Abstract

The performance of high voltage gas circuit breakers depends on the temperature distribution of hot gas or plasma from the arc zone mixed with cold gas that is present, for example, in the exhausts and mixing volume. Understanding the details of the mixing process is imperative to estimate the temperature distribution within the entire breaker volume. Design studies rely on computational fluid dynamics (CFD) simulations to search for the best way to achieve satisfactory mixing. One key uncertainty in the CFD simulations is the role of turbulence in this process and how to properly account for it. To gain knowledge of the mixing process between hot and cold gases, we have constructed a simplified breaker geometry that is flexible and accessible to diagnostics. Apart from standard measurements of current and arc voltage, we measure pressure in the arc zone and the mixing volume. Further, the mixing volume is specially designed to be transparent, allowing us to make shadowgraphy measurements of the turbulent mixing during and after the arcing phase. We report on experiments performed in air at atmospheric pressure.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Jakob, E. Schade, and R. Schaumann, “Self-blasting, a new switching principle for economical SF6 circuit breakers,” Proceedings of the IEE Conference CIRED (Institution of Electrical Engineers, 1977), pp. 63-66.
  2. C. M. Franck and M. Seeger, “Application of high current and current zero simulations of high-voltage circuit breakers,” Contrib. Plasma Physics 46, 787-797 (2006).
    [CrossRef]
  3. E. Schade and K. Ragaller, “Dielectric recovery of an axially blown SF6-arc after current zero: Part I--Experimental investigations,” IEEE Trans. Plasma Science PS-10, 141-153(1982).
    [CrossRef]
  4. K. Ragaller, W. Egli, and K. P. Brand, “Dielectric recovery of an axially blown SF6-arc after current zero: Part II--Theoretical investigations,” IEEE Trans. Plasma Science PS-10, 154-162(1982).
    [CrossRef]
  5. K. P. Brand, W. Egli, L. Niemeyer, K. Ragaller, and E. Schade, “Dielectric recovery of an axially blown SF6-arc after current zero: Part III--Comparison of experiment and theory,” IEEE Trans. Plasma Science PS-10, 162-172 (1982).
    [CrossRef]
  6. H. M. Ryan, High Voltage Engineering and Testing, 2nd ed. (Institute of Engineering and Technology, 2001).
    [CrossRef]
  7. H. Nordborg and A. A. Iordanidis, “Self-consistent radiation based modelling of electric arcs: I. Efficient radiation approximations,” J. Phys. D: Appl. Phys. 41, 135205 (2008).
    [CrossRef]
  8. A. A. Iordanidis and C. M. Franck, “Self-consistent radiation-based simulation of electric arcs: II. Application to gas circuit breakers,” J. Phys. D: Appl. Phys. 41, 135206 (2008).
    [CrossRef]
  9. N. P. Basse, M. M. Abrahamsson, M. Seeger, and T. Votteler, “Quantitative analysis of gas circuit breaker physics through direct comparison of 3-D simulations to experiment,” IEEE Trans. Plasma Sci. 36, 2566-2571 (2008).
    [CrossRef]
  10. G. S. Settles, Schlieren and Shadowgraph Techniques, 1st ed. (Springer-Verlag, 2006).
  11. T. Shinkai, M. Ooi, T. Uchii, H. Kawano, T. Nakamoto, and H. Ikeda, “Gas density and temperature in thermal volume for self-blast interrupting chambers,” in Proceedings of the IEEE/PES T&D Asia Pacific Conference (IEEE, 2002), pp. 419-423.
  12. R. A. Puffer, “Experimentelle Untersuchung der Heissgasströmung in einem SF6-Selbstblasschaltermodell mittels Particle Image Velocimetry (PIV) zur Verifikation von Simulationsmodellen,” Ph.D. thesis (RWTH Aachen, Germany, 2001).
  13. U. Kogelschatz and W. R. Schneider, “Quantitative schlieren techniques applied to high current arc investigations,” Appl. Opt. 11, 1822-1832 (1972).
    [CrossRef] [PubMed]
  14. B. Ineichen, U. Kogelschatz, and R. Dändliker, “Schlieren diagnostics and interferometry of an arc discharge using pulsed holography,” Appl. Opt. 12, 2554-2556 (1973).
    [CrossRef] [PubMed]
  15. U. Kogelschatz, “Application of a simple differential interferometer to high current arc discharges,” Appl. Opt. 13, 1749-1752 (1974).
