Abstract

A midinfrared absorption sensor for crank-angle-resolved in-cylinder measurements of gasoline concentration and gas temperature for spark-ignition internal-combustion engines is reported, and design considerations and validation testing in the controlled environments of a heated cell and shock-heated gases are discussed. Mid-IR laser light was tuned to transitions in the strong absorption bands associated with C--H stretching vibration near 3.4 μm, and time-resolved fuel vapor concentration and gas temperature were determined simultaneously from the absorption at two different wavelengths. These two infrared laser wavelengths were simultaneously produced by difference-frequency generation, which combines a near-IR signal laser with two near-IR pump lasers in a periodically poled lithium niobate crystal. Injection current modulation of the pump lasers produced intensity modulation of the mid-IR, which allowed the transmitted signals from the two laser wavelengths to be detected on a single detector and separated by frequency demultiplexing. Injection current modulation produced a wavelength modulation synchronous with the intensity modulation for each of the laser wavelengths, and accurate measurement of the gasoline absorption signal required the effects of wavelength modulation to be considered. Validation experiments were conducted for a single-component hydrocarbon fuel (2,2,4-trimethyl-pentane, commonly known as iso-octane) and a gasoline blend in a heated static cell (300≤T≤600 K) and behind planar shock waves (600<T<1100 K) in a shock tube. With a bandwidth of 10 kHz, the measured fuel concentrations agreed within 5% RMS and the measured temperature agreed within 3% RMS to the known values. The 10 kHz bandwidth is sufficient to resolve 1 crank-angle degree at 1600 RPM.

© 2009 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Zhao and N. Ladommatos, “Optical diagnostics for in-cylinder mixture formation measurements in IC engines,” Prog. Energy Combust. Sci. 24, 297-336 (1998).
    [CrossRef]
  2. F. P. Hindle, S. J. Carey, K. B. Ozanyan, D. E. Winterbone, E. Clough, and H. McCann, “Near infra-red chemical species tomography of sprays of volatile hydrocarbons,” Techn. Messen 69, 352-357 (2002).
  3. H. McCann, S. J. Carey, F. P. Hindle, K. B. Ozanyan, D. E. Winterbone, and E. Clough, “Near-infrared absorption tomography system for measurement of gaseous hydrocarbon distribution,” Proc. SPIE 4188, 141-150 (2001).
    [CrossRef]
  4. P. Wright, C. A. Garcia-Stewart, S. J. Carey, F. P. Hindle, S. H. Pegrum, S. M. Colbourne, P. J. Turner, W. J. Hurr, T. J. Litt, S. C. Murray, S. D. Crossley, K. B. Ozanyan, and H. McCann, “Toward in-cylinder absorption tomography in a production engine,” Appl. Opt. 44, 6578-6592 (2005).
    [CrossRef]
  5. H. Kawazoe, K. Inagaki, Y. Emi, and F. Yoshino, “Computed tomography measurement of gaseous fuel concentration by infrared laser light absorption,” Proc. SPIE 3172, 576-584(1997).
    [CrossRef]
  6. R. K. Mongia, E. Tomita, F. K. Hsu, L. Talbot, and R. W. Dibble, “Use of an optical probe for time-resolved in situ measurement of local air-to-fuel ratio and extent of fuel mixing with applications to low NOx emissions in premixed gas turbines,” Proc. Combust. Inst. 26, 2749-2755(1996).
  7. Q.-V. Nguyen, R. K. Mongia, and R. W. Dibble, “Real-time optical fuel-to-air ratio sensor for gas turbine combustors,” Proc. SPIE 3535, 124-130 (1999).
  8. D. C. Horning, D. F. Davidson, and R. K. Hanson, “Study of the high-temperature autoignition of n-alkane/O2/Ar mixtures,” J. Propuls. Power 18, 363-371 (2002).
  9. E. Tomita, N. Kawahara, A. Nishiyama, and M. Shigenaga, “In situ measurement of hydrocarbon fuel concentration near a spark plug in an engine cylinder using the 3.392 μm infrared laser absorption method: application to an actual engine,” Meas. Sci. Technol. 14, 1357-1363 (2003).
    [CrossRef]
  10. E. Tomita, N. Kawahara, M. Shigenaga, A. Nishiyama, and R. W. Dibble, “In situ measurement of hydrocarbon fuel concentration near a spark plug in an engine cylinder using the 3.392 μm infrared laser absorption method: discussion of applicability with a homogeneous methane-air mixture,” Meas. Sci. Technol. 14, 1350-1356 (2003).
    [CrossRef]
  11. A. E. Klingbeil, J. B. Jeffries, and R. K. Hanson, “Design of a fiber-coupled mid-IR fuel sensor for pulse detonation engines,” AIAA J. 45, 772-778 (2007).
    [CrossRef]
  12. J. A. Drallmeier, “Hydrocarbon absorption coefficients at the 3.39 μm He-Ne laser transition,” Appl. Opt. 42, 979-982(2003).
    [CrossRef]
  13. S. Yoshiyama, Y. Hamamoto, E. Tomita, and K.-I. Minami, “Measurement of hydrocarbon fuel concentration by means of infrared absorption technique with 3.39 μm He-Ne laser,” JSAE Rev. 17, 339-345 (1996).
  14. E. Winklhofer and A. Plimon, “Monitoring of hydrocarbon fuel-air mixtures by means of a light extinction technique in optically accessed research engine,” Opt. Eng. 30, 1262-1268 (1991).
  15. A. E. Klingbeil, J. B. Jeffries, and R. K. Hanson, “Temperature- and concentration-dependent mid-infrared absorption spectrum of gasoline: model and measurements,” Fuel 87, 3600-3609 (2008).
    [CrossRef]
  16. A. E. Klingbeil, J. M. Porter, J. B. Jeffries, and R. K. Hanson, “Two-wavelength mid-IR absorption diagnostic for simultaneous measurement of temperature and hydrocarbon fuel concentration,” Proc. Combust. Inst. 32, 821-829 (2009).
  17. A. E. Klingbeil, J. B. Jeffries, D. F. Davidson, and R. K. Hanson, “Two-wavelength mid-IR diagnostic for temperature and n-dodecane concentration in an aerosol shock tube,” Appl. Phys. B 93, 627-638 (2008).
  18. A. Kakuho, K. Yamaguchi, Y. Hashizume, T. Urushihara, and T. Itoh, “A study of air-fuel mixture formation in direct-injection SI engines,” SAE technical paper series2004-01-1946 (Society of Automotive Engineers, 2004).
  19. A. Grosch, V. Beushausen, O. Thiele, and R. Grzeszik, “Crank angle resolved determination of fuel concentration and air/fuel ratio in a SI-internal combustion engine using a modified optical spark plug,” SAE technical paper series2007-01-0644 (Society of Automotive Engineers, 2007).
  20. A. Kakuho, K. R. Sholes, Y. Hashizume, S. Takatani, T. Urushihara, R. K. Hanson, J. B. Jeffries, and M. G. Allen, “Simultaneous measurement of in-cylinder temperature and residual gas concentration in the vicinity of the spark plug by wavelength modulation infrared absorption,” SAE technical paper series2007-01-0639 (Society of Automotive Engineers, 2007).
  21. A. E. Klingbeil, J. B. Jeffries, and R. K. Hanson, “Temperature-dependent mid-IR absorption spectra of gaseous hydrocarbons,” J. Quant. Spectrosc. Radiat. Transfer 107, 407-420(2007).
    [CrossRef]
  22. W. Chen, J. Cousin, E. Poullet, J. Burie, D. Boucher, X. Gao, M. W. Sigrist, and F. K. Tittel, “Continuous-wave mid-infrared laser sources based on difference frequency generation,” Comptes Rendus Phys. 8, 1129-1150 (2007).
  23. D. Richter, P. Weibring, A. Fried, O. Tadanaga, Y. Nishida, M. Asobe, and H. Suzuki, “High-power, tunable difference frequency generation source for absorption spectroscopy based on a ridge waveguide periodically poled lithium niobate crystal,” Opt. Express 15, 5172 (2007).
    [CrossRef]
  24. L. C. Philippe and R. K. Hanson, “Laser diode wavelength-modulation spectroscopy for simultaneous measurement of temperature, pressure and velocity in shock-heated oxygen flows,” Appl. Opt. 32, 6090-6103 (1993).
    [CrossRef]
  25. R. D. Cook, D. F. Davidson, and R. K. Hanson, “Shock tube measurements of ignition delay times and OH time-histories in dimethyl ether oxidation,” Proc. Combust. Inst. 32, 189-196 (2009).
  26. G. Ben-Dor, O. Igra, and T. Elperin, eds., Handbook of Shock Waves (Academic, 2001), Chaps. 3.1 and 4.1.

2009 (2)

A. E. Klingbeil, J. M. Porter, J. B. Jeffries, and R. K. Hanson, “Two-wavelength mid-IR absorption diagnostic for simultaneous measurement of temperature and hydrocarbon fuel concentration,” Proc. Combust. Inst. 32, 821-829 (2009).

R. D. Cook, D. F. Davidson, and R. K. Hanson, “Shock tube measurements of ignition delay times and OH time-histories in dimethyl ether oxidation,” Proc. Combust. Inst. 32, 189-196 (2009).

2008 (2)

A. E. Klingbeil, J. B. Jeffries, D. F. Davidson, and R. K. Hanson, “Two-wavelength mid-IR diagnostic for temperature and n-dodecane concentration in an aerosol shock tube,” Appl. Phys. B 93, 627-638 (2008).

A. E. Klingbeil, J. B. Jeffries, and R. K. Hanson, “Temperature- and concentration-dependent mid-infrared absorption spectrum of gasoline: model and measurements,” Fuel 87, 3600-3609 (2008).
[CrossRef]

2007 (4)

D. Richter, P. Weibring, A. Fried, O. Tadanaga, Y. Nishida, M. Asobe, and H. Suzuki, “High-power, tunable difference frequency generation source for absorption spectroscopy based on a ridge waveguide periodically poled lithium niobate crystal,” Opt. Express 15, 5172 (2007).
[CrossRef]

A. E. Klingbeil, J. B. Jeffries, and R. K. Hanson, “Temperature-dependent mid-IR absorption spectra of gaseous hydrocarbons,” J. Quant. Spectrosc. Radiat. Transfer 107, 407-420(2007).
[CrossRef]

W. Chen, J. Cousin, E. Poullet, J. Burie, D. Boucher, X. Gao, M. W. Sigrist, and F. K. Tittel, “Continuous-wave mid-infrared laser sources based on difference frequency generation,” Comptes Rendus Phys. 8, 1129-1150 (2007).

A. E. Klingbeil, J. B. Jeffries, and R. K. Hanson, “Design of a fiber-coupled mid-IR fuel sensor for pulse detonation engines,” AIAA J. 45, 772-778 (2007).
[CrossRef]

2005 (1)

2003 (3)

J. A. Drallmeier, “Hydrocarbon absorption coefficients at the 3.39 μm He-Ne laser transition,” Appl. Opt. 42, 979-982(2003).
[CrossRef]

E. Tomita, N. Kawahara, A. Nishiyama, and M. Shigenaga, “In situ measurement of hydrocarbon fuel concentration near a spark plug in an engine cylinder using the 3.392 μm infrared laser absorption method: application to an actual engine,” Meas. Sci. Technol. 14, 1357-1363 (2003).
[CrossRef]

E. Tomita, N. Kawahara, M. Shigenaga, A. Nishiyama, and R. W. Dibble, “In situ measurement of hydrocarbon fuel concentration near a spark plug in an engine cylinder using the 3.392 μm infrared laser absorption method: discussion of applicability with a homogeneous methane-air mixture,” Meas. Sci. Technol. 14, 1350-1356 (2003).
[CrossRef]

2002 (2)

D. C. Horning, D. F. Davidson, and R. K. Hanson, “Study of the high-temperature autoignition of n-alkane/O2/Ar mixtures,” J. Propuls. Power 18, 363-371 (2002).

F. P. Hindle, S. J. Carey, K. B. Ozanyan, D. E. Winterbone, E. Clough, and H. McCann, “Near infra-red chemical species tomography of sprays of volatile hydrocarbons,” Techn. Messen 69, 352-357 (2002).

2001 (1)

H. McCann, S. J. Carey, F. P. Hindle, K. B. Ozanyan, D. E. Winterbone, and E. Clough, “Near-infrared absorption tomography system for measurement of gaseous hydrocarbon distribution,” Proc. SPIE 4188, 141-150 (2001).
[CrossRef]

1999 (1)

Q.-V. Nguyen, R. K. Mongia, and R. W. Dibble, “Real-time optical fuel-to-air ratio sensor for gas turbine combustors,” Proc. SPIE 3535, 124-130 (1999).

1998 (1)

H. Zhao and N. Ladommatos, “Optical diagnostics for in-cylinder mixture formation measurements in IC engines,” Prog. Energy Combust. Sci. 24, 297-336 (1998).
[CrossRef]

1997 (1)

H. Kawazoe, K. Inagaki, Y. Emi, and F. Yoshino, “Computed tomography measurement of gaseous fuel concentration by infrared laser light absorption,” Proc. SPIE 3172, 576-584(1997).
[CrossRef]

1996 (2)

R. K. Mongia, E. Tomita, F. K. Hsu, L. Talbot, and R. W. Dibble, “Use of an optical probe for time-resolved in situ measurement of local air-to-fuel ratio and extent of fuel mixing with applications to low NOx emissions in premixed gas turbines,” Proc. Combust. Inst. 26, 2749-2755(1996).

S. Yoshiyama, Y. Hamamoto, E. Tomita, and K.-I. Minami, “Measurement of hydrocarbon fuel concentration by means of infrared absorption technique with 3.39 μm He-Ne laser,” JSAE Rev. 17, 339-345 (1996).

1993 (1)

1991 (1)

E. Winklhofer and A. Plimon, “Monitoring of hydrocarbon fuel-air mixtures by means of a light extinction technique in optically accessed research engine,” Opt. Eng. 30, 1262-1268 (1991).

Allen, M. G.

A. Kakuho, K. R. Sholes, Y. Hashizume, S. Takatani, T. Urushihara, R. K. Hanson, J. B. Jeffries, and M. G. Allen, “Simultaneous measurement of in-cylinder temperature and residual gas concentration in the vicinity of the spark plug by wavelength modulation infrared absorption,” SAE technical paper series2007-01-0639 (Society of Automotive Engineers, 2007).

Asobe, M.

Beushausen, V.

A. Grosch, V. Beushausen, O. Thiele, and R. Grzeszik, “Crank angle resolved determination of fuel concentration and air/fuel ratio in a SI-internal combustion engine using a modified optical spark plug,” SAE technical paper series2007-01-0644 (Society of Automotive Engineers, 2007).

Boucher, D.

W. Chen, J. Cousin, E. Poullet, J. Burie, D. Boucher, X. Gao, M. W. Sigrist, and F. K. Tittel, “Continuous-wave mid-infrared laser sources based on difference frequency generation,” Comptes Rendus Phys. 8, 1129-1150 (2007).

Burie, J.

W. Chen, J. Cousin, E. Poullet, J. Burie, D. Boucher, X. Gao, M. W. Sigrist, and F. K. Tittel, “Continuous-wave mid-infrared laser sources based on difference frequency generation,” Comptes Rendus Phys. 8, 1129-1150 (2007).

Carey, S. J.

P. Wright, C. A. Garcia-Stewart, S. J. Carey, F. P. Hindle, S. H. Pegrum, S. M. Colbourne, P. J. Turner, W. J. Hurr, T. J. Litt, S. C. Murray, S. D. Crossley, K. B. Ozanyan, and H. McCann, “Toward in-cylinder absorption tomography in a production engine,” Appl. Opt. 44, 6578-6592 (2005).
[CrossRef]

F. P. Hindle, S. J. Carey, K. B. Ozanyan, D. E. Winterbone, E. Clough, and H. McCann, “Near infra-red chemical species tomography of sprays of volatile hydrocarbons,” Techn. Messen 69, 352-357 (2002).

H. McCann, S. J. Carey, F. P. Hindle, K. B. Ozanyan, D. E. Winterbone, and E. Clough, “Near-infrared absorption tomography system for measurement of gaseous hydrocarbon distribution,” Proc. SPIE 4188, 141-150 (2001).
[CrossRef]

Chen, W.

W. Chen, J. Cousin, E. Poullet, J. Burie, D. Boucher, X. Gao, M. W. Sigrist, and F. K. Tittel, “Continuous-wave mid-infrared laser sources based on difference frequency generation,” Comptes Rendus Phys. 8, 1129-1150 (2007).

Clough, E.

F. P. Hindle, S. J. Carey, K. B. Ozanyan, D. E. Winterbone, E. Clough, and H. McCann, “Near infra-red chemical species tomography of sprays of volatile hydrocarbons,” Techn. Messen 69, 352-357 (2002).

H. McCann, S. J. Carey, F. P. Hindle, K. B. Ozanyan, D. E. Winterbone, and E. Clough, “Near-infrared absorption tomography system for measurement of gaseous hydrocarbon distribution,” Proc. SPIE 4188, 141-150 (2001).
[CrossRef]

Colbourne, S. M.

Cook, R. D.

R. D. Cook, D. F. Davidson, and R. K. Hanson, “Shock tube measurements of ignition delay times and OH time-histories in dimethyl ether oxidation,” Proc. Combust. Inst. 32, 189-196 (2009).

Cousin, J.

W. Chen, J. Cousin, E. Poullet, J. Burie, D. Boucher, X. Gao, M. W. Sigrist, and F. K. Tittel, “Continuous-wave mid-infrared laser sources based on difference frequency generation,” Comptes Rendus Phys. 8, 1129-1150 (2007).

Crossley, S. D.

Davidson, D. F.

R. D. Cook, D. F. Davidson, and R. K. Hanson, “Shock tube measurements of ignition delay times and OH time-histories in dimethyl ether oxidation,” Proc. Combust. Inst. 32, 189-196 (2009).

A. E. Klingbeil, J. B. Jeffries, D. F. Davidson, and R. K. Hanson, “Two-wavelength mid-IR diagnostic for temperature and n-dodecane concentration in an aerosol shock tube,” Appl. Phys. B 93, 627-638 (2008).

