Holographic data storage media for practical systems,” Proc. SPIE 5005, 29-37 (2003).
[CrossRef]

Hou, L.

H. Yao, M. Huang, Z. Chen, L. Hou, and F. Gan, “Optimization of two-monomer-based photopolymer used for holographic recording,” Mater. Lett. 56, 3-8 (2002).
[CrossRef]

Howard, R.

R. Jallapuram, I. Naydenova, R. Howard, S. Frohmann, S. Orlic, and H. J. Eichler, “Acrylamide-based photopolymer for microholographic data storage,” Opt. Mater. 28, 1329-1333(2006).
[CrossRef]

Hsiao, Y. N.

K. Y. Hsu, S. H. Lin, Y. N. Hsiao, and W. T. Whang, “Experimental characterization of phenanthrenequinone-doped poly(methyl methacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42, 1390-1396 (2003).
[CrossRef]

Hsu, K. Y.

K. Y. Hsu, S. H. Lin, Y. N. Hsiao, and W. T. Whang, “Experimental characterization of phenanthrenequinone-doped poly(methyl methacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42, 1390-1396 (2003).
[CrossRef]

Huang, M.

H. Yao, M. Huang, Z. Chen, L. Hou, and F. Gan, “Optimization of two-monomer-based photopolymer used for holographic recording,” Mater. Lett. 56, 3-8 (2002).
[CrossRef]

Ihas, B.

M. Schnoes, B. Ihas, A. Hill, L. Dhar, D. Michaels, S. Setthachayanon, G. Schomberger, and W. L. Wilson, “Holographic data storage media for practical systems,” Proc. SPIE 5005, 29-37 (2003).
[CrossRef]

Jallapuram, R.

I. Naydenova, R. Jallapuram, V. Toal, and S. Martin, “A visual indication of environmental humidity using a color changing hologram recorded in a self-developing photopolymer,” Appl. Phys. Lett. 92, 031109 (2008).
[CrossRef]

R. Jallapuram, I. Naydenova, R. Howard, S. Frohmann, S. Orlic, and H. J. Eichler, “Acrylamide-based photopolymer for microholographic data storage,” Opt. Mater. 28, 1329-1333(2006).
[CrossRef]

Kelly, J. V.

Kim, J. M.

Lin, S. H.

K. Y. Hsu, S. H. Lin, Y. N. Hsiao, and W. T. Whang, “Experimental characterization of phenanthrenequinone-doped poly(methyl methacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42, 1390-1396 (2003).
[CrossRef]

Liu, S.

Lucchetta, D. E.

L. Criante, K. Beev, D. E. Lucchetta, and F. Simoni, “Spectral analysis of shrinkage in holographic materials suitable for optical storage applications,” Proc. SPIE 6252, 62520G (2006).
[CrossRef]

Marquez, A.

Márquez, A.

Martin, S.

I. Naydenova, R. Jallapuram, V. Toal, and S. Martin, “A visual indication of environmental humidity using a color changing hologram recorded in a self-developing photopolymer,” Appl. Phys. Lett. 92, 031109 (2008).
[CrossRef]

McDonald, M. E.

Mcleod, R. R.

Meléndez, T.

A. Beléndez, M. Ortuño, S. Gallego, T. Meléndez, C. Neipp, and I. Pascual, “Determinación de las constantes ópticas y el espesor de materiales holográficos,” Bol. Soc. Esp. Ceram. V. 43, 457-460 (2004).

Michaels, D.

M. Schnoes, B. Ihas, A. Hill, L. Dhar, D. Michaels, S. Setthachayanon, G. Schomberger, and W. L. Wilson, “Holographic data storage media for practical systems,” Proc. SPIE 5005, 29-37 (2003).
[CrossRef]

Mok, F. H.

Naydenova, I.

I. Naydenova, R. Jallapuram, V. Toal, and S. Martin, “A visual indication of environmental humidity using a color changing hologram recorded in a self-developing photopolymer,” Appl. Phys. Lett. 92, 031109 (2008).
[CrossRef]

R. Jallapuram, I. Naydenova, R. Howard, S. Frohmann, S. Orlic, and H. J. Eichler, “Acrylamide-based photopolymer for microholographic data storage,” Opt. Mater. 28, 1329-1333(2006).
[CrossRef]

Neipp, C.

