Abstract

This paper discusses the different analysis methods used in holographic particle image velocimetry to measure particle displacement and compares their relative performance. A digital holographic microscope is described and is used to record the light scattered by particles deposited on cover slides that are displaced between exposures. In this way, particle position and displacement are controlled and a numerical data set is generated. Data extraction using nearest neighbor analysis and correlation of either the reconstructed complex amplitude or intensity fields is then investigated.

© 2009 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Coupland and N. A. Halliwell, “Particle image velocimetry: three dimensional fluid velocity measurements using holographic recording and optical correlation,” Appl. Opt. 31, 1005-1007 (1992).
    [CrossRef]
  2. D. H. Barnhart, R. J. Adrian, and G. C. Papen, “Phase-conjugate holographic system for particle-image velocimetry,” Appl. Opt. 33, 7159-7170 (1994).
    [CrossRef]
  3. K. D. Hinsch, “Holographic particle image velocimetry,” Meas. Sci. Technol. 13, R61-R72 (2002).
    [CrossRef]
  4. V. S. S. Chan, D. H. Barnhart, N. A. Halliwell, and J. M. Coupland, “A unified system for holographic measurement in fluid and solid mechanics: Use of the system for 3D velocity measurement in fluids through a thick curved window,” Proc. SPIE 3783, 14-24 (1999).
  5. D. H. Barnhart, J. M. Coupland, and N. A. Halliwell, “Object conjugate reconstruction (OCR): a step forward in holographic metrology,” Proc. R. Soc. London Ser. A 458, 2083-2097 (2002).
  6. H. Meng and F. Hussain, “In-line recording and off-axis viewing (IROV) for holographic particle image velocimetry,” Appl. Opt. 34, 1827-1840 (1995).
    [CrossRef]
  7. J. M. Coupland and N. A. Halliwell, “Holographic displacement measurements in fluid and solid mechanics: immunity to aberrations by optical correlation processing,” Proc. R. Soc. London Ser. A 453, 1053-1066 (1997).
  8. J. M. Coupland, “Holographic particle image velocimetry: signal recovery from under-sampled data,” Meas. Sci. Technol. 15, 711-717 (2004).
    [CrossRef]
  9. J. M. Coupland and J. Lobera, “Digital reconstruction and tomographic methods in particle image velocimetry,” in Proceedings of the International Workshop on Digital Holographic Reconstruction and Optical Tomography for Engineering Applications (Loughborough University, 2007), pp. 185-191.
  10. J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt. 45, 3893-3901 (2006).
    [CrossRef]
  11. N. Wu., N. A. Halliwell, and J. M. Coupland, “Three-dimensional shift-invariant pattern recognition in digital holographic microscopy,” Proc. SPIE 6191, 61910S (2006).
  12. J. M. Coupland and J. Lobera, “Holography, tomography and 3D microscopy as linear filtering operations,” Meas. Sci. Technol. 19, 074012 (2008).
    [CrossRef]
  13. J. M. Coupland and N. A. Halliwell, “A k-space analysis of holographic particle image velocimetry,” Asian J. Phys. 15, 211-222 (2006).
  14. T. Ooms, W. Koek, J. Braat, and J. Westerweel, “Optimizing Fourier filtering for digital holographic particle image velocimetry,” Meas. Sci. Technol. 17, 304-312 (2006).
    [CrossRef]
  15. M. Malek, D. Allano, S. Coetmellec, and D. Lebrun, “Digital in-line holography: influence of the shadow density on particle field extraction,” Opt. Express 12, 2270-2279 (2004).
    [CrossRef]
  16. E. A. Cowen and S. G. Monismith, “A hybrid digital particle tracking technique,” Exp. Fluids 22, 199-211 (1997).
    [CrossRef]
  17. Y. Pu and H. Meng, “An advanced off-axis holographic particle image velocimetry (HPIV) system,” Exp. Fluids 29, 184-197 (2000).
    [CrossRef]
  18. F. Pereira, H. Stüer, E. C. Graff, and M. Gharib, “Two-frame 3D particle tracking,” Meas. Sci. Technol. 17, 1680-1692(2006).
    [CrossRef]

2008

J. M. Coupland and J. Lobera, “Holography, tomography and 3D microscopy as linear filtering operations,” Meas. Sci. Technol. 19, 074012 (2008).
[CrossRef]

2006

J. M. Coupland and N. A. Halliwell, “A k-space analysis of holographic particle image velocimetry,” Asian J. Phys. 15, 211-222 (2006).

T. Ooms, W. Koek, J. Braat, and J. Westerweel, “Optimizing Fourier filtering for digital holographic particle image velocimetry,” Meas. Sci. Technol. 17, 304-312 (2006).
[CrossRef]

N. Wu., N. A. Halliwell, and J. M. Coupland, “Three-dimensional shift-invariant pattern recognition in digital holographic microscopy,” Proc. SPIE 6191, 61910S (2006).

F. Pereira, H. Stüer, E. C. Graff, and M. Gharib, “Two-frame 3D particle tracking,” Meas. Sci. Technol. 17, 1680-1692(2006).
[CrossRef]

J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt. 45, 3893-3901 (2006).
[CrossRef]

2004

J. M. Coupland, “Holographic particle image velocimetry: signal recovery from under-sampled data,” Meas. Sci. Technol. 15, 711-717 (2004).
[CrossRef]

M. Malek, D. Allano, S. Coetmellec, and D. Lebrun, “Digital in-line holography: influence of the shadow density on particle field extraction,” Opt. Express 12, 2270-2279 (2004).
[CrossRef]

2002

K. D. Hinsch, “Holographic particle image velocimetry,” Meas. Sci. Technol. 13, R61-R72 (2002).
[CrossRef]

D. H. Barnhart, J. M. Coupland, and N. A. Halliwell, “Object conjugate reconstruction (OCR): a step forward in holographic metrology,” Proc. R. Soc. London Ser. A 458, 2083-2097 (2002).

2000

Y. Pu and H. Meng, “An advanced off-axis holographic particle image velocimetry (HPIV) system,” Exp. Fluids 29, 184-197 (2000).
[CrossRef]

1999

V. S. S. Chan, D. H. Barnhart, N. A. Halliwell, and J. M. Coupland, “A unified system for holographic measurement in fluid and solid mechanics: Use of the system for 3D velocity measurement in fluids through a thick curved window,” Proc. SPIE 3783, 14-24 (1999).

1997

J. M. Coupland and N. A. Halliwell, “Holographic displacement measurements in fluid and solid mechanics: immunity to aberrations by optical correlation processing,” Proc. R. Soc. London Ser. A 453, 1053-1066 (1997).

E. A. Cowen and S. G. Monismith, “A hybrid digital particle tracking technique,” Exp. Fluids 22, 199-211 (1997).
[CrossRef]

1995

1994

1992

Adrian, R. J.

Allano, D.

Barnhart, D. H.

D. H. Barnhart, J. M. Coupland, and N. A. Halliwell, “Object conjugate reconstruction (OCR): a step forward in holographic metrology,” Proc. R. Soc. London Ser. A 458, 2083-2097 (2002).

V. S. S. Chan, D. H. Barnhart, N. A. Halliwell, and J. M. Coupland, “A unified system for holographic measurement in fluid and solid mechanics: Use of the system for 3D velocity measurement in fluids through a thick curved window,” Proc. SPIE 3783, 14-24 (1999).

D. H. Barnhart, R. J. Adrian, and G. C. Papen, “Phase-conjugate holographic system for particle-image velocimetry,” Appl. Opt. 33, 7159-7170 (1994).
[CrossRef]

Braat, J.

T. Ooms, W. Koek, J. Braat, and J. Westerweel, “Optimizing Fourier filtering for digital holographic particle image velocimetry,” Meas. Sci. Technol. 17, 304-312 (2006).
[CrossRef]

Chan, V. S. S.

V. S. S. Chan, D. H. Barnhart, N. A. Halliwell, and J. M. Coupland, “A unified system for holographic measurement in fluid and solid mechanics: Use of the system for 3D velocity measurement in fluids through a thick curved window,” Proc. SPIE 3783, 14-24 (1999).

Coetmellec, S.

Coupland, J. M.

J. M. Coupland and J. Lobera, “Holography, tomography and 3D microscopy as linear filtering operations,” Meas. Sci. Technol. 19, 074012 (2008).
[CrossRef]

N. Wu., N. A. Halliwell, and J. M. Coupland, “Three-dimensional shift-invariant pattern recognition in digital holographic microscopy,” Proc. SPIE 6191, 61910S (2006).

J. M. Coupland and N. A. Halliwell, “A k-space analysis of holographic particle image velocimetry,” Asian J. Phys. 15, 211-222 (2006).

J. M. Coupland, “Holographic particle image velocimetry: signal recovery from under-sampled data,” Meas. Sci. Technol. 15, 711-717 (2004).
[CrossRef]

D. H. Barnhart, J. M. Coupland, and N. A. Halliwell, “Object conjugate reconstruction (OCR): a step forward in holographic metrology,” Proc. R. Soc. London Ser. A 458, 2083-2097 (2002).

V. S. S. Chan, D. H. Barnhart, N. A. Halliwell, and J. M. Coupland, “A unified system for holographic measurement in fluid and solid mechanics: Use of the system for 3D velocity measurement in fluids through a thick curved window,” Proc. SPIE 3783, 14-24 (1999).

J. M. Coupland and N. A. Halliwell, “Holographic displacement measurements in fluid and solid mechanics: immunity to aberrations by optical correlation processing,” Proc. R. Soc. London Ser. A 453, 1053-1066 (1997).

J. M. Coupland and N. A. Halliwell, “Particle image velocimetry: three dimensional fluid velocity measurements using holographic recording and optical correlation,” Appl. Opt. 31, 1005-1007 (1992).
[CrossRef]

J. M. Coupland and J. Lobera, “Digital reconstruction and tomographic methods in particle image velocimetry,” in Proceedings of the International Workshop on Digital Holographic Reconstruction and Optical Tomography for Engineering Applications (Loughborough University, 2007), pp. 185-191.

Cowen, E. A.

E. A. Cowen and S. G. Monismith, “A hybrid digital particle tracking technique,” Exp. Fluids 22, 199-211 (1997).
[CrossRef]

Gharib, M.

F. Pereira, H. Stüer, E. C. Graff, and M. Gharib, “Two-frame 3D particle tracking,” Meas. Sci. Technol. 17, 1680-1692(2006).
[CrossRef]

Graff, E. C.

F. Pereira, H. Stüer, E. C. Graff, and M. Gharib, “Two-frame 3D particle tracking,” Meas. Sci. Technol. 17, 1680-1692(2006).
[CrossRef]

Halliwell, N. A.

J. M. Coupland and N. A. Halliwell, “A k-space analysis of holographic particle image velocimetry,” Asian J. Phys. 15, 211-222 (2006).

N. Wu., N. A. Halliwell, and J. M. Coupland, “Three-dimensional shift-invariant pattern recognition in digital holographic microscopy,” Proc. SPIE 6191, 61910S (2006).

D. H. Barnhart, J. M. Coupland, and N. A. Halliwell, “Object conjugate reconstruction (OCR): a step forward in holographic metrology,” Proc. R. Soc. London Ser. A 458, 2083-2097 (2002).

V. S. S. Chan, D. H. Barnhart, N. A. Halliwell, and J. M. Coupland, “A unified system for holographic measurement in fluid and solid mechanics: Use of the system for 3D velocity measurement in fluids through a thick curved window,” Proc. SPIE 3783, 14-24 (1999).

J. M. Coupland and N. A. Halliwell, “Holographic displacement measurements in fluid and solid mechanics: immunity to aberrations by optical correlation processing,” Proc. R. Soc. London Ser. A 453, 1053-1066 (1997).

J. M. Coupland and N. A. Halliwell, “Particle image velocimetry: three dimensional fluid velocity measurements using holographic recording and optical correlation,” Appl. Opt. 31, 1005-1007 (1992).
[CrossRef]

Hinsch, K. D.

K. D. Hinsch, “Holographic particle image velocimetry,” Meas. Sci. Technol. 13, R61-R72 (2002).
[CrossRef]

Hussain, F.

Katz, J.

Koek, W.

T. Ooms, W. Koek, J. Braat, and J. Westerweel, “Optimizing Fourier filtering for digital holographic particle image velocimetry,” Meas. Sci. Technol. 17, 304-312 (2006).
[CrossRef]

Lebrun, D.

Lobera, J.

J. M. Coupland and J. Lobera, “Holography, tomography and 3D microscopy as linear filtering operations,” Meas. Sci. Technol. 19, 074012 (2008).
[CrossRef]

J. M. Coupland and J. Lobera, “Digital reconstruction and tomographic methods in particle image velocimetry,” in Proceedings of the International Workshop on Digital Holographic Reconstruction and Optical Tomography for Engineering Applications (Loughborough University, 2007), pp. 185-191.

Malek, M.

Malkiel, E.

Meng, H.

Y. Pu and H. Meng, “An advanced off-axis holographic particle image velocimetry (HPIV) system,” Exp. Fluids 29, 184-197 (2000).
[CrossRef]

H. Meng and F. Hussain, “In-line recording and off-axis viewing (IROV) for holographic particle image velocimetry,” Appl. Opt. 34, 1827-1840 (1995).
[CrossRef]

Monismith, S. G.

E. A. Cowen and S. G. Monismith, “A hybrid digital particle tracking technique,” Exp. Fluids 22, 199-211 (1997).
[CrossRef]

Ooms, T.

T. Ooms, W. Koek, J. Braat, and J. Westerweel, “Optimizing Fourier filtering for digital holographic particle image velocimetry,” Meas. Sci. Technol. 17, 304-312 (2006).
[CrossRef]

Papen, G. C.

Pereira, F.

F. Pereira, H. Stüer, E. C. Graff, and M. Gharib, “Two-frame 3D particle tracking,” Meas. Sci. Technol. 17, 1680-1692(2006).
[CrossRef]

Pu, Y.

Y. Pu and H. Meng, “An advanced off-axis holographic particle image velocimetry (HPIV) system,” Exp. Fluids 29, 184-197 (2000).
[CrossRef]

Sheng, J.

Westerweel, J.

T. Ooms, W. Koek, J. Braat, and J. Westerweel, “Optimizing Fourier filtering for digital holographic particle image velocimetry,” Meas. Sci. Technol. 17, 304-312 (2006).
[CrossRef]

Wu, N.

N. Wu., N. A. Halliwell, and J. M. Coupland, “Three-dimensional shift-invariant pattern recognition in digital holographic microscopy,” Proc. SPIE 6191, 61910S (2006).

Appl. Opt.

Asian J. Phys.

J. M. Coupland and N. A. Halliwell, “A k-space analysis of holographic particle image velocimetry,” Asian J. Phys. 15, 211-222 (2006).

Exp. Fluids

E. A. Cowen and S. G. Monismith, “A hybrid digital particle tracking technique,” Exp. Fluids 22, 199-211 (1997).
[CrossRef]

Y. Pu and H. Meng, “An advanced off-axis holographic particle image velocimetry (HPIV) system,” Exp. Fluids 29, 184-197 (2000).
[CrossRef]

Meas. Sci. Technol.

F. Pereira, H. Stüer, E. C. Graff, and M. Gharib, “Two-frame 3D particle tracking,” Meas. Sci. Technol. 17, 1680-1692(2006).
[CrossRef]

T. Ooms, W. Koek, J. Braat, and J. Westerweel, “Optimizing Fourier filtering for digital holographic particle image velocimetry,” Meas. Sci. Technol. 17, 304-312 (2006).
[CrossRef]

K. D. Hinsch, “Holographic particle image velocimetry,” Meas. Sci. Technol. 13, R61-R72 (2002).
[CrossRef]

J. M. Coupland, “Holographic particle image velocimetry: signal recovery from under-sampled data,” Meas. Sci. Technol. 15, 711-717 (2004).
[CrossRef]

J. M. Coupland and J. Lobera, “Holography, tomography and 3D microscopy as linear filtering operations,” Meas. Sci. Technol. 19, 074012 (2008).
[CrossRef]

Opt. Express

Proc. R. Soc. London Ser. A

D. H. Barnhart, J. M. Coupland, and N. A. Halliwell, “Object conjugate reconstruction (OCR): a step forward in holographic metrology,” Proc. R. Soc. London Ser. A 458, 2083-2097 (2002).

J. M. Coupland and N. A. Halliwell, “Holographic displacement measurements in fluid and solid mechanics: immunity to aberrations by optical correlation processing,” Proc. R. Soc. London Ser. A 453, 1053-1066 (1997).

Proc. SPIE

V. S. S. Chan, D. H. Barnhart, N. A. Halliwell, and J. M. Coupland, “A unified system for holographic measurement in fluid and solid mechanics: Use of the system for 3D velocity measurement in fluids through a thick curved window,” Proc. SPIE 3783, 14-24 (1999).

N. Wu., N. A. Halliwell, and J. M. Coupland, “Three-dimensional shift-invariant pattern recognition in digital holographic microscopy,” Proc. SPIE 6191, 61910S (2006).

Other

J. M. Coupland and J. Lobera, “Digital reconstruction and tomographic methods in particle image velocimetry,” in Proceedings of the International Workshop on Digital Holographic Reconstruction and Optical Tomography for Engineering Applications (Loughborough University, 2007), pp. 185-191.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics