Abstract

Optical coherence tomography (OCT) is especially attractive for the study of cultural heritage artifacts because it is noninvasive and nondestructive. We have developed an original full-field time-domain OCT system dedicated to the investigation of varnished and painted artifacts: an interferometric Mirau objective allows one to perform the scan without moving the works of art. The axial and transverse high resolution (respectively, 1.5 and 1μm) are well adapted to the detection of the investigated structures (pigment grains, wood fibers, etc.). The illumination spectrum is in the visible range (centered at 630nm, 150nm wide) to potentially allow us to perform spectroscopic OCT on pigment particles. The examination of wood samples coated with a traditional finish, demonstrates the ability of the system to detect particles, characterize layers thickness, and image the three-dimensional wood structures below the varnishes. OCT has finally been applied to study in situ the coated wood surface of an 18th century Italian violin and provides important information for its conservation treatment.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  2. D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B 88, 337-357 (2007).
    [CrossRef]
  3. M. L. Yang, C. W. Lu, I. J. Hsu, and C. C. Yang, “The use of optical coherence tomography for monitoring the subsurface morphologies of archaic jades,” Archaeometry 46, 171-182(2004).
    [CrossRef]
  4. P. Targowski, B. Rouba, M. Wojtkowski, and A. Kowalczyk, “Application of optical coherence tomography to nondestructive examination of museum objects,” Stud. Cons. 49, 107-114(2004).
  5. T. Arecchi, M. Bellini, C. Corsi, R. Fontana, M. Materazzi, L. Pezzati, and A. Tortora, “Optical coherence tomography for painting diagnostics,” Proc. SPIE 5857, 278-282 (2005).
  6. P. Targowski, M. Gora, and M. Wojtkowski, “Optical coherence tomography for art works diagnostics,” Laser Chem. 2006, 35373 (2006).
  7. D. C. Adler, J. Stenger, I. Gorczynska, H. Lie, T. Hensick, R. Spronk, S. Wolohojian, N. Khandekar, J. Y. Jiang, and S. Barry, “Comparison of three-dimensional optical coherence tomography and high resolution photography for art conservation studies,” Opt. Express 15, 15972-15986 (2007).
    [CrossRef] [PubMed]
  8. G. Latour, J. Moreau, M. Elias, and J. M. Frigerio, “Optical coherence tomography: nondestructive imaging and spectral information of pigments,” Proc. SPIE 6618, 661806 (2007).
    [CrossRef]
  9. H. Liang, M. Cid, R. Cucu, G. Dobre, A. Podoleanu, J. Pedro, and D. Saunders, “En-face optical coherence tomography--a novel application of noninvasive imaging to art conservation,” Opt. Express 13, 6133-6144 (2005).
    [CrossRef] [PubMed]
  10. P. Targowski, B. Rouba, M. Góra, L. Tymińska-Widmer, J. Marczak, and A. Kowalczyk, “Optical coherence tomography in art diagnostics and restoration,” Appl. Phys. A 92, 1-9 (2008).
    [CrossRef]
  11. B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. St. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Opt. Lett. 27, 1800-1802 (2002).
    [CrossRef]
  12. A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and A.-C. Boccara, “Ultrahigh-resolution full-field optical coherence tomography,” Appl. Opt. 43, 2874-2883 (2004).
    [CrossRef] [PubMed]
  13. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889-894 (2003).
    [CrossRef] [PubMed]
  14. A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103, 577-644 (2003).
    [CrossRef] [PubMed]
  15. G. Latour, M. Elias, and J. M. Frigerio, “Determination of the absorption and scattering coefficients of pigments: application to the identification of the components of pigment mixtures,” Appl. Spectrosc. 63, 604-610 (2009).
    [CrossRef] [PubMed]
  16. F. Viénot, A. Bak, and J.- P. Echard, “The peculiar BRDFs of flamed maple,” in Proceedings of CIE Expert Symposium on Visual Appearance (CIE, 2007), pp. 230-234.
  17. S. R. Marschner, S. H. Westin, A. Arbree, and J. T. Moon, “Measuring and modelling the appearance of finished wood,” ACM Trans. Graph. 24, 727-734 (2005).
    [CrossRef]
  18. J.-P. Echard and B. Lavédrine, “Review on the characterization of ancient stringed musical instruments varnishes and implementation of an analytical strategy,” J. Cult. Herit. 9, 420-429 (2008).
    [CrossRef]
  19. J.-P. Echard, “In situ multi-element analyses by energy-dispersive X-ray fluorescence on varnishes of historical violins,” Spectrochim. Acta B 59, 1663-1667 (2004).
    [CrossRef]
  20. J.-P. Echard, C. Benoit, J. Peris-Vicente, V. Malecki, J. V. Gimeno-Adelantado, and S. Vaiedelich, “Gas chromatography-mass spectrometry characterization of historical varnishes of ancient Italian lutes and violin,” Anal. Chim. Acta 584, 172-180 (2007).
    [CrossRef] [PubMed]
  21. J.-P. Echard, M. Cotte, E. Dooryhee, and L. Bertrand, “Insights into the varnishes of historical musical instruments using synchrotron micro-analytical methods,” Appl. Phys. A 92, 77-81 (2008).
    [CrossRef]
  22. J.-P. Echard and S. Vaïedelich, “Quelques résultats d'analyses chimiques sur des vernis d'instruments d'Antonio Stradivari,” in De la peinture de chevalet à l'instrument de musique: vernis, liants et couleurs (Cité de la Musique, 2008), 104-113.
  23. J. Nagyvary, “Investigating the secrets of the Stradivarius,” Educ. Chem. 42(4), 96-98 (2005).
  24. J.-P. Echard, “The life of varnishes: chemical analyses and characterizations,” in Journée d'étude: les vernis de violon (Cité de la Musique, 2006), 82-93.
  25. C. Y. Barlow, P. P. Edwards, G. R. Millward, R. A. Raphael, and D. J. Rubio, “Wood treatment used in Cremonese instruments,” Nature 332, 313 (1988).
    [CrossRef]
  26. E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-Jalmes, “Full-field optical coherence microscopy,” Opt. Lett. 23, 244-246 (1998).
    [CrossRef]
  27. K. G. Larkin, “Efficient nonlinear algorithm for envelope detection in white light interferometry,” J. Opt. Soc. Am. A 13, 832-843 (1996).
    [CrossRef]