S. Gallego, M. Ortuno, C. Neipp, A. Marquez, A. Belendez, and I. Pascual, “Characterization of polyvinyl alcohol/acrylamide holographic memories with a first-harmonic diffusion model,” Appl. Opt. 44, 6205-6210 (2005).
[CrossRef]

S. Gallego, M. Ortuño, C. García, C. Neipp, A. Beléndez, and I. Pascual, “High-efficiency volume holograms recording on acrylamide and N,N'methylene-bis-acrylamide photopolymer with pulsed laser,” J. Mod. Opt. 52, 1575-1584 (2005).
[CrossRef]

A. Beléndez, M. Ortuño, S. Gallego, T. Meléndez, C. Neipp, and I. Pascual, “Determinación de las constantes ópticas y el espesor de materiales holográficos,” Bol. Soc. Esp. Ceram. V. 43, 457-460 (2004).

M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76, 851-857 (2003).
[CrossRef]

Orlic, S.

R. Jallapuram, I. Naydenova, R. Howard, S. Frohmann, S. Orlic, and H. J. Eichler, “Acrylamide-based photopolymer for microholographic data storage,” Opt. Mater. 28, 1329-1333(2006).
[CrossRef]

Ortuno, M.

Ortuño, M.

E. Fernández, M. Ortuño, S. Gallego, A. Márquez, C. García, A. Beléndez, and I. Pascual, “Multiplexed holographic data page storage on a PVA/acrylamide photopolymer memory,” Appl. Opt. 47, 4448-4456 (2008).
[CrossRef]

E. Fernández, M. Ortuño, S. Gallego, C. García, A. Beléndez, and I. Pascual, “Comparison of peristrophic multiplexing and a combination of angular and peristrophic holographic multiplexing in a thick PVA/acrylamide photopolymer for data storage,” Appl. Opt. 46, 5368-5373 (2007).
[CrossRef]

E. Fernández, C. García, I. Pascual, M. Ortuño, S. Gallego, and A. Beléndez, “Optimization of a thick polyvinyl alcohol-acrylamide photopolymer for data storage using a combination of angular and peristrophic holographic multiplexing,” Appl. Opt. 45, 7661-7666 (2006).
[CrossRef]

S. Gallego, M. Ortuño, C. García, C. Neipp, A. Beléndez, and I. Pascual, “High-efficiency volume holograms recording on acrylamide and N,N'methylene-bis-acrylamide photopolymer with pulsed laser,” J. Mod. Opt. 52, 1575-1584 (2005).
[CrossRef]

A. Beléndez, M. Ortuño, S. Gallego, T. Meléndez, C. Neipp, and I. Pascual, “Determinación de las constantes ópticas y el espesor de materiales holográficos,” Bol. Soc. Esp. Ceram. V. 43, 457-460 (2004).

M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76, 851-857 (2003).
[CrossRef]

Pascual, I.

E. Fernández, M. Ortuño, S. Gallego, A. Márquez, C. García, A. Beléndez, and I. Pascual, “Multiplexed holographic data page storage on a PVA/acrylamide photopolymer memory,” Appl. Opt. 47, 4448-4456 (2008).
[CrossRef]

E. Fernández, M. Ortuño, S. Gallego, C. García, A. Beléndez, and I. Pascual, “Comparison of peristrophic multiplexing and a combination of angular and peristrophic holographic multiplexing in a thick PVA/acrylamide photopolymer for data storage,” Appl. Opt. 46, 5368-5373 (2007).
[CrossRef]

E. Fernández, C. García, I. Pascual, M. Ortuño, S. Gallego, and A. Beléndez, “Optimization of a thick polyvinyl alcohol-acrylamide photopolymer for data storage using a combination of angular and peristrophic holographic multiplexing,” Appl. Opt. 45, 7661-7666 (2006).
[CrossRef]

S. Gallego, M. Ortuño, C. García, C. Neipp, A. Beléndez, and I. Pascual, “High-efficiency volume holograms recording on acrylamide and N,N'methylene-bis-acrylamide photopolymer with pulsed laser,” J. Mod. Opt. 52, 1575-1584 (2005).
[CrossRef]

S. Gallego, M. Ortuno, C. Neipp, A. Marquez, A. Belendez, and I. Pascual, “Characterization of polyvinyl alcohol/acrylamide holographic memories with a first-harmonic diffusion model,” Appl. Opt. 44, 6205-6210 (2005).
[CrossRef]

A. Beléndez, M. Ortuño, S. Gallego, T. Meléndez, C. Neipp, and I. Pascual, “Determinación de las constantes ópticas y el espesor de materiales holográficos,” Bol. Soc. Esp. Ceram. V. 43, 457-460 (2004).

M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76, 851-857 (2003).
[CrossRef]

Phillips, N. J.

Psaltis, D.

Pu, A.

Robertson, T. L.

Sabol, D.

Schnoes, M.

M. Schnoes, B. Ihas, A. Hill, L. Dhar, D. Michaels, S. Setthachayanon, G. Schomberger, and W. L. Wilson, “Holographic data storage media for practical systems,” Proc. SPIE 5005, 29-37 (2003).
[CrossRef]

Schomberger, G.

M. Schnoes, B. Ihas, A. Hill, L. Dhar, D. Michaels, S. Setthachayanon, G. Schomberger, and W. L. Wilson, “Holographic data storage media for practical systems,” Proc. SPIE 5005, 29-37 (2003).
[CrossRef]

Setthachayanon, S.

M. Schnoes, B. Ihas, A. Hill, L. Dhar, D. Michaels, S. Setthachayanon, G. Schomberger, and W. L. Wilson, “Holographic data storage media for practical systems,” Proc. SPIE 5005, 29-37 (2003).
[CrossRef]

Sheridan, J.

Simoni, F.

L. Criante, K. Beev, D. E. Lucchetta, and F. Simoni, “Spectral analysis of shrinkage in holographic materials suitable for optical storage applications,” Proc. SPIE 6252, 62520G (2006).
[CrossRef]

Sincerbox, G. T.

H. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic Data Storage (Springer-Verlag, 2000).

Slagle, T.

Sochava, S. L.

Toal, V.

I. Naydenova, R. Jallapuram, V. Toal, and S. Martin, “A visual indication of environmental humidity using a color changing hologram recorded in a self-developing photopolymer,” Appl. Phys. Lett. 92, 031109 (2008).
[CrossRef]

Whang, W. T.

K. Y. Hsu, S. H. Lin, Y. N. Hsiao, and W. T. Whang, “Experimental characterization of phenanthrenequinone-doped poly(methyl methacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42, 1390-1396 (2003).
[CrossRef]

Wilson, W. L.

M. Schnoes, B. Ihas, A. Hill, L. Dhar, D. Michaels, S. Setthachayanon, G. Schomberger, and W. L. Wilson, “Holographic data storage media for practical systems,” Proc. SPIE 5005, 29-37 (2003).
[CrossRef]

Yao, H.

H. Yao, M. Huang, Z. Chen, L. Hou, and F. Gan, “Optimization of two-monomer-based photopolymer used for holographic recording,” Mater. Lett. 56, 3-8 (2002).
[CrossRef]

Appl. Opt. (7)

A. Pu and D. Psaltis, “High-density recording in photopolymer-based holographic three-dimensional disks,” Appl. Opt. 35, 2389-2398 (1996).
[CrossRef]

J. M. Kim, B. S. Choi, Y. S. Choi, H. I. Bjelkhagen, and N. J. Phillips, “Holographic optical elements recorded in silver halide sensitized gelatin emulsions. Part 2. Reflection holographic optical elements,” Appl. Opt. 41, 1522-1533(2002).
[CrossRef]

R. R. Mcleod, A. J. Daiber, M. E. McDonald, T. L. Robertson, T. Slagle, S. L. Sochava, and L. Hesselink, “Microholographic multilayer optical disk data storage,” Appl. Opt. 44, 3197-3207 (2005).
[CrossRef]

S. Gallego, M. Ortuno, C. Neipp, A. Marquez, A. Belendez, and I. Pascual, “Characterization of polyvinyl alcohol/acrylamide holographic memories with a first-harmonic diffusion model,” Appl. Opt. 44, 6205-6210 (2005).
[CrossRef]

E. Fernández, C. García, I. Pascual, M. Ortuño, S. Gallego, and A. Beléndez, “Optimization of a thick polyvinyl alcohol-acrylamide photopolymer for data storage using a combination of angular and peristrophic holographic multiplexing,” Appl. Opt. 45, 7661-7666 (2006).
[CrossRef]

E. Fernández, M. Ortuño, S. Gallego, C. García, A. Beléndez, and I. Pascual, “Comparison of peristrophic multiplexing and a combination of angular and peristrophic holographic multiplexing in a thick PVA/acrylamide photopolymer for data storage,” Appl. Opt. 46, 5368-5373 (2007).
[CrossRef]

E. Fernández, M. Ortuño, S. Gallego, A. Márquez, C. García, A. Beléndez, and I. Pascual, “Multiplexed holographic data page storage on a PVA/acrylamide photopolymer memory,” Appl. Opt. 47, 4448-4456 (2008).
[CrossRef]

Appl. Phys. B (1)

M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76, 851-857 (2003).
[CrossRef]

Appl. Phys. Lett. (1)

I. Naydenova, R. Jallapuram, V. Toal, and S. Martin, “A visual indication of environmental humidity using a color changing hologram recorded in a self-developing photopolymer,” Appl. Phys. Lett. 92, 031109 (2008).
[CrossRef]

Bol. Soc. Esp. Ceram. V. (1)

A. Beléndez, M. Ortuño, S. Gallego, T. Meléndez, C. Neipp, and I. Pascual, “Determinación de las constantes ópticas y el espesor de materiales holográficos,” Bol. Soc. Esp. Ceram. V. 43, 457-460 (2004).

J. Mod. Opt. (1)

S. Gallego, M. Ortuño, C. García, C. Neipp, A. Beléndez, and I. Pascual, “High-efficiency volume holograms recording on acrylamide and N,N'methylene-bis-acrylamide photopolymer with pulsed laser,” J. Mod. Opt. 52, 1575-1584 (2005).
[CrossRef]

J. Opt. Soc. Am. B (1)

Mater. Lett. (1)

H. Yao, M. Huang, Z. Chen, L. Hou, and F. Gan, “Optimization of two-monomer-based photopolymer used for holographic recording,” Mater. Lett. 56, 3-8 (2002).
[CrossRef]

Opt. Eng. (1)

K. Y. Hsu, S. H. Lin, Y. N. Hsiao, and W. T. Whang, “Experimental characterization of phenanthrenequinone-doped poly(methyl methacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42, 1390-1396 (2003).
[CrossRef]

Opt. Lett. (1)

Opt. Mater. (1)

R. Jallapuram, I. Naydenova, R. Howard, S. Frohmann, S. Orlic, and H. J. Eichler, “Acrylamide-based photopolymer for microholographic data storage,” Opt. Mater. 28, 1329-1333(2006).
[CrossRef]

Proc. SPIE (2)

M. Schnoes, B. Ihas, A. Hill, L. Dhar, D. Michaels, S. Setthachayanon, G. Schomberger, and W. L. Wilson, “Holographic data storage media for practical systems,” Proc. SPIE 5005, 29-37 (2003).
[CrossRef]

L. Criante, K. Beev, D. E. Lucchetta, and F. Simoni, “Spectral analysis of shrinkage in holographic materials suitable for optical storage applications,” Proc. SPIE 6252, 62520G (2006).
[CrossRef]

Other (2)

H. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic Data Storage (Springer-Verlag, 2000).

P. Hariharan, Optical Holography Principles, Techniques and Applications (Cambridge U. Press, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup: BS, beam splitter; M1, mirror; L1, lens; D1, diaphragm, SF1, microscope objective and pinhole.

Fig. 2
Fig. 2

Transmittance versus wavelength when a reflection grating was recorded on a plate.

Fig. 3
Fig. 3

Diffraction efficiency as a function of exposure for reflection gratings recorded on plates, with composition A represented by squares, composition B represented by circles, and composition C represented by triangles.

Fig. 4
Fig. 4

Transmittance as a function of wavelength for reflection gratings recorded on plates, with composition A represented by dashed curves ( E = 0.4 J / cm 2 ), composition B represented by solid curves ( E = 0.4 J / cm 2 ), and composition C represented by dotted curves ( E = 4.7 J / cm 2 ).

Tables (1)

Tables Icon

Table 1 Concentrations of the Photopolymer Compositions

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Λ = λ 2 n sen ( θ 2 ) .
s opt = λ th λ exp λ th .

Metrics