Abstract

Handheld-probe-based optical imagers are a popular approach toward breast imaging because of their potential portability and maximum patient comfort. A novel handheld-probe-based optical imager has been developed and its feasibility for three-dimensional fluorescence tomographic imaging demonstrated. Extensive tomography studies were performed on large slab phantoms (650ml) to assess the performance limits of the handheld imager. Experiments were performed by using different target volumes (0.10.45cm3), target depths (13cm), and fluorescence (Indocyanine Green) absorption contrast ratios in a nonfluorescing (10) and constant fluorescing backgrounds (10001 to 51). The estimated sensitivity and specificity of the handheld imager are 43% and 95%, respectively.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Chen, M. Huang, H. Xia, and D. Piao, “Portable near-infrared diffusive light imager for breast cancer detection,” J. Biomed. Opt. 9, 504-510 (2004).
    [CrossRef] [PubMed]
  2. B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study,” Acad. Radiol. 12, 925-933 (2005).
    [CrossRef] [PubMed]
  3. B. J. Tromberg, “Optical scanning and breast cancer,” Acad. Radiol. 12, 923-924 (2005).
    [CrossRef] [PubMed]
  4. K. S. No and P. H. Chou, “Mini-FDPM and heterodyne mini-FDPM: handheld non-invasive breast cancer detectors based on frequency domain photon migration,” IEEE Trans. Circuits Syst. 52, 2672-2685 (2005).
    [CrossRef]
  5. Q. Zhu, S. H. Kurtzma, P. Hegde, S. Tannenbaum, M. Kane, M. Huang, N. G. Chen, B. Jagjivan, and K. Zarfos, “Utilizing optical tomography with ultrasound localization to image heterogeneous hemoglobin distribution in large breast cancers,” Neoplasia 7, 263-270 (2005).
    [CrossRef] [PubMed]
  6. J. R. X. Xu, B. Qiang, J. J. Mao, and S. P. Povoski, “Development of a handheld near infrared imager for dynamic characterization of in vivo biological tissue systems.,” Appl. Opt. 46, 7442-7451 (2007).
    [CrossRef] [PubMed]
  7. B. Jayachandran, J. Ge, S. Regalado, and A. Godavarty, “Design and development of a hand-held optical probe towards fluorescence diagnostic imaging,” J. Biomed. Opt. 12, 054014 (2007).
    [CrossRef] [PubMed]
  8. J. Ge, B. Zhu, S. Regalado, and A. Godavarty, “Three-dimensional fluorescence-enhanced optical tomography using a hand-held probe based imaging system,” Med. Phys. 35, 3354-3363 (2008).
    [CrossRef] [PubMed]
  9. R. Rajagopalan, P. Uetrecht, J. E. Bugaj, S. A. Achilefu, and R. B. Dorshow, “Stabilization of the optical tracer agent Indocyanine Green using noncovalent interactions,” Photochem. Photobiol. 71, 347-350 (2000).
    [CrossRef] [PubMed]
  10. M. J. Eppstein, D. E. Dougherty, D. J. Hawrysz and E. M. Sevick-Muraca, “Three dimensional Bayesian optical image reconstruction with domain decomposition,” IEEE Trans. Med. Imaging 20, 147-163 (2001).
    [CrossRef] [PubMed]
  11. F. Fedele, J. P. Laible, and M. J. Eppstein, “Coupled complex adjoint sensitivities for frequency-domain fluorescence tomography: theory and vectorized implementation,” J. Comput. Phys. 187, 597-619 (2003).
    [CrossRef]
  12. A. Joshi, W. Bangerth, K. Hwang, J. C. Rasmussen, and E. M. Sevick-Muraca, “Plane-wave fluorescence tomography with adaptive finite elements,” Opt. Lett. 31, 193-195 (2006).
    [CrossRef] [PubMed]
  13. D. S. Kepshire, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Challenges in sub-surface fluorescence diffuse optical imaging,” Proc. SPIE 6434, 64340V (2007).
    [CrossRef]
  14. T. M. Breslin, F. Xu, G. M. Palmer, C. Zhu, K. W. Gilchrist, and N. Ramanujam, “Autofluorescence and diffuse reflectance properties of malignant and benign breast tissues,” Ann. Surg. Oncol. 11, 65-70 (2004).
    [CrossRef]
  15. N. G. Deane, H. C. Manning, A. C. Foutch, M. K. Washington, B. A. Aronow, D. J. Bornhop, and R. J. Coffey, “Targeted imaging of colonic tumors in Smad3/Smad3 mice discriminates cancer and inflammation,” Mol. Cancer Res. 5, 341-349(2007).
    [CrossRef] [PubMed]
  16. R. Hage, P. R. Galhanone, R. A. Zangaro, K. C. Rodrigues, M. T. T. Pacheco, A. A. Martin, M. M. Netto, F. A. Soares, and I. W. Da Cunha, “Using the laser-induced fluorescence spectroscopy in the differentiation between normal and neoplastic human breast tissue,” Lasers Med. Sci. 18, 171-176(2003).
    [CrossRef] [PubMed]
  17. Z. Volynskaya, A. S. Haka, K. L. Bechtel, M. Fitzmaurice, R. Shenk, N. Wang, J. Nazemi, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer using diffuse reflectance spectroscopy and intrinsic fluorescence spectroscopy,” J. Biomed. Opt. 13, 024012 (2008).
    [CrossRef] [PubMed]
  18. C. F. Zhu, G. M. Palmer, T. M. Breslin, J. Harter, and N. Ramanujam, “Diagnosis of breast cancer using fluorescence and diffuse reflectance spectroscopy: a Monte-Carlo-model-based approach,” J. Biomed. Opt. 13, 034015(2008).
    [CrossRef] [PubMed]
  19. A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, S. R. Arridge, M. D. Schnall, and A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15, 6696-6716(2007).
    [CrossRef] [PubMed]
  20. S. Regalado, S. J. Erickson, B. Zhu, J. Ge, and A. Godavarty, “Automated coregistered imaging using a hand-held probe-based optical imager,” Rev. Sci. Instrum. (to be published).
    [PubMed]

2008 (3)

J. Ge, B. Zhu, S. Regalado, and A. Godavarty, “Three-dimensional fluorescence-enhanced optical tomography using a hand-held probe based imaging system,” Med. Phys. 35, 3354-3363 (2008).
[CrossRef] [PubMed]

Z. Volynskaya, A. S. Haka, K. L. Bechtel, M. Fitzmaurice, R. Shenk, N. Wang, J. Nazemi, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer using diffuse reflectance spectroscopy and intrinsic fluorescence spectroscopy,” J. Biomed. Opt. 13, 024012 (2008).
[CrossRef] [PubMed]

C. F. Zhu, G. M. Palmer, T. M. Breslin, J. Harter, and N. Ramanujam, “Diagnosis of breast cancer using fluorescence and diffuse reflectance spectroscopy: a Monte-Carlo-model-based approach,” J. Biomed. Opt. 13, 034015(2008).
[CrossRef] [PubMed]

2007 (5)

A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, S. R. Arridge, M. D. Schnall, and A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15, 6696-6716(2007).
[CrossRef] [PubMed]

J. R. X. Xu, B. Qiang, J. J. Mao, and S. P. Povoski, “Development of a handheld near infrared imager for dynamic characterization of in vivo biological tissue systems.,” Appl. Opt. 46, 7442-7451 (2007).
[CrossRef] [PubMed]

B. Jayachandran, J. Ge, S. Regalado, and A. Godavarty, “Design and development of a hand-held optical probe towards fluorescence diagnostic imaging,” J. Biomed. Opt. 12, 054014 (2007).
[CrossRef] [PubMed]

D. S. Kepshire, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Challenges in sub-surface fluorescence diffuse optical imaging,” Proc. SPIE 6434, 64340V (2007).
[CrossRef]

N. G. Deane, H. C. Manning, A. C. Foutch, M. K. Washington, B. A. Aronow, D. J. Bornhop, and R. J. Coffey, “Targeted imaging of colonic tumors in Smad3/Smad3 mice discriminates cancer and inflammation,” Mol. Cancer Res. 5, 341-349(2007).
[CrossRef] [PubMed]

2006 (1)

2005 (4)

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study,” Acad. Radiol. 12, 925-933 (2005).
[CrossRef] [PubMed]

B. J. Tromberg, “Optical scanning and breast cancer,” Acad. Radiol. 12, 923-924 (2005).
[CrossRef] [PubMed]

K. S. No and P. H. Chou, “Mini-FDPM and heterodyne mini-FDPM: handheld non-invasive breast cancer detectors based on frequency domain photon migration,” IEEE Trans. Circuits Syst. 52, 2672-2685 (2005).
[CrossRef]

Q. Zhu, S. H. Kurtzma, P. Hegde, S. Tannenbaum, M. Kane, M. Huang, N. G. Chen, B. Jagjivan, and K. Zarfos, “Utilizing optical tomography with ultrasound localization to image heterogeneous hemoglobin distribution in large breast cancers,” Neoplasia 7, 263-270 (2005).
[CrossRef] [PubMed]

2004 (2)

N. Chen, M. Huang, H. Xia, and D. Piao, “Portable near-infrared diffusive light imager for breast cancer detection,” J. Biomed. Opt. 9, 504-510 (2004).
[CrossRef] [PubMed]

T. M. Breslin, F. Xu, G. M. Palmer, C. Zhu, K. W. Gilchrist, and N. Ramanujam, “Autofluorescence and diffuse reflectance properties of malignant and benign breast tissues,” Ann. Surg. Oncol. 11, 65-70 (2004).
[CrossRef]

2003 (2)

R. Hage, P. R. Galhanone, R. A. Zangaro, K. C. Rodrigues, M. T. T. Pacheco, A. A. Martin, M. M. Netto, F. A. Soares, and I. W. Da Cunha, “Using the laser-induced fluorescence spectroscopy in the differentiation between normal and neoplastic human breast tissue,” Lasers Med. Sci. 18, 171-176(2003).
[CrossRef] [PubMed]

F. Fedele, J. P. Laible, and M. J. Eppstein, “Coupled complex adjoint sensitivities for frequency-domain fluorescence tomography: theory and vectorized implementation,” J. Comput. Phys. 187, 597-619 (2003).
[CrossRef]

2001 (1)

M. J. Eppstein, D. E. Dougherty, D. J. Hawrysz and E. M. Sevick-Muraca, “Three dimensional Bayesian optical image reconstruction with domain decomposition,” IEEE Trans. Med. Imaging 20, 147-163 (2001).
[CrossRef] [PubMed]

2000 (1)

R. Rajagopalan, P. Uetrecht, J. E. Bugaj, S. A. Achilefu, and R. B. Dorshow, “Stabilization of the optical tracer agent Indocyanine Green using noncovalent interactions,” Photochem. Photobiol. 71, 347-350 (2000).
[CrossRef] [PubMed]

Achilefu, S. A.

R. Rajagopalan, P. Uetrecht, J. E. Bugaj, S. A. Achilefu, and R. B. Dorshow, “Stabilization of the optical tracer agent Indocyanine Green using noncovalent interactions,” Photochem. Photobiol. 71, 347-350 (2000).
[CrossRef] [PubMed]

Aronow, B. A.

N. G. Deane, H. C. Manning, A. C. Foutch, M. K. Washington, B. A. Aronow, D. J. Bornhop, and R. J. Coffey, “Targeted imaging of colonic tumors in Smad3/Smad3 mice discriminates cancer and inflammation,” Mol. Cancer Res. 5, 341-349(2007).
[CrossRef] [PubMed]

Arridge, S. R.

Bangerth, W.

Bechtel, K. L.

Z. Volynskaya, A. S. Haka, K. L. Bechtel, M. Fitzmaurice, R. Shenk, N. Wang, J. Nazemi, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer using diffuse reflectance spectroscopy and intrinsic fluorescence spectroscopy,” J. Biomed. Opt. 13, 024012 (2008).
[CrossRef] [PubMed]

Bornhop, D. J.

N. G. Deane, H. C. Manning, A. C. Foutch, M. K. Washington, B. A. Aronow, D. J. Bornhop, and R. J. Coffey, “Targeted imaging of colonic tumors in Smad3/Smad3 mice discriminates cancer and inflammation,” Mol. Cancer Res. 5, 341-349(2007).
[CrossRef] [PubMed]

Breslin, T. M.

C. F. Zhu, G. M. Palmer, T. M. Breslin, J. Harter, and N. Ramanujam, “Diagnosis of breast cancer using fluorescence and diffuse reflectance spectroscopy: a Monte-Carlo-model-based approach,” J. Biomed. Opt. 13, 034015(2008).
[CrossRef] [PubMed]

T. M. Breslin, F. Xu, G. M. Palmer, C. Zhu, K. W. Gilchrist, and N. Ramanujam, “Autofluorescence and diffuse reflectance properties of malignant and benign breast tissues,” Ann. Surg. Oncol. 11, 65-70 (2004).
[CrossRef]

Briest, S.

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study,” Acad. Radiol. 12, 925-933 (2005).
[CrossRef] [PubMed]

Bugaj, J. E.

R. Rajagopalan, P. Uetrecht, J. E. Bugaj, S. A. Achilefu, and R. B. Dorshow, “Stabilization of the optical tracer agent Indocyanine Green using noncovalent interactions,” Photochem. Photobiol. 71, 347-350 (2000).
[CrossRef] [PubMed]

Chance, B.

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study,” Acad. Radiol. 12, 925-933 (2005).
[CrossRef] [PubMed]

Chen, N.

N. Chen, M. Huang, H. Xia, and D. Piao, “Portable near-infrared diffusive light imager for breast cancer detection,” J. Biomed. Opt. 9, 504-510 (2004).
[CrossRef] [PubMed]

Chen, N. G.

Q. Zhu, S. H. Kurtzma, P. Hegde, S. Tannenbaum, M. Kane, M. Huang, N. G. Chen, B. Jagjivan, and K. Zarfos, “Utilizing optical tomography with ultrasound localization to image heterogeneous hemoglobin distribution in large breast cancers,” Neoplasia 7, 263-270 (2005).
[CrossRef] [PubMed]

Choe, R.

Chou, P. H.

K. S. No and P. H. Chou, “Mini-FDPM and heterodyne mini-FDPM: handheld non-invasive breast cancer detectors based on frequency domain photon migration,” IEEE Trans. Circuits Syst. 52, 2672-2685 (2005).
[CrossRef]

Coffey, R. J.

N. G. Deane, H. C. Manning, A. C. Foutch, M. K. Washington, B. A. Aronow, D. J. Bornhop, and R. J. Coffey, “Targeted imaging of colonic tumors in Smad3/Smad3 mice discriminates cancer and inflammation,” Mol. Cancer Res. 5, 341-349(2007).
[CrossRef] [PubMed]

Conant, E. F.

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study,” Acad. Radiol. 12, 925-933 (2005).
[CrossRef] [PubMed]

Corlu, A.

Czerniecki, B. J.

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study,” Acad. Radiol. 12, 925-933 (2005).
[CrossRef] [PubMed]

Da Cunha, I. W.

R. Hage, P. R. Galhanone, R. A. Zangaro, K. C. Rodrigues, M. T. T. Pacheco, A. A. Martin, M. M. Netto, F. A. Soares, and I. W. Da Cunha, “Using the laser-induced fluorescence spectroscopy in the differentiation between normal and neoplastic human breast tissue,” Lasers Med. Sci. 18, 171-176(2003).
[CrossRef] [PubMed]

Dasari, R. R.

Z. Volynskaya, A. S. Haka, K. L. Bechtel, M. Fitzmaurice, R. Shenk, N. Wang, J. Nazemi, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer using diffuse reflectance spectroscopy and intrinsic fluorescence spectroscopy,” J. Biomed. Opt. 13, 024012 (2008).
[CrossRef] [PubMed]

Davis, S. C.

D. S. Kepshire, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Challenges in sub-surface fluorescence diffuse optical imaging,” Proc. SPIE 6434, 64340V (2007).
[CrossRef]

Deane, N. G.

N. G. Deane, H. C. Manning, A. C. Foutch, M. K. Washington, B. A. Aronow, D. J. Bornhop, and R. J. Coffey, “Targeted imaging of colonic tumors in Smad3/Smad3 mice discriminates cancer and inflammation,” Mol. Cancer Res. 5, 341-349(2007).
[CrossRef] [PubMed]

Dehghani, H.

D. S. Kepshire, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Challenges in sub-surface fluorescence diffuse optical imaging,” Proc. SPIE 6434, 64340V (2007).
[CrossRef]

Dorshow, R. B.

R. Rajagopalan, P. Uetrecht, J. E. Bugaj, S. A. Achilefu, and R. B. Dorshow, “Stabilization of the optical tracer agent Indocyanine Green using noncovalent interactions,” Photochem. Photobiol. 71, 347-350 (2000).
[CrossRef] [PubMed]

Dougherty, D. E.

M. J. Eppstein, D. E. Dougherty, D. J. Hawrysz and E. M. Sevick-Muraca, “Three dimensional Bayesian optical image reconstruction with domain decomposition,” IEEE Trans. Med. Imaging 20, 147-163 (2001).
[CrossRef] [PubMed]

Durduran, T.

Eppstein, M. J.

F. Fedele, J. P. Laible, and M. J. Eppstein, “Coupled complex adjoint sensitivities for frequency-domain fluorescence tomography: theory and vectorized implementation,” J. Comput. Phys. 187, 597-619 (2003).
[CrossRef]

M. J. Eppstein, D. E. Dougherty, D. J. Hawrysz and E. M. Sevick-Muraca, “Three dimensional Bayesian optical image reconstruction with domain decomposition,” IEEE Trans. Med. Imaging 20, 147-163 (2001).
[CrossRef] [PubMed]

Erickson, S. J.

S. Regalado, S. J. Erickson, B. Zhu, J. Ge, and A. Godavarty, “Automated coregistered imaging using a hand-held probe-based optical imager,” Rev. Sci. Instrum. (to be published).
[PubMed]

Fedele, F.

F. Fedele, J. P. Laible, and M. J. Eppstein, “Coupled complex adjoint sensitivities for frequency-domain fluorescence tomography: theory and vectorized implementation,” J. Comput. Phys. 187, 597-619 (2003).
[CrossRef]

Feld, M. S.

Z. Volynskaya, A. S. Haka, K. L. Bechtel, M. Fitzmaurice, R. Shenk, N. Wang, J. Nazemi, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer using diffuse reflectance spectroscopy and intrinsic fluorescence spectroscopy,” J. Biomed. Opt. 13, 024012 (2008).
[CrossRef] [PubMed]

Fitzmaurice, M.

Z. Volynskaya, A. S. Haka, K. L. Bechtel, M. Fitzmaurice, R. Shenk, N. Wang, J. Nazemi, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer using diffuse reflectance spectroscopy and intrinsic fluorescence spectroscopy,” J. Biomed. Opt. 13, 024012 (2008).
[CrossRef] [PubMed]

Foutch, A. C.

N. G. Deane, H. C. Manning, A. C. Foutch, M. K. Washington, B. A. Aronow, D. J. Bornhop, and R. J. Coffey, “Targeted imaging of colonic tumors in Smad3/Smad3 mice discriminates cancer and inflammation,” Mol. Cancer Res. 5, 341-349(2007).
[CrossRef] [PubMed]

Galhanone, P. R.

R. Hage, P. R. Galhanone, R. A. Zangaro, K. C. Rodrigues, M. T. T. Pacheco, A. A. Martin, M. M. Netto, F. A. Soares, and I. W. Da Cunha, “Using the laser-induced fluorescence spectroscopy in the differentiation between normal and neoplastic human breast tissue,” Lasers Med. Sci. 18, 171-176(2003).
[CrossRef] [PubMed]

Ge, J.

J. Ge, B. Zhu, S. Regalado, and A. Godavarty, “Three-dimensional fluorescence-enhanced optical tomography using a hand-held probe based imaging system,” Med. Phys. 35, 3354-3363 (2008).
[CrossRef] [PubMed]

B. Jayachandran, J. Ge, S. Regalado, and A. Godavarty, “Design and development of a hand-held optical probe towards fluorescence diagnostic imaging,” J. Biomed. Opt. 12, 054014 (2007).
[CrossRef] [PubMed]

S. Regalado, S. J. Erickson, B. Zhu, J. Ge, and A. Godavarty, “Automated coregistered imaging using a hand-held probe-based optical imager,” Rev. Sci. Instrum. (to be published).
[PubMed]

Gilchrist, K. W.

T. M. Breslin, F. Xu, G. M. Palmer, C. Zhu, K. W. Gilchrist, and N. Ramanujam, “Autofluorescence and diffuse reflectance properties of malignant and benign breast tissues,” Ann. Surg. Oncol. 11, 65-70 (2004).
[CrossRef]

Godavarty, A.

J. Ge, B. Zhu, S. Regalado, and A. Godavarty, “Three-dimensional fluorescence-enhanced optical tomography using a hand-held probe based imaging system,” Med. Phys. 35, 3354-3363 (2008).
[CrossRef] [PubMed]

B. Jayachandran, J. Ge, S. Regalado, and A. Godavarty, “Design and development of a hand-held optical probe towards fluorescence diagnostic imaging,” J. Biomed. Opt. 12, 054014 (2007).
[CrossRef] [PubMed]

S. Regalado, S. J. Erickson, B. Zhu, J. Ge, and A. Godavarty, “Automated coregistered imaging using a hand-held probe-based optical imager,” Rev. Sci. Instrum. (to be published).
[PubMed]

Hage, R.

R. Hage, P. R. Galhanone, R. A. Zangaro, K. C. Rodrigues, M. T. T. Pacheco, A. A. Martin, M. M. Netto, F. A. Soares, and I. W. Da Cunha, “Using the laser-induced fluorescence spectroscopy in the differentiation between normal and neoplastic human breast tissue,” Lasers Med. Sci. 18, 171-176(2003).
[CrossRef] [PubMed]

Haka, A. S.

Z. Volynskaya, A. S. Haka, K. L. Bechtel, M. Fitzmaurice, R. Shenk, N. Wang, J. Nazemi, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer using diffuse reflectance spectroscopy and intrinsic fluorescence spectroscopy,” J. Biomed. Opt. 13, 024012 (2008).
[CrossRef] [PubMed]

Harter, J.

C. F. Zhu, G. M. Palmer, T. M. Breslin, J. Harter, and N. Ramanujam, “Diagnosis of breast cancer using fluorescence and diffuse reflectance spectroscopy: a Monte-Carlo-model-based approach,” J. Biomed. Opt. 13, 034015(2008).
[CrossRef] [PubMed]

Hawrysz, D. J.

M. J. Eppstein, D. E. Dougherty, D. J. Hawrysz and E. M. Sevick-Muraca, “Three dimensional Bayesian optical image reconstruction with domain decomposition,” IEEE Trans. Med. Imaging 20, 147-163 (2001).
[CrossRef] [PubMed]

Hegde, P.

Q. Zhu, S. H. Kurtzma, P. Hegde, S. Tannenbaum, M. Kane, M. Huang, N. G. Chen, B. Jagjivan, and K. Zarfos, “Utilizing optical tomography with ultrasound localization to image heterogeneous hemoglobin distribution in large breast cancers,” Neoplasia 7, 263-270 (2005).
[CrossRef] [PubMed]

Huang, M.

Q. Zhu, S. H. Kurtzma, P. Hegde, S. Tannenbaum, M. Kane, M. Huang, N. G. Chen, B. Jagjivan, and K. Zarfos, “Utilizing optical tomography with ultrasound localization to image heterogeneous hemoglobin distribution in large breast cancers,” Neoplasia 7, 263-270 (2005).
[CrossRef] [PubMed]

N. Chen, M. Huang, H. Xia, and D. Piao, “Portable near-infrared diffusive light imager for breast cancer detection,” J. Biomed. Opt. 9, 504-510 (2004).
[CrossRef] [PubMed]

Hwang, E.

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study,” Acad. Radiol. 12, 925-933 (2005).
[CrossRef] [PubMed]

Hwang, K.

Jagjivan, B.

Q. Zhu, S. H. Kurtzma, P. Hegde, S. Tannenbaum, M. Kane, M. Huang, N. G. Chen, B. Jagjivan, and K. Zarfos, “Utilizing optical tomography with ultrasound localization to image heterogeneous hemoglobin distribution in large breast cancers,” Neoplasia 7, 263-270 (2005).
[CrossRef] [PubMed]

Jayachandran, B.

B. Jayachandran, J. Ge, S. Regalado, and A. Godavarty, “Design and development of a hand-held optical probe towards fluorescence diagnostic imaging,” J. Biomed. Opt. 12, 054014 (2007).
[CrossRef] [PubMed]

Joshi, A.

Kane, M.

Q. Zhu, S. H. Kurtzma, P. Hegde, S. Tannenbaum, M. Kane, M. Huang, N. G. Chen, B. Jagjivan, and K. Zarfos, “Utilizing optical tomography with ultrasound localization to image heterogeneous hemoglobin distribution in large breast cancers,” Neoplasia 7, 263-270 (2005).
[CrossRef] [PubMed]

Kepshire, D. S.

D. S. Kepshire, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Challenges in sub-surface fluorescence diffuse optical imaging,” Proc. SPIE 6434, 64340V (2007).
[CrossRef]

Kurtzma, S. H.

Q. Zhu, S. H. Kurtzma, P. Hegde, S. Tannenbaum, M. Kane, M. Huang, N. G. Chen, B. Jagjivan, and K. Zarfos, “Utilizing optical tomography with ultrasound localization to image heterogeneous hemoglobin distribution in large breast cancers,” Neoplasia 7, 263-270 (2005).
[CrossRef] [PubMed]

Laible, J. P.

F. Fedele, J. P. Laible, and M. J. Eppstein, “Coupled complex adjoint sensitivities for frequency-domain fluorescence tomography: theory and vectorized implementation,” J. Comput. Phys. 187, 597-619 (2003).
[CrossRef]

Manning, H. C.

N. G. Deane, H. C. Manning, A. C. Foutch, M. K. Washington, B. A. Aronow, D. J. Bornhop, and R. J. Coffey, “Targeted imaging of colonic tumors in Smad3/Smad3 mice discriminates cancer and inflammation,” Mol. Cancer Res. 5, 341-349(2007).
[CrossRef] [PubMed]

Mao, J. J.

Martin, A. A.

R. Hage, P. R. Galhanone, R. A. Zangaro, K. C. Rodrigues, M. T. T. Pacheco, A. A. Martin, M. M. Netto, F. A. Soares, and I. W. Da Cunha, “Using the laser-induced fluorescence spectroscopy in the differentiation between normal and neoplastic human breast tissue,” Lasers Med. Sci. 18, 171-176(2003).
[CrossRef] [PubMed]

Nazemi, J.

Z. Volynskaya, A. S. Haka, K. L. Bechtel, M. Fitzmaurice, R. Shenk, N. Wang, J. Nazemi, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer using diffuse reflectance spectroscopy and intrinsic fluorescence spectroscopy,” J. Biomed. Opt. 13, 024012 (2008).
[CrossRef] [PubMed]

Netto, M. M.

R. Hage, P. R. Galhanone, R. A. Zangaro, K. C. Rodrigues, M. T. T. Pacheco, A. A. Martin, M. M. Netto, F. A. Soares, and I. W. Da Cunha, “Using the laser-induced fluorescence spectroscopy in the differentiation between normal and neoplastic human breast tissue,” Lasers Med. Sci. 18, 171-176(2003).
[CrossRef] [PubMed]

Nioka, S.

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study,” Acad. Radiol. 12, 925-933 (2005).
[CrossRef] [PubMed]

No, K. S.

K. S. No and P. H. Chou, “Mini-FDPM and heterodyne mini-FDPM: handheld non-invasive breast cancer detectors based on frequency domain photon migration,” IEEE Trans. Circuits Syst. 52, 2672-2685 (2005).
[CrossRef]

Orel, S. G.

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study,” Acad. Radiol. 12, 925-933 (2005).
[CrossRef] [PubMed]

Pacheco, M. T. T.

R. Hage, P. R. Galhanone, R. A. Zangaro, K. C. Rodrigues, M. T. T. Pacheco, A. A. Martin, M. M. Netto, F. A. Soares, and I. W. Da Cunha, “Using the laser-induced fluorescence spectroscopy in the differentiation between normal and neoplastic human breast tissue,” Lasers Med. Sci. 18, 171-176(2003).
[CrossRef] [PubMed]

Palmer, G. M.

C. F. Zhu, G. M. Palmer, T. M. Breslin, J. Harter, and N. Ramanujam, “Diagnosis of breast cancer using fluorescence and diffuse reflectance spectroscopy: a Monte-Carlo-model-based approach,” J. Biomed. Opt. 13, 034015(2008).
[CrossRef] [PubMed]

T. M. Breslin, F. Xu, G. M. Palmer, C. Zhu, K. W. Gilchrist, and N. Ramanujam, “Autofluorescence and diffuse reflectance properties of malignant and benign breast tissues,” Ann. Surg. Oncol. 11, 65-70 (2004).
[CrossRef]

Paulsen, K. D.

D. S. Kepshire, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Challenges in sub-surface fluorescence diffuse optical imaging,” Proc. SPIE 6434, 64340V (2007).
[CrossRef]

Piao, D.

N. Chen, M. Huang, H. Xia, and D. Piao, “Portable near-infrared diffusive light imager for breast cancer detection,” J. Biomed. Opt. 9, 504-510 (2004).
[CrossRef] [PubMed]

Pogue, B. W.

D. S. Kepshire, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Challenges in sub-surface fluorescence diffuse optical imaging,” Proc. SPIE 6434, 64340V (2007).
[CrossRef]

Povoski, S. P.

Qiang, B.

Rajagopalan, R.

R. Rajagopalan, P. Uetrecht, J. E. Bugaj, S. A. Achilefu, and R. B. Dorshow, “Stabilization of the optical tracer agent Indocyanine Green using noncovalent interactions,” Photochem. Photobiol. 71, 347-350 (2000).
[CrossRef] [PubMed]

Ramanujam, N.

C. F. Zhu, G. M. Palmer, T. M. Breslin, J. Harter, and N. Ramanujam, “Diagnosis of breast cancer using fluorescence and diffuse reflectance spectroscopy: a Monte-Carlo-model-based approach,” J. Biomed. Opt. 13, 034015(2008).
[CrossRef] [PubMed]

T. M. Breslin, F. Xu, G. M. Palmer, C. Zhu, K. W. Gilchrist, and N. Ramanujam, “Autofluorescence and diffuse reflectance properties of malignant and benign breast tissues,” Ann. Surg. Oncol. 11, 65-70 (2004).
[CrossRef]

Rasmussen, J. C.

Regalado, S.

J. Ge, B. Zhu, S. Regalado, and A. Godavarty, “Three-dimensional fluorescence-enhanced optical tomography using a hand-held probe based imaging system,” Med. Phys. 35, 3354-3363 (2008).
[CrossRef] [PubMed]

B. Jayachandran, J. Ge, S. Regalado, and A. Godavarty, “Design and development of a hand-held optical probe towards fluorescence diagnostic imaging,” J. Biomed. Opt. 12, 054014 (2007).
[CrossRef] [PubMed]

S. Regalado, S. J. Erickson, B. Zhu, J. Ge, and A. Godavarty, “Automated coregistered imaging using a hand-held probe-based optical imager,” Rev. Sci. Instrum. (to be published).
[PubMed]

Rodrigues, K. C.

R. Hage, P. R. Galhanone, R. A. Zangaro, K. C. Rodrigues, M. T. T. Pacheco, A. A. Martin, M. M. Netto, F. A. Soares, and I. W. Da Cunha, “Using the laser-induced fluorescence spectroscopy in the differentiation between normal and neoplastic human breast tissue,” Lasers Med. Sci. 18, 171-176(2003).
[CrossRef] [PubMed]

Rosen, M. A.

Schnall, M. D.

A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, S. R. Arridge, M. D. Schnall, and A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15, 6696-6716(2007).
[CrossRef] [PubMed]

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study,” Acad. Radiol. 12, 925-933 (2005).
[CrossRef] [PubMed]

Schweiger, M.

Sevick-Muraca, E. M.

A. Joshi, W. Bangerth, K. Hwang, J. C. Rasmussen, and E. M. Sevick-Muraca, “Plane-wave fluorescence tomography with adaptive finite elements,” Opt. Lett. 31, 193-195 (2006).
[CrossRef] [PubMed]

M. J. Eppstein, D. E. Dougherty, D. J. Hawrysz and E. M. Sevick-Muraca, “Three dimensional Bayesian optical image reconstruction with domain decomposition,” IEEE Trans. Med. Imaging 20, 147-163 (2001).
[CrossRef] [PubMed]

Shenk, R.

Z. Volynskaya, A. S. Haka, K. L. Bechtel, M. Fitzmaurice, R. Shenk, N. Wang, J. Nazemi, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer using diffuse reflectance spectroscopy and intrinsic fluorescence spectroscopy,” J. Biomed. Opt. 13, 024012 (2008).
[CrossRef] [PubMed]

Soares, F. A.

R. Hage, P. R. Galhanone, R. A. Zangaro, K. C. Rodrigues, M. T. T. Pacheco, A. A. Martin, M. M. Netto, F. A. Soares, and I. W. Da Cunha, “Using the laser-induced fluorescence spectroscopy in the differentiation between normal and neoplastic human breast tissue,” Lasers Med. Sci. 18, 171-176(2003).
[CrossRef] [PubMed]

Tannenbaum, S.

Q. Zhu, S. H. Kurtzma, P. Hegde, S. Tannenbaum, M. Kane, M. Huang, N. G. Chen, B. Jagjivan, and K. Zarfos, “Utilizing optical tomography with ultrasound localization to image heterogeneous hemoglobin distribution in large breast cancers,” Neoplasia 7, 263-270 (2005).
[CrossRef] [PubMed]

Tromberg, B. J.

B. J. Tromberg, “Optical scanning and breast cancer,” Acad. Radiol. 12, 923-924 (2005).
[CrossRef] [PubMed]

Uetrecht, P.

R. Rajagopalan, P. Uetrecht, J. E. Bugaj, S. A. Achilefu, and R. B. Dorshow, “Stabilization of the optical tracer agent Indocyanine Green using noncovalent interactions,” Photochem. Photobiol. 71, 347-350 (2000).
[CrossRef] [PubMed]

Volynskaya, Z.

Z. Volynskaya, A. S. Haka, K. L. Bechtel, M. Fitzmaurice, R. Shenk, N. Wang, J. Nazemi, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer using diffuse reflectance spectroscopy and intrinsic fluorescence spectroscopy,” J. Biomed. Opt. 13, 024012 (2008).
[CrossRef] [PubMed]

Wang, N.

Z. Volynskaya, A. S. Haka, K. L. Bechtel, M. Fitzmaurice, R. Shenk, N. Wang, J. Nazemi, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer using diffuse reflectance spectroscopy and intrinsic fluorescence spectroscopy,” J. Biomed. Opt. 13, 024012 (2008).
[CrossRef] [PubMed]

Washington, M. K.

N. G. Deane, H. C. Manning, A. C. Foutch, M. K. Washington, B. A. Aronow, D. J. Bornhop, and R. J. Coffey, “Targeted imaging of colonic tumors in Smad3/Smad3 mice discriminates cancer and inflammation,” Mol. Cancer Res. 5, 341-349(2007).
[CrossRef] [PubMed]

Xia, H.

N. Chen, M. Huang, H. Xia, and D. Piao, “Portable near-infrared diffusive light imager for breast cancer detection,” J. Biomed. Opt. 9, 504-510 (2004).
[CrossRef] [PubMed]

Xu, F.

T. M. Breslin, F. Xu, G. M. Palmer, C. Zhu, K. W. Gilchrist, and N. Ramanujam, “Autofluorescence and diffuse reflectance properties of malignant and benign breast tissues,” Ann. Surg. Oncol. 11, 65-70 (2004).
[CrossRef]

Xu, J. R. X.

Yodh, A. G.

Zangaro, R. A.

R. Hage, P. R. Galhanone, R. A. Zangaro, K. C. Rodrigues, M. T. T. Pacheco, A. A. Martin, M. M. Netto, F. A. Soares, and I. W. Da Cunha, “Using the laser-induced fluorescence spectroscopy in the differentiation between normal and neoplastic human breast tissue,” Lasers Med. Sci. 18, 171-176(2003).
[CrossRef] [PubMed]

Zarfos, K.

Q. Zhu, S. H. Kurtzma, P. Hegde, S. Tannenbaum, M. Kane, M. Huang, N. G. Chen, B. Jagjivan, and K. Zarfos, “Utilizing optical tomography with ultrasound localization to image heterogeneous hemoglobin distribution in large breast cancers,” Neoplasia 7, 263-270 (2005).
[CrossRef] [PubMed]

Zhang, J.

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study,” Acad. Radiol. 12, 925-933 (2005).
[CrossRef] [PubMed]

Zhu, B.

J. Ge, B. Zhu, S. Regalado, and A. Godavarty, “Three-dimensional fluorescence-enhanced optical tomography using a hand-held probe based imaging system,” Med. Phys. 35, 3354-3363 (2008).
[CrossRef] [PubMed]

S. Regalado, S. J. Erickson, B. Zhu, J. Ge, and A. Godavarty, “Automated coregistered imaging using a hand-held probe-based optical imager,” Rev. Sci. Instrum. (to be published).
[PubMed]

Zhu, C.

T. M. Breslin, F. Xu, G. M. Palmer, C. Zhu, K. W. Gilchrist, and N. Ramanujam, “Autofluorescence and diffuse reflectance properties of malignant and benign breast tissues,” Ann. Surg. Oncol. 11, 65-70 (2004).
[CrossRef]

Zhu, C. F.

C. F. Zhu, G. M. Palmer, T. M. Breslin, J. Harter, and N. Ramanujam, “Diagnosis of breast cancer using fluorescence and diffuse reflectance spectroscopy: a Monte-Carlo-model-based approach,” J. Biomed. Opt. 13, 034015(2008).
[CrossRef] [PubMed]

Zhu, Q.

Q. Zhu, S. H. Kurtzma, P. Hegde, S. Tannenbaum, M. Kane, M. Huang, N. G. Chen, B. Jagjivan, and K. Zarfos, “Utilizing optical tomography with ultrasound localization to image heterogeneous hemoglobin distribution in large breast cancers,” Neoplasia 7, 263-270 (2005).
[CrossRef] [PubMed]

Acad. Radiol. (2)

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study,” Acad. Radiol. 12, 925-933 (2005).
[CrossRef] [PubMed]

B. J. Tromberg, “Optical scanning and breast cancer,” Acad. Radiol. 12, 923-924 (2005).
[CrossRef] [PubMed]

Ann. Surg. Oncol. (1)

T. M. Breslin, F. Xu, G. M. Palmer, C. Zhu, K. W. Gilchrist, and N. Ramanujam, “Autofluorescence and diffuse reflectance properties of malignant and benign breast tissues,” Ann. Surg. Oncol. 11, 65-70 (2004).
[CrossRef]

Appl. Opt. (1)

IEEE Trans. Circuits Syst. (1)

K. S. No and P. H. Chou, “Mini-FDPM and heterodyne mini-FDPM: handheld non-invasive breast cancer detectors based on frequency domain photon migration,” IEEE Trans. Circuits Syst. 52, 2672-2685 (2005).
[CrossRef]

IEEE Trans. Med. Imaging (1)

M. J. Eppstein, D. E. Dougherty, D. J. Hawrysz and E. M. Sevick-Muraca, “Three dimensional Bayesian optical image reconstruction with domain decomposition,” IEEE Trans. Med. Imaging 20, 147-163 (2001).
[CrossRef] [PubMed]

J. Biomed. Opt. (4)

N. Chen, M. Huang, H. Xia, and D. Piao, “Portable near-infrared diffusive light imager for breast cancer detection,” J. Biomed. Opt. 9, 504-510 (2004).
[CrossRef] [PubMed]

B. Jayachandran, J. Ge, S. Regalado, and A. Godavarty, “Design and development of a hand-held optical probe towards fluorescence diagnostic imaging,” J. Biomed. Opt. 12, 054014 (2007).
[CrossRef] [PubMed]

Z. Volynskaya, A. S. Haka, K. L. Bechtel, M. Fitzmaurice, R. Shenk, N. Wang, J. Nazemi, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer using diffuse reflectance spectroscopy and intrinsic fluorescence spectroscopy,” J. Biomed. Opt. 13, 024012 (2008).
[CrossRef] [PubMed]

C. F. Zhu, G. M. Palmer, T. M. Breslin, J. Harter, and N. Ramanujam, “Diagnosis of breast cancer using fluorescence and diffuse reflectance spectroscopy: a Monte-Carlo-model-based approach,” J. Biomed. Opt. 13, 034015(2008).
[CrossRef] [PubMed]

J. Comput. Phys. (1)

F. Fedele, J. P. Laible, and M. J. Eppstein, “Coupled complex adjoint sensitivities for frequency-domain fluorescence tomography: theory and vectorized implementation,” J. Comput. Phys. 187, 597-619 (2003).
[CrossRef]

Lasers Med. Sci. (1)

R. Hage, P. R. Galhanone, R. A. Zangaro, K. C. Rodrigues, M. T. T. Pacheco, A. A. Martin, M. M. Netto, F. A. Soares, and I. W. Da Cunha, “Using the laser-induced fluorescence spectroscopy in the differentiation between normal and neoplastic human breast tissue,” Lasers Med. Sci. 18, 171-176(2003).
[CrossRef] [PubMed]

Med. Phys. (1)

J. Ge, B. Zhu, S. Regalado, and A. Godavarty, “Three-dimensional fluorescence-enhanced optical tomography using a hand-held probe based imaging system,” Med. Phys. 35, 3354-3363 (2008).
[CrossRef] [PubMed]

Mol. Cancer Res. (1)

N. G. Deane, H. C. Manning, A. C. Foutch, M. K. Washington, B. A. Aronow, D. J. Bornhop, and R. J. Coffey, “Targeted imaging of colonic tumors in Smad3/Smad3 mice discriminates cancer and inflammation,” Mol. Cancer Res. 5, 341-349(2007).
[CrossRef] [PubMed]

Neoplasia (1)

Q. Zhu, S. H. Kurtzma, P. Hegde, S. Tannenbaum, M. Kane, M. Huang, N. G. Chen, B. Jagjivan, and K. Zarfos, “Utilizing optical tomography with ultrasound localization to image heterogeneous hemoglobin distribution in large breast cancers,” Neoplasia 7, 263-270 (2005).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Photochem. Photobiol. (1)

R. Rajagopalan, P. Uetrecht, J. E. Bugaj, S. A. Achilefu, and R. B. Dorshow, “Stabilization of the optical tracer agent Indocyanine Green using noncovalent interactions,” Photochem. Photobiol. 71, 347-350 (2000).
[CrossRef] [PubMed]

Proc. SPIE (1)

D. S. Kepshire, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Challenges in sub-surface fluorescence diffuse optical imaging,” Proc. SPIE 6434, 64340V (2007).
[CrossRef]

Rev. Sci. Instrum. (1)

S. Regalado, S. J. Erickson, B. Zhu, J. Ge, and A. Godavarty, “Automated coregistered imaging using a hand-held probe-based optical imager,” Rev. Sci. Instrum. (to be published).
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Laboratory setup for the hand held-probe-based optical imager, with illustration of the fre quency-domain based imaging, (b) Handheld probe, with the illumination–collection fiber layout.

Fig. 2
Fig. 2

Diagnostic sensitivity and specificity in the context of the current optical tomography studies. T B , target to background contrast ratio; s, threshold value [shown in Eq. (1)] for differentiating positive and negative tomographic results.

Fig. 3
Fig. 3

Recovered T B contrast and recovered distance off for all experimental cases (1–28) in phantom study I with a tumor-mimicking target. Experimental cases 1 and 3 were not included.

Fig. 4
Fig. 4

Reconstruction results of phantom study using 2D contour slice plot at different phantom depths (z axis) from 0.4 to 1.2 cm ; targets located at 1.5 cm deep with contrast ratio 200 1 (case 17) and 1 cm deep with contrast ratio 25 1 (case 25).

Fig. 5
Fig. 5

Recovered T B contrast ratio with respect to true target depth in study I-B of phantom studies under imperfect-uptake ratios, using a 0.45 cm 3 target in all cases.

Fig. 6
Fig. 6

Recovered T B target contrast ratio (logarithmic scale) for all experimental cases in both study I and study II related to fluorescence tomography studies on tissue phantoms. Among them, cases 1 and 3 were considered false negative, but their recovered contrast ratios are not shown in the figure, as no reconstructions were performed (because of the lack of nonnoisy fluorescence measurements).

Tables (3)

Tables Icon

Table 1 Optical Properties of Fluorescent Target and Background for All Phantom Studies a

Tables Icon

Table 2 Experimental Details in Phantom Study I with T B > 1

Tables Icon

Table 3 Phantom and Target Detail in Phantom Study II With T B > 1 or With No Target a

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Average ( μ axf nodes target ) Average ( μ axf nodes background ) > Threshold .
Sensitivity = TP TP + FN ,
Specificity = TN TN + FP ,

Metrics