D. C. Horning, D. F. Davidson, and R. K. Hanson, “Study of the high-temperature autoignition of n-alkane/O2/Ar mixtures,” J. Propuls. Power 18, 363-371 (2002).

Dibble, R. W.

E. Tomita, N. Kawahara, M. Shigenaga, A. Nishiyama, and R. W. Dibble, “In situ measurement of hydrocarbon fuel concentration near a spark plug in an engine cylinder using the 3.392 μm infrared laser absorption method: discussion of applicability with a homogeneous methane-air mixture,” Meas. Sci. Technol. 14, 1350-1356 (2003).
[CrossRef]

Q.-V. Nguyen, R. K. Mongia, and R. W. Dibble, “Real-time optical fuel-to-air ratio sensor for gas turbine combustors,” Proc. SPIE 3535, 124-130 (1999).

R. K. Mongia, E. Tomita, F. K. Hsu, L. Talbot, and R. W. Dibble, “Use of an optical probe for time-resolved in situ measurement of local air-to-fuel ratio and extent of fuel mixing with applications to low NOx emissions in premixed gas turbines,” Proc. Combust. Inst. 26, 2749-2755(1996).

Drallmeier, J. A.

Emi, Y.

H. Kawazoe, K. Inagaki, Y. Emi, and F. Yoshino, “Computed tomography measurement of gaseous fuel concentration by infrared laser light absorption,” Proc. SPIE 3172, 576-584(1997).
[CrossRef]

Fried, A.

Gao, X.

W. Chen, J. Cousin, E. Poullet, J. Burie, D. Boucher, X. Gao, M. W. Sigrist, and F. K. Tittel, “Continuous-wave mid-infrared laser sources based on difference frequency generation,” Comptes Rendus Phys. 8, 1129-1150 (2007).

Garcia-Stewart, C. A.

Grosch, A.

A. Grosch, V. Beushausen, O. Thiele, and R. Grzeszik, “Crank angle resolved determination of fuel concentration and air/fuel ratio in a SI-internal combustion engine using a modified optical spark plug,” SAE technical paper series2007-01-0644 (Society of Automotive Engineers, 2007).

Grzeszik, R.

A. Grosch, V. Beushausen, O. Thiele, and R. Grzeszik, “Crank angle resolved determination of fuel concentration and air/fuel ratio in a SI-internal combustion engine using a modified optical spark plug,” SAE technical paper series2007-01-0644 (Society of Automotive Engineers, 2007).

Hamamoto, Y.

S. Yoshiyama, Y. Hamamoto, E. Tomita, and K.-I. Minami, “Measurement of hydrocarbon fuel concentration by means of infrared absorption technique with 3.39 μm He-Ne laser,” JSAE Rev. 17, 339-345 (1996).

Hanson, R. K.

R. D. Cook, D. F. Davidson, and R. K. Hanson, “Shock tube measurements of ignition delay times and OH time-histories in dimethyl ether oxidation,” Proc. Combust. Inst. 32, 189-196 (2009).

A. E. Klingbeil, J. M. Porter, J. B. Jeffries, and R. K. Hanson, “Two-wavelength mid-IR absorption diagnostic for simultaneous measurement of temperature and hydrocarbon fuel concentration,” Proc. Combust. Inst. 32, 821-829 (2009).

A. E. Klingbeil, J. B. Jeffries, and R. K. Hanson, “Temperature- and concentration-dependent mid-infrared absorption spectrum of gasoline: model and measurements,” Fuel 87, 3600-3609 (2008).
[CrossRef]

A. E. Klingbeil, J. B. Jeffries, D. F. Davidson, and R. K. Hanson, “Two-wavelength mid-IR diagnostic for temperature and n-dodecane concentration in an aerosol shock tube,” Appl. Phys. B 93, 627-638 (2008).

A. E. Klingbeil, J. B. Jeffries, and R. K. Hanson, “Design of a fiber-coupled mid-IR fuel sensor for pulse detonation engines,” AIAA J. 45, 772-778 (2007).
[CrossRef]

A. E. Klingbeil, J. B. Jeffries, and R. K. Hanson, “Temperature-dependent mid-IR absorption spectra of gaseous hydrocarbons,” J. Quant. Spectrosc. Radiat. Transfer 107, 407-420(2007).
[CrossRef]

D. C. Horning, D. F. Davidson, and R. K. Hanson, “Study of the high-temperature autoignition of n-alkane/O2/Ar mixtures,” J. Propuls. Power 18, 363-371 (2002).

L. C. Philippe and R. K. Hanson, “Laser diode wavelength-modulation spectroscopy for simultaneous measurement of temperature, pressure and velocity in shock-heated oxygen flows,” Appl. Opt. 32, 6090-6103 (1993).
[CrossRef]

A. Kakuho, K. R. Sholes, Y. Hashizume, S. Takatani, T. Urushihara, R. K. Hanson, J. B. Jeffries, and M. G. Allen, “Simultaneous measurement of in-cylinder temperature and residual gas concentration in the vicinity of the spark plug by wavelength modulation infrared absorption,” SAE technical paper series2007-01-0639 (Society of Automotive Engineers, 2007).

Hashizume, Y.

A. Kakuho, K. R. Sholes, Y. Hashizume, S. Takatani, T. Urushihara, R. K. Hanson, J. B. Jeffries, and M. G. Allen, “Simultaneous measurement of in-cylinder temperature and residual gas concentration in the vicinity of the spark plug by wavelength modulation infrared absorption,” SAE technical paper series2007-01-0639 (Society of Automotive Engineers, 2007).

A. Kakuho, K. Yamaguchi, Y. Hashizume, T. Urushihara, and T. Itoh, “A study of air-fuel mixture formation in direct-injection SI engines,” SAE technical paper series2004-01-1946 (Society of Automotive Engineers, 2004).

Hindle, F. P.