2009

2008

P. Targowski, B. Rouba, M. Góra, L. Tymińska-Widmer, J. Marczak, and A. Kowalczyk, “Optical coherence tomography in art diagnostics and restoration,” Appl. Phys. A 92, 1-9 (2008).
[CrossRef]

J.-P. Echard and B. Lavédrine, “Review on the characterization of ancient stringed musical instruments varnishes and implementation of an analytical strategy,” J. Cult. Herit. 9, 420-429 (2008).
[CrossRef]

J.-P. Echard, M. Cotte, E. Dooryhee, and L. Bertrand, “Insights into the varnishes of historical musical instruments using synchrotron micro-analytical methods,” Appl. Phys. A 92, 77-81 (2008).
[CrossRef]

2007

J.-P. Echard, C. Benoit, J. Peris-Vicente, V. Malecki, J. V. Gimeno-Adelantado, and S. Vaiedelich, “Gas chromatography-mass spectrometry characterization of historical varnishes of ancient Italian lutes and violin,” Anal. Chim. Acta 584, 172-180 (2007).
[CrossRef] [PubMed]

G. Latour, J. Moreau, M. Elias, and J. M. Frigerio, “Optical coherence tomography: nondestructive imaging and spectral information of pigments,” Proc. SPIE 6618, 661806 (2007).
[CrossRef]

D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B 88, 337-357 (2007).
[CrossRef]

D. C. Adler, J. Stenger, I. Gorczynska, H. Lie, T. Hensick, R. Spronk, S. Wolohojian, N. Khandekar, J. Y. Jiang, and S. Barry, “Comparison of three-dimensional optical coherence tomography and high resolution photography for art conservation studies,” Opt. Express 15, 15972-15986 (2007).
[CrossRef] [PubMed]

2006

P. Targowski, M. Gora, and M. Wojtkowski, “Optical coherence tomography for art works diagnostics,” Laser Chem. 2006, 35373 (2006).

