Abstract

A miniature high-sensitivity, high-temperature fiber sensor with an interferometer based on a bare small-core-diameter dispersion compensation fiber (DCF) is reported. The sensing head is a single-mode-fiber (SMF) DCF configuration formed by a 4mm long bare DCF with one end connected to the SMF by a fusion splicing technique and the other end cleaved. Due to the large mode index difference and high thermo-optic coefficient induced by two dominative interference modes, a miniature high- temperature fiber sensor with a high sensitivity of 68.6pm/°C is obtained by monitoring the wavelength shift of the interference spectrum. This type of sensor has the features of small size, high sensitivity, high stability, simple structure, and low cost.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. P. Koo and A. D. Kersey, “Bragg grating-based laser sensors systems with interferometric interrogation and wavelength division multiplexing,” J. Lightwave Technol. 13, 1243-1249(1995).
    [CrossRef]
  2. G. A. Ball, W. W. Morey, and P. K. Cheo, “Single- and multipoint fiber-laser sensors,” IEEE Photon. Technol. Lett. 5, 267-270 (1993).
    [CrossRef]
  3. V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21, 692-694 (1996).
    [CrossRef] [PubMed]
  4. Y. Liu, B. Liu, X. Feng, W. Zhang, G. Zhou, S. Yuan, G. Kai, and X. Dong, “High-birefringence fiber loop mirrors and their applications as sensors,” Appl. Opt. 44, 2382-2390 (2005).
    [CrossRef] [PubMed]
  5. A. N. Starodumov, L. A. Zenteno, D. Monzon, and E. De L. Rosa, “Fiber Sagnac interferometer temperature sensor,” Appl. Phys. Lett. 70, 19-21 (1997).
    [CrossRef]
  6. E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89, 091119 (2006).
    [CrossRef]
  7. Y. Liu and L. Wei, “Low-cost high-sensitivity strain and temperature sensing using graded-index multimode fibers,” Appl. Opt. 46, 2516-2519 (2007).
    [CrossRef] [PubMed]
  8. X. Chen, F. Shen, Z. Wang, Z. Huang, and A. Wang, “Micro-air-gap based intrinsic Fabry-Perot interferometric fiber-optic sensor,” Appl. Opt. 45, 7760-7766 (2006).
    [CrossRef] [PubMed]
  9. T. Wei, Y. Han, H. Tsai, and H. Xiao, “Miniaturized fiber inline Fabry-Perot interferometer fabricated with a femtosecond laser,” Opt. Lett. 33, 536-538 (2008).
    [CrossRef] [PubMed]
  10. H. Y. Choi, K. S. Park, S. J. Park, U. Paek, B. H. Lee, and E. S. Choi, “Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer,” Opt. Lett. 33, 2455-2457 (2008).
    [CrossRef] [PubMed]
  11. L. V. Nguyen, D. Hwang, S. Moon, D. S. Moon, and Y. Chung, “High temperature fiber sensor with high sensitivity based on core diameter mismatch,” Opt. Express 16, 11369-11375(2008).
    [CrossRef] [PubMed]

2008 (3)

2007 (1)

2006 (2)

X. Chen, F. Shen, Z. Wang, Z. Huang, and A. Wang, “Micro-air-gap based intrinsic Fabry-Perot interferometric fiber-optic sensor,” Appl. Opt. 45, 7760-7766 (2006).
[CrossRef] [PubMed]

E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89, 091119 (2006).
[CrossRef]

2005 (1)

1997 (1)

A. N. Starodumov, L. A. Zenteno, D. Monzon, and E. De L. Rosa, “Fiber Sagnac interferometer temperature sensor,” Appl. Phys. Lett. 70, 19-21 (1997).
[CrossRef]

1996 (1)

1995 (1)

K. P. Koo and A. D. Kersey, “Bragg grating-based laser sensors systems with interferometric interrogation and wavelength division multiplexing,” J. Lightwave Technol. 13, 1243-1249(1995).
[CrossRef]

1993 (1)

G. A. Ball, W. W. Morey, and P. K. Cheo, “Single- and multipoint fiber-laser sensors,” IEEE Photon. Technol. Lett. 5, 267-270 (1993).
[CrossRef]

Ball, G. A.

G. A. Ball, W. W. Morey, and P. K. Cheo, “Single- and multipoint fiber-laser sensors,” IEEE Photon. Technol. Lett. 5, 267-270 (1993).
[CrossRef]

Bhatia, V.

Chen, X.

Cheo, P. K.

G. A. Ball, W. W. Morey, and P. K. Cheo, “Single- and multipoint fiber-laser sensors,” IEEE Photon. Technol. Lett. 5, 267-270 (1993).
[CrossRef]

Choi, E. S.

Choi, H. Y.

Chung, Y.

Dong, X.

Feng, X.

Han, Y.

Huang, Z.

Hwang, D.

Kai, G.

Kersey, A. D.

K. P. Koo and A. D. Kersey, “Bragg grating-based laser sensors systems with interferometric interrogation and wavelength division multiplexing,” J. Lightwave Technol. 13, 1243-1249(1995).
[CrossRef]

Koo, K. P.

K. P. Koo and A. D. Kersey, “Bragg grating-based laser sensors systems with interferometric interrogation and wavelength division multiplexing,” J. Lightwave Technol. 13, 1243-1249(1995).
[CrossRef]

Lee, B. H.

Li, E.

E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89, 091119 (2006).
[CrossRef]

Liu, B.

Liu, Y.

Monzon, D.

A. N. Starodumov, L. A. Zenteno, D. Monzon, and E. De L. Rosa, “Fiber Sagnac interferometer temperature sensor,” Appl. Phys. Lett. 70, 19-21 (1997).
[CrossRef]

Moon, D. S.

Moon, S.

Morey, W. W.

G. A. Ball, W. W. Morey, and P. K. Cheo, “Single- and multipoint fiber-laser sensors,” IEEE Photon. Technol. Lett. 5, 267-270 (1993).
[CrossRef]

Nguyen, L. V.

Paek, U.

Park, K. S.

Park, S. J.

Rosa, E. De L.

A. N. Starodumov, L. A. Zenteno, D. Monzon, and E. De L. Rosa, “Fiber Sagnac interferometer temperature sensor,” Appl. Phys. Lett. 70, 19-21 (1997).
[CrossRef]

Shen, F.

Starodumov, A. N.

A. N. Starodumov, L. A. Zenteno, D. Monzon, and E. De L. Rosa, “Fiber Sagnac interferometer temperature sensor,” Appl. Phys. Lett. 70, 19-21 (1997).
[CrossRef]

Tsai, H.

Vengsarkar, A. M.

Wang, A.

Wang, X.

E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89, 091119 (2006).
[CrossRef]

Wang, Z.

Wei, L.

Wei, T.

Xiao, H.

Yuan, S.

Zenteno, L. A.

A. N. Starodumov, L. A. Zenteno, D. Monzon, and E. De L. Rosa, “Fiber Sagnac interferometer temperature sensor,” Appl. Phys. Lett. 70, 19-21 (1997).
[CrossRef]

Zhang, C.

E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89, 091119 (2006).
[CrossRef]

Zhang, W.

Zhou, G.

Appl. Opt. (3)

Appl. Phys. Lett. (2)

A. N. Starodumov, L. A. Zenteno, D. Monzon, and E. De L. Rosa, “Fiber Sagnac interferometer temperature sensor,” Appl. Phys. Lett. 70, 19-21 (1997).
[CrossRef]

E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89, 091119 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

G. A. Ball, W. W. Morey, and P. K. Cheo, “Single- and multipoint fiber-laser sensors,” IEEE Photon. Technol. Lett. 5, 267-270 (1993).
[CrossRef]

J. Lightwave Technol. (1)

K. P. Koo and A. D. Kersey, “Bragg grating-based laser sensors systems with interferometric interrogation and wavelength division multiplexing,” J. Lightwave Technol. 13, 1243-1249(1995).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup (inset, structure of the sensing head).

Fig. 2
Fig. 2

Interference spectrum of the DCF interferometer.

Fig. 3
Fig. 3

Wavelength shifts of the interference spectrum at different temperatures.

Fig. 4
Fig. 4

Measured relationship between the wavelength and the temperature.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

φ m = 4 π B L λ = N 2 π ( N   is an integer ) .
Δ λ λ ( α + ξ ) Δ T ,
FSR = λ 2 2 B L .

Metrics