P. Wright, C. A. Garcia-Stewart, S. J. Carey, F. P. Hindle, S. H. Pegrum, S. M. Colbourne, P. J. Turner, W. J. Hurr, T. J. Litt, S. C. Murray, S. D. Crossley, K. B. Ozanyan, and H. McCann, “Toward in-cylinder absorption tomography in a production engine,” Appl. Opt. 44, 6578-6592 (2005).
[CrossRef]

F. P. Hindle, S. J. Carey, K. B. Ozanyan, D. E. Winterbone, E. Clough, and H. McCann, “Near infra-red chemical species tomography of sprays of volatile hydrocarbons,” Techn. Messen 69, 352-357 (2002).

H. McCann, S. J. Carey, F. P. Hindle, K. B. Ozanyan, D. E. Winterbone, and E. Clough, “Near-infrared absorption tomography system for measurement of gaseous hydrocarbon distribution,” Proc. SPIE 4188, 141-150 (2001).
[CrossRef]

Horning, D. C.

D. C. Horning, D. F. Davidson, and R. K. Hanson, “Study of the high-temperature autoignition of n-alkane/O2/Ar mixtures,” J. Propuls. Power 18, 363-371 (2002).

Hsu, F. K.

R. K. Mongia, E. Tomita, F. K. Hsu, L. Talbot, and R. W. Dibble, “Use of an optical probe for time-resolved in situ measurement of local air-to-fuel ratio and extent of fuel mixing with applications to low NOx emissions in premixed gas turbines,” Proc. Combust. Inst. 26, 2749-2755(1996).

Hurr, W. J.

Inagaki, K.

H. Kawazoe, K. Inagaki, Y. Emi, and F. Yoshino, “Computed tomography measurement of gaseous fuel concentration by infrared laser light absorption,” Proc. SPIE 3172, 576-584(1997).
[CrossRef]

Itoh, T.

A. Kakuho, K. Yamaguchi, Y. Hashizume, T. Urushihara, and T. Itoh, “A study of air-fuel mixture formation in direct-injection SI engines,” SAE technical paper series2004-01-1946 (Society of Automotive Engineers, 2004).

Jeffries, J. B.

A. E. Klingbeil, J. M. Porter, J. B. Jeffries, and R. K. Hanson, “Two-wavelength mid-IR absorption diagnostic for simultaneous measurement of temperature and hydrocarbon fuel concentration,” Proc. Combust. Inst. 32, 821-829 (2009).

A. E. Klingbeil, J. B. Jeffries, and R. K. Hanson, “Temperature- and concentration-dependent mid-infrared absorption spectrum of gasoline: model and measurements,” Fuel 87, 3600-3609 (2008).
[CrossRef]

A. E. Klingbeil, J. B. Jeffries, D. F. Davidson, and R. K. Hanson, “Two-wavelength mid-IR diagnostic for temperature and n-dodecane concentration in an aerosol shock tube,” Appl. Phys. B 93, 627-638 (2008).

A. E. Klingbeil, J. B. Jeffries, and R. K. Hanson, “Design of a fiber-coupled mid-IR fuel sensor for pulse detonation engines,” AIAA J. 45, 772-778 (2007).
[CrossRef]

A. E. Klingbeil, J. B. Jeffries, and R. K. Hanson, “Temperature-dependent mid-IR absorption spectra of gaseous hydrocarbons,” J. Quant. Spectrosc. Radiat. Transfer 107, 407-420(2007).
[CrossRef]

A. Kakuho, K. R. Sholes, Y. Hashizume, S. Takatani, T. Urushihara, R. K. Hanson, J. B. Jeffries, and M. G. Allen, “Simultaneous measurement of in-cylinder temperature and residual gas concentration in the vicinity of the spark plug by wavelength modulation infrared absorption,” SAE technical paper series2007-01-0639 (Society of Automotive Engineers, 2007).

Kakuho, A.

A. Kakuho, K. R. Sholes, Y. Hashizume, S. Takatani, T. Urushihara, R. K. Hanson, J. B. Jeffries, and M. G. Allen, “Simultaneous measurement of in-cylinder temperature and residual gas concentration in the vicinity of the spark plug by wavelength modulation infrared absorption,” SAE technical paper series2007-01-0639 (Society of Automotive Engineers, 2007).

A. Kakuho, K. Yamaguchi, Y. Hashizume, T. Urushihara, and T. Itoh, “A study of air-fuel mixture formation in direct-injection SI engines,” SAE technical paper series2004-01-1946 (Society of Automotive Engineers, 2004).

Kawahara, N.

E. Tomita, N. Kawahara, A. Nishiyama, and M. Shigenaga, “In situ measurement of hydrocarbon fuel concentration near a spark plug in an engine cylinder using the 3.392 μm infrared laser absorption method: application to an actual engine,” Meas. Sci. Technol. 14, 1357-1363 (2003).
[CrossRef]

E. Tomita, N. Kawahara, M. Shigenaga, A. Nishiyama, and R. W. Dibble, “In situ measurement of hydrocarbon fuel concentration near a spark plug in an engine cylinder using the 3.392 μm infrared laser absorption method: discussion of applicability with a homogeneous methane-air mixture,” Meas. Sci. Technol. 14, 1350-1356 (2003).
[CrossRef]

Kawazoe, H.

H. Kawazoe, K. Inagaki, Y. Emi, and F. Yoshino, “Computed tomography measurement of gaseous fuel concentration by infrared laser light absorption,” Proc. SPIE 3172, 576-584(1997).
[CrossRef]

Klingbeil, A. E.

A. E. Klingbeil, J. M. Porter, J. B. Jeffries, and R. K. Hanson, “Two-wavelength mid-IR absorption diagnostic for simultaneous measurement of temperature and hydrocarbon fuel concentration,” Proc. Combust. Inst. 32, 821-829 (2009).

A. E. Klingbeil, J. B. Jeffries, D. F. Davidson, and R. K. Hanson, “Two-wavelength mid-IR diagnostic for temperature and n-dodecane concentration in an aerosol shock tube,” Appl. Phys. B 93, 627-638 (2008).

A. E. Klingbeil, J. B. Jeffries, and R. K. Hanson, “Temperature- and concentration-dependent mid-infrared absorption spectrum of gasoline: model and measurements,” Fuel 87, 3600-3609 (2008).
[CrossRef]

A. E. Klingbeil, J. B. Jeffries, and R. K. Hanson, “Design of a fiber-coupled mid-IR fuel sensor for pulse detonation engines,” AIAA J. 45, 772-778 (2007).
[CrossRef]

A. E. Klingbeil, J. B. Jeffries, and R. K. Hanson, “Temperature-dependent mid-IR absorption spectra of gaseous hydrocarbons,” J. Quant. Spectrosc. Radiat. Transfer 107, 407-420(2007).
[CrossRef]

Ladommatos, N.

H. Zhao and N. Ladommatos, “Optical diagnostics for in-cylinder mixture formation measurements in IC engines,” Prog. Energy Combust. Sci. 24, 297-336 (1998).
[CrossRef]

Litt, T. J.

McCann, H.

P. Wright, C. A. Garcia-Stewart, S. J. Carey, F. P. Hindle, S. H. Pegrum, S. M. Colbourne, P. J. Turner, W. J. Hurr, T. J. Litt, S. C. Murray, S. D. Crossley, K. B. Ozanyan, and H. McCann, “Toward in-cylinder absorption tomography in a production engine,” Appl. Opt. 44, 6578-6592 (2005).
[CrossRef]

F. P. Hindle, S. J. Carey, K. B. Ozanyan, D. E. Winterbone, E. Clough, and H. McCann, “Near infra-red chemical species tomography of sprays of volatile hydrocarbons,” Techn. Messen 69, 352-357 (2002).

H. McCann, S. J. Carey, F. P. Hindle, K. B. Ozanyan, D. E. Winterbone, and E. Clough, “Near-infrared absorption tomography system for measurement of gaseous hydrocarbon distribution,” Proc. SPIE 4188, 141-150 (2001).
[CrossRef]

Minami, K.-I.

S. Yoshiyama, Y. Hamamoto, E. Tomita, and K.-I. Minami, “Measurement of hydrocarbon fuel concentration by means of infrared absorption technique with 3.39 μm He-Ne laser,” JSAE Rev. 17, 339-345 (1996).

Mongia, R. K.

Q.-V. Nguyen, R. K. Mongia, and R. W. Dibble, “Real-time optical fuel-to-air ratio sensor for gas turbine combustors,” Proc. SPIE 3535, 124-130 (1999).

R. K. Mongia, E. Tomita, F. K. Hsu, L. Talbot, and R. W. Dibble, “Use of an optical probe for time-resolved in situ measurement of local air-to-fuel ratio and extent of fuel mixing with applications to low NOx emissions in premixed gas turbines,” Proc. Combust. Inst. 26, 2749-2755(1996).

Murray, S. C.

Nguyen, Q.-V.

Q.-V. Nguyen, R. K. Mongia, and R. W. Dibble, “Real-time optical fuel-to-air ratio sensor for gas turbine combustors,” Proc. SPIE 3535, 124-130 (1999).

Nishida, Y.

Nishiyama, A.

E. Tomita, N. Kawahara, A. Nishiyama, and M. Shigenaga, “In situ measurement of hydrocarbon fuel concentration near a spark plug in an engine cylinder using the 3.392 μm infrared laser absorption method: application to an actual engine,” Meas. Sci. Technol. 14, 1357-1363 (2003).
[CrossRef]

E. Tomita, N. Kawahara, M. Shigenaga, A. Nishiyama, and R. W. Dibble, “In situ measurement of hydrocarbon fuel concentration near a spark plug in an engine cylinder using the 3.392 μm infrared laser absorption method: discussion of applicability with a homogeneous methane-air mixture,” Meas. Sci. Technol. 14, 1350-1356 (2003).
[CrossRef]

Ozanyan, K. B.

P. Wright, C. A. Garcia-Stewart, S. J. Carey, F. P. Hindle, S. H. Pegrum, S. M. Colbourne, P. J. Turner, W. J. Hurr, T. J. Litt, S. C. Murray, S. D. Crossley, K. B. Ozanyan, and H. McCann, “Toward in-cylinder absorption tomography in a production engine,” Appl. Opt. 44, 6578-6592 (2005).
[CrossRef]

F. P. Hindle, S. J. Carey, K. B. Ozanyan, D. E. Winterbone, E. Clough, and H. McCann, “Near infra-red chemical species tomography of sprays of volatile hydrocarbons,” Techn. Messen 69, 352-357 (2002).

H. McCann, S. J. Carey, F. P. Hindle, K. B. Ozanyan, D. E. Winterbone, and E. Clough, “Near-infrared absorption tomography system for measurement of gaseous hydrocarbon distribution,” Proc. SPIE 4188, 141-150 (2001).
[CrossRef]

Pegrum, S. H.

Philippe, L. C.

Plimon, A.

E. Winklhofer and A. Plimon, “Monitoring of hydrocarbon fuel-air mixtures by means of a light extinction technique in optically accessed research engine,” Opt. Eng. 30, 1262-1268 (1991).

Porter, J. M.

A. E. Klingbeil, J. M. Porter, J. B. Jeffries, and R. K. Hanson, “Two-wavelength mid-IR absorption diagnostic for simultaneous measurement of temperature and hydrocarbon fuel concentration,” Proc. Combust. Inst. 32, 821-829 (2009).

Poullet, E.

W. Chen, J. Cousin, E. Poullet, J. Burie, D. Boucher, X. Gao, M. W. Sigrist, and F. K. Tittel, “Continuous-wave mid-infrared laser sources based on difference frequency generation,” Comptes Rendus Phys. 8, 1129-1150 (2007).

Richter, D.

Shigenaga, M.

E. Tomita, N. Kawahara, A. Nishiyama, and M. Shigenaga, “In situ measurement of hydrocarbon fuel concentration near a spark plug in an engine cylinder using the 3.392 μm infrared laser absorption method: application to an actual engine,” Meas. Sci. Technol. 14, 1357-1363 (2003).
[CrossRef]

E. Tomita, N. Kawahara, M. Shigenaga, A. Nishiyama, and R. W. Dibble, “In situ measurement of hydrocarbon fuel concentration near a spark plug in an engine cylinder using the 3.392 μm infrared laser absorption method: discussion of applicability with a homogeneous methane-air mixture,” Meas. Sci. Technol. 14, 1350-1356 (2003).
[CrossRef]

Sholes, K. R.

A. Kakuho, K. R. Sholes, Y. Hashizume, S. Takatani, T. Urushihara, R. K. Hanson, J. B. Jeffries, and M. G. Allen, “Simultaneous measurement of in-cylinder temperature and residual gas concentration in the vicinity of the spark plug by wavelength modulation infrared absorption,” SAE technical paper series2007-01-0639 (Society of Automotive Engineers, 2007).

Sigrist, M. W.

W. Chen, J. Cousin, E. Poullet, J. Burie, D. Boucher, X. Gao, M. W. Sigrist, and F. K. Tittel, “Continuous-wave mid-infrared laser sources based on difference frequency generation,” Comptes Rendus Phys. 8, 1129-1150 (2007).

Suzuki, H.

Tadanaga, O.

Takatani, S.

A. Kakuho, K. R. Sholes, Y. Hashizume, S. Takatani, T. Urushihara, R. K. Hanson, J. B. Jeffries, and M. G. Allen, “Simultaneous measurement of in-cylinder temperature and residual gas concentration in the vicinity of the spark plug by wavelength modulation infrared absorption,” SAE technical paper series2007-01-0639 (Society of Automotive Engineers, 2007).

Talbot, L.

R. K. Mongia, E. Tomita, F. K. Hsu, L. Talbot, and R. W. Dibble, “Use of an optical probe for time-resolved in situ measurement of local air-to-fuel ratio and extent of fuel mixing with applications to low NOx emissions in premixed gas turbines,” Proc. Combust. Inst. 26, 2749-2755(1996).

Thiele, O.

A. Grosch, V. Beushausen, O. Thiele, and R. Grzeszik, “Crank angle resolved determination of fuel concentration and air/fuel ratio in a SI-internal combustion engine using a modified optical spark plug,” SAE technical paper series2007-01-0644 (Society of Automotive Engineers, 2007).

Tittel, F. K.

W. Chen, J. Cousin, E. Poullet, J. Burie, D. Boucher, X. Gao, M. W. Sigrist, and F. K. Tittel, “Continuous-wave mid-infrared laser sources based on difference frequency generation,” Comptes Rendus Phys. 8, 1129-1150 (2007).

Tomita, E.

E. Tomita, N. Kawahara, A. Nishiyama, and M. Shigenaga, “In situ measurement of hydrocarbon fuel concentration near a spark plug in an engine cylinder using the 3.392 μm infrared laser absorption method: application to an actual engine,” Meas. Sci. Technol. 14, 1357-1363 (2003).
[CrossRef]

E. Tomita, N. Kawahara, M. Shigenaga, A. Nishiyama, and R. W. Dibble, “In situ measurement of hydrocarbon fuel concentration near a spark plug in an engine cylinder using the 3.392 μm infrared laser absorption method: discussion of applicability with a homogeneous methane-air mixture,” Meas. Sci. Technol. 14, 1350-1356 (2003).
[CrossRef]

R. K. Mongia, E. Tomita, F. K. Hsu, L. Talbot, and R. W. Dibble, “Use of an optical probe for time-resolved in situ measurement of local air-to-fuel ratio and extent of fuel mixing with applications to low NOx emissions in premixed gas turbines,” Proc. Combust. Inst. 26, 2749-2755(1996).

S. Yoshiyama, Y. Hamamoto, E. Tomita, and K.-I. Minami, “Measurement of hydrocarbon fuel concentration by means of infrared absorption technique with 3.39 μm He-Ne laser,” JSAE Rev. 17, 339-345 (1996).

Turner, P. J.

Urushihara, T.

A. Kakuho, K. R. Sholes, Y. Hashizume, S. Takatani, T. Urushihara, R. K. Hanson, J. B. Jeffries, and M. G. Allen, “Simultaneous measurement of in-cylinder temperature and residual gas concentration in the vicinity of the spark plug by wavelength modulation infrared absorption,” SAE technical paper series2007-01-0639 (Society of Automotive Engineers, 2007).

A. Kakuho, K. Yamaguchi, Y. Hashizume, T. Urushihara, and T. Itoh, “A study of air-fuel mixture formation in direct-injection SI engines,” SAE technical paper series2004-01-1946 (Society of Automotive Engineers, 2004).

Weibring, P.

Winklhofer, E.

E. Winklhofer and A. Plimon, “Monitoring of hydrocarbon fuel-air mixtures by means of a light extinction technique in optically accessed research engine,” Opt. Eng. 30, 1262-1268 (1991).

Winterbone, D. E.

F. P. Hindle, S. J. Carey, K. B. Ozanyan, D. E. Winterbone, E. Clough, and H. McCann, “Near infra-red chemical species tomography of sprays of volatile hydrocarbons,” Techn. Messen 69, 352-357 (2002).

H. McCann, S. J. Carey, F. P. Hindle, K. B. Ozanyan, D. E. Winterbone, and E. Clough, “Near-infrared absorption tomography system for measurement of gaseous hydrocarbon distribution,” Proc. SPIE 4188, 141-150 (2001).
[CrossRef]

Wright, P.

Yamaguchi, K.

A. Kakuho, K. Yamaguchi, Y. Hashizume, T. Urushihara, and T. Itoh, “A study of air-fuel mixture formation in direct-injection SI engines,” SAE technical paper series2004-01-1946 (Society of Automotive Engineers, 2004).

Yoshino, F.

H. Kawazoe, K. Inagaki, Y. Emi, and F. Yoshino, “Computed tomography measurement of gaseous fuel concentration by infrared laser light absorption,” Proc. SPIE 3172, 576-584(1997).
[CrossRef]

Yoshiyama, S.

S. Yoshiyama, Y. Hamamoto, E. Tomita, and K.-I. Minami, “Measurement of hydrocarbon fuel concentration by means of infrared absorption technique with 3.39 μm He-Ne laser,” JSAE Rev. 17, 339-345 (1996).

Zhao, H.

H. Zhao and N. Ladommatos, “Optical diagnostics for in-cylinder mixture formation measurements in IC engines,” Prog. Energy Combust. Sci. 24, 297-336 (1998).
[CrossRef]

AIAA J. (1)

A. E. Klingbeil, J. B. Jeffries, and R. K. Hanson, “Design of a fiber-coupled mid-IR fuel sensor for pulse detonation engines,” AIAA J. 45, 772-778 (2007).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. B (1)

A. E. Klingbeil, J. B. Jeffries, D. F. Davidson, and R. K. Hanson, “Two-wavelength mid-IR diagnostic for temperature and n-dodecane concentration in an aerosol shock tube,” Appl. Phys. B 93, 627-638 (2008).

Comptes Rendus Phys. (1)

W. Chen, J. Cousin, E. Poullet, J. Burie, D. Boucher, X. Gao, M. W. Sigrist, and F. K. Tittel, “Continuous-wave mid-infrared laser sources based on difference frequency generation,” Comptes Rendus Phys. 8, 1129-1150 (2007).

Fuel (1)

A. E. Klingbeil, J. B. Jeffries, and R. K. Hanson, “Temperature- and concentration-dependent mid-infrared absorption spectrum of gasoline: model and measurements,” Fuel 87, 3600-3609 (2008).
[CrossRef]

J. Propuls. Power (1)

D. C. Horning, D. F. Davidson, and R. K. Hanson, “Study of the high-temperature autoignition of n-alkane/O2/Ar mixtures,” J. Propuls. Power 18, 363-371 (2002).

J. Quant. Spectrosc. Radiat. Transfer (1)

A. E. Klingbeil, J. B. Jeffries, and R. K. Hanson, “Temperature-dependent mid-IR absorption spectra of gaseous hydrocarbons,” J. Quant. Spectrosc. Radiat. Transfer 107, 407-420(2007).
[CrossRef]

JSAE Rev. (1)

S. Yoshiyama, Y. Hamamoto, E. Tomita, and K.-I. Minami, “Measurement of hydrocarbon fuel concentration by means of infrared absorption technique with 3.39 μm He-Ne laser,” JSAE Rev. 17, 339-345 (1996).

Meas. Sci. Technol. (2)

E. Tomita, N. Kawahara, A. Nishiyama, and M. Shigenaga, “In situ measurement of hydrocarbon fuel concentration near a spark plug in an engine cylinder using the 3.392 μm infrared laser absorption method: application to an actual engine,” Meas. Sci. Technol. 14, 1357-1363 (2003).
[CrossRef]

E. Tomita, N. Kawahara, M. Shigenaga, A. Nishiyama, and R. W. Dibble, “In situ measurement of hydrocarbon fuel concentration near a spark plug in an engine cylinder using the 3.392 μm infrared laser absorption method: discussion of applicability with a homogeneous methane-air mixture,” Meas. Sci. Technol. 14, 1350-1356 (2003).
[CrossRef]

Opt. Eng. (1)

E. Winklhofer and A. Plimon, “Monitoring of hydrocarbon fuel-air mixtures by means of a light extinction technique in optically accessed research engine,” Opt. Eng. 30, 1262-1268 (1991).

Opt. Express (1)

Proc. Combust. Inst. (3)

R. D. Cook, D. F. Davidson, and R. K. Hanson, “Shock tube measurements of ignition delay times and OH time-histories in dimethyl ether oxidation,” Proc. Combust. Inst. 32, 189-196 (2009).

A. E. Klingbeil, J. M. Porter, J. B. Jeffries, and R. K. Hanson, “Two-wavelength mid-IR absorption diagnostic for simultaneous measurement of temperature and hydrocarbon fuel concentration,” Proc. Combust. Inst. 32, 821-829 (2009).

R. K. Mongia, E. Tomita, F. K. Hsu, L. Talbot, and R. W. Dibble, “Use of an optical probe for time-resolved in situ measurement of local air-to-fuel ratio and extent of fuel mixing with applications to low NOx emissions in premixed gas turbines,” Proc. Combust. Inst. 26, 2749-2755(1996).

Proc. SPIE (3)

Q.-V. Nguyen, R. K. Mongia, and R. W. Dibble, “Real-time optical fuel-to-air ratio sensor for gas turbine combustors,” Proc. SPIE 3535, 124-130 (1999).

H. Kawazoe, K. Inagaki, Y. Emi, and F. Yoshino, “Computed tomography measurement of gaseous fuel concentration by infrared laser light absorption,” Proc. SPIE 3172, 576-584(1997).
[CrossRef]

H. McCann, S. J. Carey, F. P. Hindle, K. B. Ozanyan, D. E. Winterbone, and E. Clough, “Near-infrared absorption tomography system for measurement of gaseous hydrocarbon distribution,” Proc. SPIE 4188, 141-150 (2001).
[CrossRef]

Prog. Energy Combust. Sci. (1)

H. Zhao and N. Ladommatos, “Optical diagnostics for in-cylinder mixture formation measurements in IC engines,” Prog. Energy Combust. Sci. 24, 297-336 (1998).
[CrossRef]

Techn. Messen (1)

F. P. Hindle, S. J. Carey, K. B. Ozanyan, D. E. Winterbone, E. Clough, and H. McCann, “Near infra-red chemical species tomography of sprays of volatile hydrocarbons,” Techn. Messen 69, 352-357 (2002).

Other (4)

A. Kakuho, K. Yamaguchi, Y. Hashizume, T. Urushihara, and T. Itoh, “A study of air-fuel mixture formation in direct-injection SI engines,” SAE technical paper series2004-01-1946 (Society of Automotive Engineers, 2004).

A. Grosch, V. Beushausen, O. Thiele, and R. Grzeszik, “Crank angle resolved determination of fuel concentration and air/fuel ratio in a SI-internal combustion engine using a modified optical spark plug,” SAE technical paper series2007-01-0644 (Society of Automotive Engineers, 2007).

A. Kakuho, K. R. Sholes, Y. Hashizume, S. Takatani, T. Urushihara, R. K. Hanson, J. B. Jeffries, and M. G. Allen, “Simultaneous measurement of in-cylinder temperature and residual gas concentration in the vicinity of the spark plug by wavelength modulation infrared absorption,” SAE technical paper series2007-01-0639 (Society of Automotive Engineers, 2007).

G. Ben-Dor, O. Igra, and T. Elperin, eds., Handbook of Shock Waves (Academic, 2001), Chaps. 3.1 and 4.1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics