Abstract

In digital speckle interferometry, subtracted fringe patterns are always influenced by inhomogeneous light that is reflected from the tested object and received by the CCD. In this paper, by analyzing speckle’s statistic property, we propose a numerical processing method to correct this nonuniform light intensity distribution within adaptive windows. This method includes estimating light intensity distribution of the tested object, constructing an adaptive window for every pixel, and correcting the intensity in the adaptive windows. By applying this method to our experiment, we find it is valid for intensity correction without changing necessary phase information.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Q. Yu and S. Fu, ESPI and InSAR Interferogram Processing Method Based on the Fringe Orientation and the Fringe-Contoured Windows (Science Press, 2007) (in Chinese).
    [PubMed]
  2. E. Archbold, J. M. Burch, A. E. Ennos, and P. A. Taylor, “Visual observation of surface vibration nodal patterns,” Nature 212, 652-660 (1966).
  3. J. N. Butters and J. A. Leendertz, “Holography and video techniques applied to engineering measurement,” Trans. Inst. Meas. Control (London) 4, 349-354 (1971).
  4. A. Makovshi, “Time-lapse interferometry and conturing using television systems,” Appl. Opt. 10, 2722-2727 (1971).
    [CrossRef]
  5. W. H. Peter and W. F. Ranson, “Digital imaging technique in experimental stress analysis,” Opt. Eng. 21, 427-431 (1982).
  6. I. Yamaguchi, “A laser-speckle strain gange,” J. Phys. E 14, 1270-1273 (1981).
    [CrossRef]
  7. Y. M. He, C. J. Tay, and H. M. Shang, “A new method for generating and analyzing digital speckle shearing correlation fringe patterns,” Opt. Laser Technol. 30, 27-31 (1998).
    [CrossRef]
  8. D. R. Schmitt and R. W. Hunt, “Optimization of fringe pattern calculation with direct correlation in speckle interferometry,” Appl. Opt. 36, 8848-8857 (1997).
    [CrossRef]
  9. Q. Yu, S. Fu, X. Yang, X. Sun, and X. Liu, “Extraction of phase field from a single contoured correlation fringe pattern of ESPI,” Opt. Express 12, 75-83 (2004).
    [CrossRef] [PubMed]
  10. Y. Y. Hung, “Shearogaphy: a new optical method for strain measurement and nondestructive testing,” Opt. Eng. 21, 391-395 (1982).
  11. S. Schedin, G. Pedrini, and H. J. Tiziani, “Pulsed digital holography for deformation measurements on biological tissues,” Appl. Opt. 39, 2853-2857 (2000).
    [CrossRef]
  12. U. Schnars and W. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85-R101 (2002).
    [CrossRef]
  13. M. R. R. Gesualdi, D. Soga, and M. Muramatsu, “Real-time holographic interferometry using photorefractive sillenite crystals with phase-stepping technique,” Opt. Lasers Eng. 44, 56-67 (2006).
    [CrossRef]
  14. Q. Yu, X. Sun, and X. Liu, “Spin filter with curve windows for interometric fringe patterns,” Appl. Opt. 41, 2650-2654 (2002).
    [CrossRef] [PubMed]
  15. Q. Yu, S. Fu, X. Liu, X. Yang, and X. Sun, “Single-phase-step method with contoured correlation fringe patterns for ESPI,” Opt. Express 12, 4980-4985 (2004).
    [CrossRef] [PubMed]
  16. J. C. Dainty, Laser Speckle and Related Phenomena (Science Press, 1981) (in Chinese).
  17. P. K. Rastogi, Digital Speckle Pattern Interferometry and Related Technique (Wiley, 2001).
  18. D. He, D. Yang, B. Gu, and Z. Fang, “Impact of inhomogeneous light intensity on test and its correction method for digital speckle interferometry with subtraction,” Acta Optica Sinica 29, 362-365 (2009) (in Chinese).
    [CrossRef]
  19. Q. F. Yu and X. L. Liu, “Removing speckle noise from speckle fringe patterns by spin filtering with curve surface windows [C],” Proc. SPIE 4664, 73-79 (2002).
    [CrossRef]
  20. Q. Yu, S. Fu, X. Yang, X. Sun, and X. Liu, “Extraction of phase field from a single contoured correlation fringe pattern of ESPI,” Opt. Express 12, 75-83 (2004).
    [CrossRef] [PubMed]

2009 (1)

D. He, D. Yang, B. Gu, and Z. Fang, “Impact of inhomogeneous light intensity on test and its correction method for digital speckle interferometry with subtraction,” Acta Optica Sinica 29, 362-365 (2009) (in Chinese).
[CrossRef]

2006 (1)

M. R. R. Gesualdi, D. Soga, and M. Muramatsu, “Real-time holographic interferometry using photorefractive sillenite crystals with phase-stepping technique,” Opt. Lasers Eng. 44, 56-67 (2006).
[CrossRef]

2004 (3)

2002 (3)

Q. F. Yu and X. L. Liu, “Removing speckle noise from speckle fringe patterns by spin filtering with curve surface windows [C],” Proc. SPIE 4664, 73-79 (2002).
[CrossRef]

Q. Yu, X. Sun, and X. Liu, “Spin filter with curve windows for interometric fringe patterns,” Appl. Opt. 41, 2650-2654 (2002).
[CrossRef] [PubMed]

U. Schnars and W. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85-R101 (2002).
[CrossRef]

2000 (1)

1998 (1)

Y. M. He, C. J. Tay, and H. M. Shang, “A new method for generating and analyzing digital speckle shearing correlation fringe patterns,” Opt. Laser Technol. 30, 27-31 (1998).
[CrossRef]

1997 (1)

1982 (2)

W. H. Peter and W. F. Ranson, “Digital imaging technique in experimental stress analysis,” Opt. Eng. 21, 427-431 (1982).

Y. Y. Hung, “Shearogaphy: a new optical method for strain measurement and nondestructive testing,” Opt. Eng. 21, 391-395 (1982).

1981 (1)

I. Yamaguchi, “A laser-speckle strain gange,” J. Phys. E 14, 1270-1273 (1981).
[CrossRef]

1971 (2)

J. N. Butters and J. A. Leendertz, “Holography and video techniques applied to engineering measurement,” Trans. Inst. Meas. Control (London) 4, 349-354 (1971).

A. Makovshi, “Time-lapse interferometry and conturing using television systems,” Appl. Opt. 10, 2722-2727 (1971).
[CrossRef]

1966 (1)

E. Archbold, J. M. Burch, A. E. Ennos, and P. A. Taylor, “Visual observation of surface vibration nodal patterns,” Nature 212, 652-660 (1966).

Archbold, E.

E. Archbold, J. M. Burch, A. E. Ennos, and P. A. Taylor, “Visual observation of surface vibration nodal patterns,” Nature 212, 652-660 (1966).

Burch, J. M.

E. Archbold, J. M. Burch, A. E. Ennos, and P. A. Taylor, “Visual observation of surface vibration nodal patterns,” Nature 212, 652-660 (1966).

Butters, J. N.

J. N. Butters and J. A. Leendertz, “Holography and video techniques applied to engineering measurement,” Trans. Inst. Meas. Control (London) 4, 349-354 (1971).

Dainty, J. C.

J. C. Dainty, Laser Speckle and Related Phenomena (Science Press, 1981) (in Chinese).

Ennos, A. E.

E. Archbold, J. M. Burch, A. E. Ennos, and P. A. Taylor, “Visual observation of surface vibration nodal patterns,” Nature 212, 652-660 (1966).

Fang, Z.

D. He, D. Yang, B. Gu, and Z. Fang, “Impact of inhomogeneous light intensity on test and its correction method for digital speckle interferometry with subtraction,” Acta Optica Sinica 29, 362-365 (2009) (in Chinese).
[CrossRef]

Fu, S.

Gesualdi, M. R. R.

M. R. R. Gesualdi, D. Soga, and M. Muramatsu, “Real-time holographic interferometry using photorefractive sillenite crystals with phase-stepping technique,” Opt. Lasers Eng. 44, 56-67 (2006).
[CrossRef]

Gu, B.

D. He, D. Yang, B. Gu, and Z. Fang, “Impact of inhomogeneous light intensity on test and its correction method for digital speckle interferometry with subtraction,” Acta Optica Sinica 29, 362-365 (2009) (in Chinese).
[CrossRef]

He, D.

D. He, D. Yang, B. Gu, and Z. Fang, “Impact of inhomogeneous light intensity on test and its correction method for digital speckle interferometry with subtraction,” Acta Optica Sinica 29, 362-365 (2009) (in Chinese).
[CrossRef]

He, Y. M.

Y. M. He, C. J. Tay, and H. M. Shang, “A new method for generating and analyzing digital speckle shearing correlation fringe patterns,” Opt. Laser Technol. 30, 27-31 (1998).
[CrossRef]

Hung, Y. Y.

Y. Y. Hung, “Shearogaphy: a new optical method for strain measurement and nondestructive testing,” Opt. Eng. 21, 391-395 (1982).

Hunt, R. W.

Jüptner, W.

U. Schnars and W. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85-R101 (2002).
[CrossRef]

Leendertz, J. A.

J. N. Butters and J. A. Leendertz, “Holography and video techniques applied to engineering measurement,” Trans. Inst. Meas. Control (London) 4, 349-354 (1971).

Liu, X.

Liu, X. L.

Q. F. Yu and X. L. Liu, “Removing speckle noise from speckle fringe patterns by spin filtering with curve surface windows [C],” Proc. SPIE 4664, 73-79 (2002).
[CrossRef]

Makovshi, A.

Muramatsu, M.

M. R. R. Gesualdi, D. Soga, and M. Muramatsu, “Real-time holographic interferometry using photorefractive sillenite crystals with phase-stepping technique,” Opt. Lasers Eng. 44, 56-67 (2006).
[CrossRef]

Pedrini, G.

Peter, W. H.

W. H. Peter and W. F. Ranson, “Digital imaging technique in experimental stress analysis,” Opt. Eng. 21, 427-431 (1982).

Ranson, W. F.

W. H. Peter and W. F. Ranson, “Digital imaging technique in experimental stress analysis,” Opt. Eng. 21, 427-431 (1982).

Rastogi, P. K.

P. K. Rastogi, Digital Speckle Pattern Interferometry and Related Technique (Wiley, 2001).

Schedin, S.

Schmitt, D. R.

Schnars, U.

U. Schnars and W. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85-R101 (2002).
[CrossRef]

Shang, H. M.

Y. M. He, C. J. Tay, and H. M. Shang, “A new method for generating and analyzing digital speckle shearing correlation fringe patterns,” Opt. Laser Technol. 30, 27-31 (1998).
[CrossRef]

Soga, D.

M. R. R. Gesualdi, D. Soga, and M. Muramatsu, “Real-time holographic interferometry using photorefractive sillenite crystals with phase-stepping technique,” Opt. Lasers Eng. 44, 56-67 (2006).
[CrossRef]

Sun, X.

Tay, C. J.

Y. M. He, C. J. Tay, and H. M. Shang, “A new method for generating and analyzing digital speckle shearing correlation fringe patterns,” Opt. Laser Technol. 30, 27-31 (1998).
[CrossRef]

Taylor, P. A.

E. Archbold, J. M. Burch, A. E. Ennos, and P. A. Taylor, “Visual observation of surface vibration nodal patterns,” Nature 212, 652-660 (1966).

Tiziani, H. J.

Yamaguchi, I.

I. Yamaguchi, “A laser-speckle strain gange,” J. Phys. E 14, 1270-1273 (1981).
[CrossRef]

Yang, D.

D. He, D. Yang, B. Gu, and Z. Fang, “Impact of inhomogeneous light intensity on test and its correction method for digital speckle interferometry with subtraction,” Acta Optica Sinica 29, 362-365 (2009) (in Chinese).
[CrossRef]

Yang, X.

Yu, Q.

Yu, Q. F.

Q. F. Yu and X. L. Liu, “Removing speckle noise from speckle fringe patterns by spin filtering with curve surface windows [C],” Proc. SPIE 4664, 73-79 (2002).
[CrossRef]

Acta Optica Sinica (1)

D. He, D. Yang, B. Gu, and Z. Fang, “Impact of inhomogeneous light intensity on test and its correction method for digital speckle interferometry with subtraction,” Acta Optica Sinica 29, 362-365 (2009) (in Chinese).
[CrossRef]

Appl. Opt. (4)

J. Phys. E (1)

I. Yamaguchi, “A laser-speckle strain gange,” J. Phys. E 14, 1270-1273 (1981).
[CrossRef]

Meas. Sci. Technol. (1)

U. Schnars and W. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85-R101 (2002).
[CrossRef]

Nature (1)

E. Archbold, J. M. Burch, A. E. Ennos, and P. A. Taylor, “Visual observation of surface vibration nodal patterns,” Nature 212, 652-660 (1966).

Opt. Eng. (2)

W. H. Peter and W. F. Ranson, “Digital imaging technique in experimental stress analysis,” Opt. Eng. 21, 427-431 (1982).

Y. Y. Hung, “Shearogaphy: a new optical method for strain measurement and nondestructive testing,” Opt. Eng. 21, 391-395 (1982).

Opt. Express (3)

Opt. Laser Technol. (1)

Y. M. He, C. J. Tay, and H. M. Shang, “A new method for generating and analyzing digital speckle shearing correlation fringe patterns,” Opt. Laser Technol. 30, 27-31 (1998).
[CrossRef]

Opt. Lasers Eng. (1)

M. R. R. Gesualdi, D. Soga, and M. Muramatsu, “Real-time holographic interferometry using photorefractive sillenite crystals with phase-stepping technique,” Opt. Lasers Eng. 44, 56-67 (2006).
[CrossRef]

Proc. SPIE (1)

Q. F. Yu and X. L. Liu, “Removing speckle noise from speckle fringe patterns by spin filtering with curve surface windows [C],” Proc. SPIE 4664, 73-79 (2002).
[CrossRef]

Trans. Inst. Meas. Control (London) (1)

J. N. Butters and J. A. Leendertz, “Holography and video techniques applied to engineering measurement,” Trans. Inst. Meas. Control (London) 4, 349-354 (1971).

Other (3)

Q. Yu and S. Fu, ESPI and InSAR Interferogram Processing Method Based on the Fringe Orientation and the Fringe-Contoured Windows (Science Press, 2007) (in Chinese).
[PubMed]

J. C. Dainty, Laser Speckle and Related Phenomena (Science Press, 1981) (in Chinese).

P. K. Rastogi, Digital Speckle Pattern Interferometry and Related Technique (Wiley, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Diagram of Michelson shearing imaging: S, a Verdi-V2 laser light with 532 nm wavelength; O, the tested object which is a piece of aeronautic composite material; BS, beam splitter cube; M 1 and M 2 , mirrors; CCD, MTV-1802CB charge-coupled device (with a resolution of 596 × 795 pixels).

Fig. 2
Fig. 2

Speckle shearograms of a piece of aeronautic composite material and direct subtraction between them. The lateral dimensions of the investigated area are approximately 25 × 30 mm 2 , the shear distance is 3 mm , the value of the deformation in the center of the surface is about 50 μm , and the value at the border of the investigated areas is about 5 μm .

Fig. 3
Fig. 3

Fringe patterns obtained in different windows and light intensity estimation. (a)–(d) show the results of rectangular windows of 15 × 15 pixels, 51 × 51 pixels, 71 × 71 pixels, and 91 × 91 pixels. When we process these fringes, we do not estimate light intensity distribution and apply Eq. (11) within windows of different sizes directly. And n is the fringe number.

Fig. 4
Fig. 4

Light intensity estimation and fringe pattern obtained in adaptive windows. (a) is the estimation of intensity distribution and (b) is the result of adaptive windows.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

I 1 = A 1 2 + A 2 2 + 2 A 1 A 2 cos α ,
I 2 = A 1 2 + A 2 2 + 2 A 1 A 2 cos ( α + Δ ) ,
I = | I 2 I 1 | = | 4 A 1 A 2 sin ( α + Δ 2 ) sin ( Δ 2 ) | ,
cos α window = 0 ,
| cos α | window = 2 π ,
I 1 window = A 1 2 + A 2 2 + 2 A 1 A 2 cos α window = A 1 2 + A 2 2 + 2 A 1 A 2 cos α window = A 1 2 + A 2 2 .
| I 1 I 1 window | window = | 2 A 1 A 2 cos α | window = | 4 A 1 A 2 | π .
η ( i , j ) = [ | I 2 ( i , j ) I 1 ( i , j ) | | I 1 ( i , j ) I 1 window | window ] 2 = [ π sin ( α + Δ 2 ) sin ( Δ 2 ) ] 2 = π 2 2 sin 2 ( α + Δ 2 ) ( 1 cos Δ ) .
D e ( i , j ) = | I 1 I 1 m × n | m × n = | 2 A 1 A 2 cos α | m × n = | 4 A 1 A 2 | π ,
| D e ( i , j ) D e ( m , n ) | D e ( i , j ) ρ
η c ( i , j ) = [ | I 2 ( i , j ) I 1 ( i , j ) | | I 1 ( i , j ) I 1 C | C ] 2 = [ π sin ( α + Δ 2 ) sin ( Δ 2 ) ] 2 = π 2 2 sin 2 ( α + Δ 2 ) ( 1 cos Δ ) .

Metrics