2005

S. R. Marschner, S. H. Westin, A. Arbree, and J. T. Moon, “Measuring and modelling the appearance of finished wood,” ACM Trans. Graph. 24, 727-734 (2005).
[CrossRef]

T. Arecchi, M. Bellini, C. Corsi, R. Fontana, M. Materazzi, L. Pezzati, and A. Tortora, “Optical coherence tomography for painting diagnostics,” Proc. SPIE 5857, 278-282 (2005).

H. Liang, M. Cid, R. Cucu, G. Dobre, A. Podoleanu, J. Pedro, and D. Saunders, “En-face optical coherence tomography--a novel application of noninvasive imaging to art conservation,” Opt. Express 13, 6133-6144 (2005).
[CrossRef] [PubMed]

2004

A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and A.-C. Boccara, “Ultrahigh-resolution full-field optical coherence tomography,” Appl. Opt. 43, 2874-2883 (2004).
[CrossRef] [PubMed]

M. L. Yang, C. W. Lu, I. J. Hsu, and C. C. Yang, “The use of optical coherence tomography for monitoring the subsurface morphologies of archaic jades,” Archaeometry 46, 171-182(2004).
[CrossRef]

P. Targowski, B. Rouba, M. Wojtkowski, and A. Kowalczyk, “Application of optical coherence tomography to nondestructive examination of museum objects,” Stud. Cons. 49, 107-114(2004).

J.-P. Echard, “In situ multi-element analyses by energy-dispersive X-ray fluorescence on varnishes of historical violins,” Spectrochim. Acta B 59, 1663-1667 (2004).
[CrossRef]

2003

2002

1998

1996

1991

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

1988

C. Y. Barlow, P. P. Edwards, G. R. Millward, R. A. Raphael, and D. J. Rubio, “Wood treatment used in Cremonese instruments,” Nature 332, 313 (1988).
[CrossRef]

Adler, D. C.

Apolonski, A.

Arbree, A.

S. R. Marschner, S. H. Westin, A. Arbree, and J. T. Moon, “Measuring and modelling the appearance of finished wood,” ACM Trans. Graph. 24, 727-734 (2005).
[CrossRef]

Arecchi, T.

T. Arecchi, M. Bellini, C. Corsi, R. Fontana, M. Materazzi, L. Pezzati, and A. Tortora, “Optical coherence tomography for painting diagnostics,” Proc. SPIE 5857, 278-282 (2005).

Bak, A.

F. Viénot, A. Bak, and J.- P. Echard, “The peculiar BRDFs of flamed maple,” in Proceedings of CIE Expert Symposium on Visual Appearance (CIE, 2007), pp. 230-234.

Barlow, C. Y.

C. Y. Barlow, P. P. Edwards, G. R. Millward, R. A. Raphael, and D. J. Rubio, “Wood treatment used in Cremonese instruments,” Nature 332, 313 (1988).
[CrossRef]

Barry, S.

Beaurepaire, E.

Bellini, M.

T. Arecchi, M. Bellini, C. Corsi, R. Fontana, M. Materazzi, L. Pezzati, and A. Tortora, “Optical coherence tomography for painting diagnostics,” Proc. SPIE 5857, 278-282 (2005).

Benoit, C.

J.-P. Echard, C. Benoit, J. Peris-Vicente, V. Malecki, J. V. Gimeno-Adelantado, and S. Vaiedelich, “Gas chromatography-mass spectrometry characterization of historical varnishes of ancient Italian lutes and violin,” Anal. Chim. Acta 584, 172-180 (2007).
[CrossRef] [PubMed]

Bertrand, L.

J.-P. Echard, M. Cotte, E. Dooryhee, and L. Bertrand, “Insights into the varnishes of historical musical instruments using synchrotron micro-analytical methods,” Appl. Phys. A 92, 77-81 (2008).
[CrossRef]

Bizheva, K.

Blanchot, L.

Boccara, A. C.

Boccara, A.-C.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Cid, M.

Corsi, C.

T. Arecchi, M. Bellini, C. Corsi, R. Fontana, M. Materazzi, L. Pezzati, and A. Tortora, “Optical coherence tomography for painting diagnostics,” Proc. SPIE 5857, 278-282 (2005).

Cotte, M.

J.-P. Echard, M. Cotte, E. Dooryhee, and L. Bertrand, “Insights into the varnishes of historical musical instruments using synchrotron micro-analytical methods,” Appl. Phys. A 92, 77-81 (2008).
[CrossRef]

Cucu, R.

Dobre, G.

Dooryhee, E.

J.-P. Echard, M. Cotte, E. Dooryhee, and L. Bertrand, “Insights into the varnishes of historical musical instruments using synchrotron micro-analytical methods,” Appl. Phys. A 92, 77-81 (2008).
[CrossRef]

Drexler, W.

Dubois, A.

Echard, J.- P.

F. Viénot, A. Bak, and J.- P. Echard, “The peculiar BRDFs of flamed maple,” in Proceedings of CIE Expert Symposium on Visual Appearance (CIE, 2007), pp. 230-234.

Echard, J.-P.

J.-P. Echard, M. Cotte, E. Dooryhee, and L. Bertrand, “Insights into the varnishes of historical musical instruments using synchrotron micro-analytical methods,” Appl. Phys. A 92, 77-81 (2008).
[CrossRef]

J.-P. Echard and B. Lavédrine, “Review on the characterization of ancient stringed musical instruments varnishes and implementation of an analytical strategy,” J. Cult. Herit. 9, 420-429 (2008).
[CrossRef]

J.-P. Echard, C. Benoit, J. Peris-Vicente, V. Malecki, J. V. Gimeno-Adelantado, and S. Vaiedelich, “Gas chromatography-mass spectrometry characterization of historical varnishes of ancient Italian lutes and violin,” Anal. Chim. Acta 584, 172-180 (2007).
[CrossRef] [PubMed]

J.-P. Echard, “In situ multi-element analyses by energy-dispersive X-ray fluorescence on varnishes of historical violins,” Spectrochim. Acta B 59, 1663-1667 (2004).
[CrossRef]

J.-P. Echard, “The life of varnishes: chemical analyses and characterizations,” in Journée d'étude: les vernis de violon (Cité de la Musique, 2006), 82-93.

J.-P. Echard and S. Vaïedelich, “Quelques résultats d'analyses chimiques sur des vernis d'instruments d'Antonio Stradivari,” in De la peinture de chevalet à l'instrument de musique: vernis, liants et couleurs (Cité de la Musique, 2008), 104-113.

Edwards, P. P.

C. Y. Barlow, P. P. Edwards, G. R. Millward, R. A. Raphael, and D. J. Rubio, “Wood treatment used in Cremonese instruments,” Nature 332, 313 (1988).
[CrossRef]

Elias, M.

G. Latour, M. Elias, and J. M. Frigerio, “Determination of the absorption and scattering coefficients of pigments: application to the identification of the components of pigment mixtures,” Appl. Spectrosc. 63, 604-610 (2009).
[CrossRef] [PubMed]

G. Latour, J. Moreau, M. Elias, and J. M. Frigerio, “Optical coherence tomography: nondestructive imaging and spectral information of pigments,” Proc. SPIE 6618, 661806 (2007).
[CrossRef]

Fercher, A. F.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Fontana, R.

T. Arecchi, M. Bellini, C. Corsi, R. Fontana, M. Materazzi, L. Pezzati, and A. Tortora, “Optical coherence tomography for painting diagnostics,” Proc. SPIE 5857, 278-282 (2005).

Frigerio, J. M.

G. Latour, M. Elias, and J. M. Frigerio, “Determination of the absorption and scattering coefficients of pigments: application to the identification of the components of pigment mixtures,” Appl. Spectrosc. 63, 604-610 (2009).
[CrossRef] [PubMed]

G. Latour, J. Moreau, M. Elias, and J. M. Frigerio, “Optical coherence tomography: nondestructive imaging and spectral information of pigments,” Proc. SPIE 6618, 661806 (2007).
[CrossRef]

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Gimeno-Adelantado, J. V.

J.-P. Echard, C. Benoit, J. Peris-Vicente, V. Malecki, J. V. Gimeno-Adelantado, and S. Vaiedelich, “Gas chromatography-mass spectrometry characterization of historical varnishes of ancient Italian lutes and violin,” Anal. Chim. Acta 584, 172-180 (2007).
[CrossRef] [PubMed]

Gora, M.

P. Targowski, M. Gora, and M. Wojtkowski, “Optical coherence tomography for art works diagnostics,” Laser Chem. 2006, 35373 (2006).

Góra, M.

P. Targowski, B. Rouba, M. Góra, L. Tymińska-Widmer, J. Marczak, and A. Kowalczyk, “Optical coherence tomography in art diagnostics and restoration,” Appl. Phys. A 92, 1-9 (2008).
[CrossRef]

Gorczynska, I.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Grieve, K.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Hensick, T.

Hermann, B.

Hitzenberger, C. K.

Hsu, I. J.

M. L. Yang, C. W. Lu, I. J. Hsu, and C. C. Yang, “The use of optical coherence tomography for monitoring the subsurface morphologies of archaic jades,” Archaeometry 46, 171-182(2004).
[CrossRef]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Jiang, J. Y.

Khandekar, N.

Knight, J. C.

Kowalczyk, A.

P. Targowski, B. Rouba, M. Góra, L. Tymińska-Widmer, J. Marczak, and A. Kowalczyk, “Optical coherence tomography in art diagnostics and restoration,” Appl. Phys. A 92, 1-9 (2008).
[CrossRef]

P. Targowski, B. Rouba, M. Wojtkowski, and A. Kowalczyk, “Application of optical coherence tomography to nondestructive examination of museum objects,” Stud. Cons. 49, 107-114(2004).

Larkin, K. G.

Latour, G.

G. Latour, M. Elias, and J. M. Frigerio, “Determination of the absorption and scattering coefficients of pigments: application to the identification of the components of pigment mixtures,” Appl. Spectrosc. 63, 604-610 (2009).
[CrossRef] [PubMed]

G. Latour, J. Moreau, M. Elias, and J. M. Frigerio, “Optical coherence tomography: nondestructive imaging and spectral information of pigments,” Proc. SPIE 6618, 661806 (2007).
[CrossRef]

Lavédrine, B.

J.-P. Echard and B. Lavédrine, “Review on the characterization of ancient stringed musical instruments varnishes and implementation of an analytical strategy,” J. Cult. Herit. 9, 420-429 (2008).
[CrossRef]

Lebec, M.

Lecaque, R.

Leitgeb, R.

Liang, H.

Lie, H.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Lu, C. W.

M. L. Yang, C. W. Lu, I. J. Hsu, and C. C. Yang, “The use of optical coherence tomography for monitoring the subsurface morphologies of archaic jades,” Archaeometry 46, 171-182(2004).
[CrossRef]

Malecki, V.

J.-P. Echard, C. Benoit, J. Peris-Vicente, V. Malecki, J. V. Gimeno-Adelantado, and S. Vaiedelich, “Gas chromatography-mass spectrometry characterization of historical varnishes of ancient Italian lutes and violin,” Anal. Chim. Acta 584, 172-180 (2007).
[CrossRef] [PubMed]

Marczak, J.

P. Targowski, B. Rouba, M. Góra, L. Tymińska-Widmer, J. Marczak, and A. Kowalczyk, “Optical coherence tomography in art diagnostics and restoration,” Appl. Phys. A 92, 1-9 (2008).
[CrossRef]

Marschner, S. R.

S. R. Marschner, S. H. Westin, A. Arbree, and J. T. Moon, “Measuring and modelling the appearance of finished wood,” ACM Trans. Graph. 24, 727-734 (2005).
[CrossRef]

Materazzi, M.

T. Arecchi, M. Bellini, C. Corsi, R. Fontana, M. Materazzi, L. Pezzati, and A. Tortora, “Optical coherence tomography for painting diagnostics,” Proc. SPIE 5857, 278-282 (2005).

Millward, G. R.

C. Y. Barlow, P. P. Edwards, G. R. Millward, R. A. Raphael, and D. J. Rubio, “Wood treatment used in Cremonese instruments,” Nature 332, 313 (1988).
[CrossRef]

Moneron, G.

Moon, J. T.

S. R. Marschner, S. H. Westin, A. Arbree, and J. T. Moon, “Measuring and modelling the appearance of finished wood,” ACM Trans. Graph. 24, 727-734 (2005).
[CrossRef]

Moreau, J.

G. Latour, J. Moreau, M. Elias, and J. M. Frigerio, “Optical coherence tomography: nondestructive imaging and spectral information of pigments,” Proc. SPIE 6618, 661806 (2007).
[CrossRef]

Nagyvary, J.

J. Nagyvary, “Investigating the secrets of the Stradivarius,” Educ. Chem. 42(4), 96-98 (2005).

Pedro, J.

Peris-Vicente, J.

J.-P. Echard, C. Benoit, J. Peris-Vicente, V. Malecki, J. V. Gimeno-Adelantado, and S. Vaiedelich, “Gas chromatography-mass spectrometry characterization of historical varnishes of ancient Italian lutes and violin,” Anal. Chim. Acta 584, 172-180 (2007).
[CrossRef] [PubMed]

Pezzati, L.

T. Arecchi, M. Bellini, C. Corsi, R. Fontana, M. Materazzi, L. Pezzati, and A. Tortora, “Optical coherence tomography for painting diagnostics,” Proc. SPIE 5857, 278-282 (2005).

Podoleanu, A.

Povazay, B.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Raphael, R. A.

C. Y. Barlow, P. P. Edwards, G. R. Millward, R. A. Raphael, and D. J. Rubio, “Wood treatment used in Cremonese instruments,” Nature 332, 313 (1988).
[CrossRef]

Rouba, B.

P. Targowski, B. Rouba, M. Góra, L. Tymińska-Widmer, J. Marczak, and A. Kowalczyk, “Optical coherence tomography in art diagnostics and restoration,” Appl. Phys. A 92, 1-9 (2008).
[CrossRef]

P. Targowski, B. Rouba, M. Wojtkowski, and A. Kowalczyk, “Application of optical coherence tomography to nondestructive examination of museum objects,” Stud. Cons. 49, 107-114(2004).

Rubio, D. J.

C. Y. Barlow, P. P. Edwards, G. R. Millward, R. A. Raphael, and D. J. Rubio, “Wood treatment used in Cremonese instruments,” Nature 332, 313 (1988).
[CrossRef]

Russell, P. St.

Saint-Jalmes, H.

Sattmann, H.

Saunders, D.

Scherzer, E.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Spronk, R.

Stenger, J.

Stifter, D.

D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B 88, 337-357 (2007).
[CrossRef]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Targowski, P.

P. Targowski, B. Rouba, M. Góra, L. Tymińska-Widmer, J. Marczak, and A. Kowalczyk, “Optical coherence tomography in art diagnostics and restoration,” Appl. Phys. A 92, 1-9 (2008).
[CrossRef]

P. Targowski, M. Gora, and M. Wojtkowski, “Optical coherence tomography for art works diagnostics,” Laser Chem. 2006, 35373 (2006).

P. Targowski, B. Rouba, M. Wojtkowski, and A. Kowalczyk, “Application of optical coherence tomography to nondestructive examination of museum objects,” Stud. Cons. 49, 107-114(2004).

Tortora, A.

T. Arecchi, M. Bellini, C. Corsi, R. Fontana, M. Materazzi, L. Pezzati, and A. Tortora, “Optical coherence tomography for painting diagnostics,” Proc. SPIE 5857, 278-282 (2005).

Tyminska-Widmer, L.

P. Targowski, B. Rouba, M. Góra, L. Tymińska-Widmer, J. Marczak, and A. Kowalczyk, “Optical coherence tomography in art diagnostics and restoration,” Appl. Phys. A 92, 1-9 (2008).
[CrossRef]

Unterhuber, A.

Vabre, L.

Vaiedelich, S.

J.-P. Echard, C. Benoit, J. Peris-Vicente, V. Malecki, J. V. Gimeno-Adelantado, and S. Vaiedelich, “Gas chromatography-mass spectrometry characterization of historical varnishes of ancient Italian lutes and violin,” Anal. Chim. Acta 584, 172-180 (2007).
[CrossRef] [PubMed]

Vaïedelich, S.

J.-P. Echard and S. Vaïedelich, “Quelques résultats d'analyses chimiques sur des vernis d'instruments d'Antonio Stradivari,” in De la peinture de chevalet à l'instrument de musique: vernis, liants et couleurs (Cité de la Musique, 2008), 104-113.

Venugopalan, V.

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103, 577-644 (2003).
[CrossRef] [PubMed]

Vetterlein, M.

Viénot, F.

F. Viénot, A. Bak, and J.- P. Echard, “The peculiar BRDFs of flamed maple,” in Proceedings of CIE Expert Symposium on Visual Appearance (CIE, 2007), pp. 230-234.

Vogel, A.

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103, 577-644 (2003).
[CrossRef] [PubMed]

Wadsworth, W. J.

Westin, S. H.

S. R. Marschner, S. H. Westin, A. Arbree, and J. T. Moon, “Measuring and modelling the appearance of finished wood,” ACM Trans. Graph. 24, 727-734 (2005).
[CrossRef]

Wojtkowski, M.

P. Targowski, M. Gora, and M. Wojtkowski, “Optical coherence tomography for art works diagnostics,” Laser Chem. 2006, 35373 (2006).

P. Targowski, B. Rouba, M. Wojtkowski, and A. Kowalczyk, “Application of optical coherence tomography to nondestructive examination of museum objects,” Stud. Cons. 49, 107-114(2004).

Wolohojian, S.

Yang, C. C.

M. L. Yang, C. W. Lu, I. J. Hsu, and C. C. Yang, “The use of optical coherence tomography for monitoring the subsurface morphologies of archaic jades,” Archaeometry 46, 171-182(2004).
[CrossRef]

Yang, M. L.

M. L. Yang, C. W. Lu, I. J. Hsu, and C. C. Yang, “The use of optical coherence tomography for monitoring the subsurface morphologies of archaic jades,” Archaeometry 46, 171-182(2004).
[CrossRef]

ACM Trans. Graph.

S. R. Marschner, S. H. Westin, A. Arbree, and J. T. Moon, “Measuring and modelling the appearance of finished wood,” ACM Trans. Graph. 24, 727-734 (2005).
[CrossRef]

Anal. Chim. Acta

J.-P. Echard, C. Benoit, J. Peris-Vicente, V. Malecki, J. V. Gimeno-Adelantado, and S. Vaiedelich, “Gas chromatography-mass spectrometry characterization of historical varnishes of ancient Italian lutes and violin,” Anal. Chim. Acta 584, 172-180 (2007).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. A

J.-P. Echard, M. Cotte, E. Dooryhee, and L. Bertrand, “Insights into the varnishes of historical musical instruments using synchrotron micro-analytical methods,” Appl. Phys. A 92, 77-81 (2008).
[CrossRef]

P. Targowski, B. Rouba, M. Góra, L. Tymińska-Widmer, J. Marczak, and A. Kowalczyk, “Optical coherence tomography in art diagnostics and restoration,” Appl. Phys. A 92, 1-9 (2008).
[CrossRef]

Appl. Phys. B

D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B 88, 337-357 (2007).
[CrossRef]

Appl. Spectrosc.

Archaeometry

M. L. Yang, C. W. Lu, I. J. Hsu, and C. C. Yang, “The use of optical coherence tomography for monitoring the subsurface morphologies of archaic jades,” Archaeometry 46, 171-182(2004).
[CrossRef]

Chem. Rev.

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103, 577-644 (2003).
[CrossRef] [PubMed]

J. Cult. Herit.

J.-P. Echard and B. Lavédrine, “Review on the characterization of ancient stringed musical instruments varnishes and implementation of an analytical strategy,” J. Cult. Herit. 9, 420-429 (2008).
[CrossRef]

J. Opt. Soc. Am. A

Nature

C. Y. Barlow, P. P. Edwards, G. R. Millward, R. A. Raphael, and D. J. Rubio, “Wood treatment used in Cremonese instruments,” Nature 332, 313 (1988).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

T. Arecchi, M. Bellini, C. Corsi, R. Fontana, M. Materazzi, L. Pezzati, and A. Tortora, “Optical coherence tomography for painting diagnostics,” Proc. SPIE 5857, 278-282 (2005).

G. Latour, J. Moreau, M. Elias, and J. M. Frigerio, “Optical coherence tomography: nondestructive imaging and spectral information of pigments,” Proc. SPIE 6618, 661806 (2007).
[CrossRef]

Science

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Spectrochim. Acta B

J.-P. Echard, “In situ multi-element analyses by energy-dispersive X-ray fluorescence on varnishes of historical violins,” Spectrochim. Acta B 59, 1663-1667 (2004).
[CrossRef]

Stud. Cons.

P. Targowski, B. Rouba, M. Wojtkowski, and A. Kowalczyk, “Application of optical coherence tomography to nondestructive examination of museum objects,” Stud. Cons. 49, 107-114(2004).

Other

P. Targowski, M. Gora, and M. Wojtkowski, “Optical coherence tomography for art works diagnostics,” Laser Chem. 2006, 35373 (2006).

F. Viénot, A. Bak, and J.- P. Echard, “The peculiar BRDFs of flamed maple,” in Proceedings of CIE Expert Symposium on Visual Appearance (CIE, 2007), pp. 230-234.

J.-P. Echard and S. Vaïedelich, “Quelques résultats d'analyses chimiques sur des vernis d'instruments d'Antonio Stradivari,” in De la peinture de chevalet à l'instrument de musique: vernis, liants et couleurs (Cité de la Musique, 2008), 104-113.

J. Nagyvary, “Investigating the secrets of the Stradivarius,” Educ. Chem. 42(4), 96-98 (2005).

J.-P. Echard, “The life of varnishes: chemical analyses and characterizations,” in Journée d'étude: les vernis de violon (Cité de la Musique, 2006), 82-93.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic representation of the time-domain full-field OCT setup with the representation of the different wood sections of the studied samples.

Fig. 2
Fig. 2

(a) Definition of the wood sections and (b) sampling scheme with the direction of the OCT z axial direction.

Fig. 3
Fig. 3

Tomographic images (left) compared to optical microscopic images (right) of flamed maple wood according to the (a) and (d) radial plane, (b) and (e) tangential plane, and (c) and (f) transverse plane.

Fig. 4
Fig. 4

Axial tomographic image of a sample of wood coated with ground layer.

Fig. 5
Fig. 5

(a) Tomographic image according to the radial section of wood coated with ground layer containing plaster and alum particles and (b) optical microscopic view of the same sample.

Fig. 6
Fig. 6

Axial tomographic image of a wood (w) coated with ground layer (g) and varnish (v) sample.

Fig. 7
Fig. 7

Axial tomographic image of the back of the Landolfi violin.

Fig. 8
Fig. 8

Tomographic images according to (a) the axial direction of the OCT and (b) a plane parallel to the surface of the soundboard on the Landolfi violin.

Metrics