    [CrossRef] [PubMed]
  16. D. W. Branston and J. Mentel, “Beugungstheoretische Behandlung eines Differentialinterferometers für ausgedehnte Phasenobjekte,” Appl. Phys. 11, 241-246 (1976).
    [CrossRef]
  17. H. Schardin, “Das Toeplersche Schlierenverfahren,” VDI-Forschungsheft 367 (VDI Verlag, 1934).
  18. H. Hannes, “Über die Eigenschaften des Schattenverfahrens,” Optik (Jena) 13, 34-48 (1956).
  19. Phantom v7.3 from Vision Research, Inc., Commercial model name used for technical communication only.
  20. J. S. Bendat and A. G. Piersol, Random Data, 3rd ed.(Wiley, 2000).
  21. P. T. Tokumaru and P. E. Dimotakis, “Image correlation velocimetry,” Exp. Fluids 19, 1-15 (1995).
    [CrossRef]
  22. K. M. Smith and J. C. Dutton, “A procedure for turbulent structure convection velocity measurements using time-correlated images,” Exp. Fluids 27, 244-250 (1999).
    [CrossRef]
  23. M. D. Alaimo, D. Magatti, F. Ferri, and M. A. C. Potenza, “Heterodyne speckle velocimetry,” Appl. Phys. Lett. 88, 191101 (2006).
    [CrossRef]
  24. E. Arnaud, E. Mémin, R. Sosa, and G. Artana, “A fluid motion estimator for schlieren image velocimetry,” Lecture Notes Comput. Sci. 3954, 198-210 (2006).
    [CrossRef]
  25. R. Sosa, E. Arnaud, E. Mémin, and G. Artana, “Schlieren image velocimetry applied to EHD flows,” in Proceedings of the International Symposium on Electrohydrodynamics (2006), pp. 1-4.
  26. D. R. Jonassen, G. S. Settles, and M. D. Tronosky, “Schlieren 'PIV' for turbulent flows,” Opt. Lasers Eng. 44, 190-207(2006).
    [CrossRef]
  27. J. A. Volpe and G. S. Settles, “Laser-induced gas breakdown as a light source for schlieren and shadowgraph particle image velocimetry,” Opt. Eng. Lett. 45, 080509 (2006).
  28. T. Rösgen, “Quantitative flow visualization,” ETH Zürich Lecture Notes, version 1.4.2, 2005.
  29. S. Chen, R. E. Ecke, G. L. Eyink, M. Rivera, M. Wan, and Z. Xiao, “Physical mechanism of the two-dimensional inverse energy cascade,” Phys. Rev. Lett. 96, 084502 (2006).
    [CrossRef] [PubMed]
  30. S. Chen, R. E. Ecke, G. L. Eyink, X. Wang, and Z. Xiao, “Physical mechanism of the two-dimensional enstrophy cascade,” Phys. Rev. Lett. 91, 214501 (2003).
    [CrossRef] [PubMed]
  31. S. Chen, G. Doolen, J. R. Herring, R. H. Kraichnan, S. A. Orszag, and Z. S. She, “Far-dissipation range of turbulence,” Phys. Rev. Lett. 70, 3051-3054 (1993).
    [CrossRef] [PubMed]
  32. S. P. Trainoff and D. S. Cannell, “Physical optics treatment of the shadowgraph,” Phys. Fluids 14, 1340-1363 (2002).
    [CrossRef]
  33. F. Croccolo, D. Brogioli, A. Vailati, M. Giglio, and D. S. Cannell, “Nondiffusive decay of gradient-driven fluctuations in a free-diffusion process,” Phys. Rev. E 76, 041112(2007).
    [CrossRef]
  34. I. J. Jagoda and F. J. Weinberg, “Optical studies of plasma jets,” J. Phys. D: Appl. Phys. 13, 551-561 (1980).
    [CrossRef]
  35. S. Zoletnik, M. Anton, M. Endler, S. Fiedler, M. Hirsch, K. McCormick, J. Schweinzer, and the W7-AS Team, “Density fluctuation phenomena in the scrape-off layer and edge plasma of the Wendelstein 7-AS stellarator,” Phys. Plasmas 6, 4239-4247 (1999).
    [CrossRef]
  36. F. Croccolo, D. Brogioli, A. Vailati, M. Giglio, and D. S. Cannell, “Use of dynamic schlieren interferometry to study fluctuations during free diffusion,” Appl. Opt. 45, 2166-2173(2006).
    [CrossRef] [PubMed]
  37. D. Magatti, M. D. Alaimo, M. A. C. Potenza, and F. Ferri, “Dynamic heterodyne near field scattering,” Appl. Phys. Lett. 92, 241101 (2008).
    [CrossRef]
  38. D. Brogioli, F. Croccolo, V. Cassina, D. Salerno, and F. Mantegazza, “Nano-particle characterization by using exposure time dependent spectrum and scattering in the near field methods: How to get fast dynamics with low-speed CCD camera,” Opt. Express 16, 20272-20282 (2008).
    [CrossRef] [PubMed]
  39. G. Papadopoulos, “Novel shadow image velocimetry technique for inferring temperature,” J. Thermophys. Heat Transfer 14, 593-603 (2000).
    [CrossRef]

2008 (5)

H. Nordborg and A. A. Iordanidis, “Self-consistent radiation based modelling of electric arcs: I. Efficient radiation approximations,” J. Phys. D: Appl. Phys. 41, 135205 (2008).
[CrossRef]

A. A. Iordanidis and C. M. Franck, “Self-consistent radiation-based simulation of electric arcs: II. Application to gas circuit breakers,” J. Phys. D: Appl. Phys. 41, 135206 (2008).
[CrossRef]

N. P. Basse, M. M. Abrahamsson, M. Seeger, and T. Votteler, “Quantitative analysis of gas circuit breaker physics through direct comparison of 3-D simulations to experiment,” IEEE Trans. Plasma Sci. 36, 2566-2571 (2008).
[CrossRef]

D. Magatti, M. D. Alaimo, M. A. C. Potenza, and F. Ferri, “Dynamic heterodyne near field scattering,” Appl. Phys. Lett. 92, 241101 (2008).
[CrossRef]

D. Brogioli, F. Croccolo, V. Cassina, D. Salerno, and F. Mantegazza, “Nano-particle characterization by using exposure time dependent spectrum and scattering in the near field methods: How to get fast dynamics with low-speed CCD camera,” Opt. Express 16, 20272-20282 (2008).
[CrossRef] [PubMed]

2007 (1)

F. Croccolo, D. Brogioli, A. Vailati, M. Giglio, and D. S. Cannell, “Nondiffusive decay of gradient-driven fluctuations in a free-diffusion process,” Phys. Rev. E 76, 041112(2007).
[CrossRef]

2006 (7)

F. Croccolo, D. Brogioli, A. Vailati, M. Giglio, and D. S. Cannell, “Use of dynamic schlieren interferometry to study fluctuations during free diffusion,” Appl. Opt. 45, 2166-2173(2006).
[CrossRef] [PubMed]

C. M. Franck and M. Seeger, “Application of high current and current zero simulations of high-voltage circuit breakers,” Contrib. Plasma Physics 46, 787-797 (2006).
[CrossRef]

M. D. Alaimo, D. Magatti, F. Ferri, and M. A. C. Potenza, “Heterodyne speckle velocimetry,” Appl. Phys. Lett. 88, 191101 (2006).
[CrossRef]

E. Arnaud, E. Mémin, R. Sosa, and G. Artana, “A fluid motion estimator for schlieren image velocimetry,” Lecture Notes Comput. Sci. 3954, 198-210 (2006).
[CrossRef]

D. R. Jonassen, G. S. Settles, and M. D. Tronosky, “Schlieren 'PIV' for turbulent flows,” Opt. Lasers Eng. 44, 190-207(2006).
[CrossRef]

J. A. Volpe and G. S. Settles, “Laser-induced gas breakdown as a light source for schlieren and shadowgraph particle image velocimetry,” Opt. Eng. Lett. 45, 080509 (2006).

S. Chen, R. E. Ecke, G. L. Eyink, M. Rivera, M. Wan, and Z. Xiao, “Physical mechanism of the two-dimensional inverse energy cascade,” Phys. Rev. Lett. 96, 084502 (2006).
[CrossRef] [PubMed]

2003 (1)

S. Chen, R. E. Ecke, G. L. Eyink, X. Wang, and Z. Xiao, “Physical mechanism of the two-dimensional enstrophy cascade,” Phys. Rev. Lett. 91, 214501 (2003).
[CrossRef] [PubMed]

2002 (1)

S. P. Trainoff and D. S. Cannell, “Physical optics treatment of the shadowgraph,” Phys. Fluids 14, 1340-1363 (2002).
[CrossRef]

2000 (1)

G. Papadopoulos, “Novel shadow image velocimetry technique for inferring temperature,” J. Thermophys. Heat Transfer 14, 593-603 (2000).
[CrossRef]

1999 (2)

S. Zoletnik, M. Anton, M. Endler, S. Fiedler, M. Hirsch, K. McCormick, J. Schweinzer, and the W7-AS Team, “Density fluctuation phenomena in the scrape-off layer and edge plasma of the Wendelstein 7-AS stellarator,” Phys. Plasmas 6, 4239-4247 (1999).
[CrossRef]

K. M. Smith and J. C. Dutton, “A procedure for turbulent structure convection velocity measurements using time-correlated images,” Exp. Fluids 27, 244-250 (1999).
[CrossRef]

1995 (1)

P. T. Tokumaru and P. E. Dimotakis, “Image correlation velocimetry,” Exp. Fluids 19, 1-15 (1995).
[CrossRef]

1993 (1)

S. Chen, G. Doolen, J. R. Herring, R. H. Kraichnan, S. A. Orszag, and Z. S. She, “Far-dissipation range of turbulence,” Phys. Rev. Lett. 70, 3051-3054 (1993).
[CrossRef] [PubMed]

1982 (3)

E. Schade and K. Ragaller, “Dielectric recovery of an axially blown SF6-arc after current zero: Part I--Experimental investigations,” IEEE Trans. Plasma Science PS-10, 141-153(1982).
[CrossRef]

K. Ragaller, W. Egli, and K. P. Brand, “Dielectric recovery of an axially blown SF6-arc after current zero: Part II--Theoretical investigations,” IEEE Trans. Plasma Science PS-10, 154-162(1982).
[CrossRef]

K. P. Brand, W. Egli, L. Niemeyer, K. Ragaller, and E. Schade, “Dielectric recovery of an axially blown SF6-arc after current zero: Part III--Comparison of experiment and theory,” IEEE Trans. Plasma Science PS-10, 162-172 (1982).
[CrossRef]

1980 (1)

I. J. Jagoda and F. J. Weinberg, “Optical studies of plasma jets,” J. Phys. D: Appl. Phys. 13, 551-561 (1980).
[CrossRef]

1976 (1)

D. W. Branston and J. Mentel, “Beugungstheoretische Behandlung eines Differentialinterferometers für ausgedehnte Phasenobjekte,” Appl. Phys. 11, 241-246 (1976).
[CrossRef]

1974 (1)

1973 (1)

1972 (1)

1956 (1)

H. Hannes, “Über die Eigenschaften des Schattenverfahrens,” Optik (Jena) 13, 34-48 (1956).

Abrahamsson, M. M.

N. P. Basse, M. M. Abrahamsson, M. Seeger, and T. Votteler, “Quantitative analysis of gas circuit breaker physics through direct comparison of 3-D simulations to experiment,” IEEE Trans. Plasma Sci. 36, 2566-2571 (2008).
[CrossRef]

Alaimo, M. D.

D. Magatti, M. D. Alaimo, M. A. C. Potenza, and F. Ferri, “Dynamic heterodyne near field scattering,” Appl. Phys. Lett. 92, 241101 (2008).
[CrossRef]

M. D. Alaimo, D. Magatti, F. Ferri, and M. A. C. Potenza, “Heterodyne speckle velocimetry,” Appl. Phys. Lett. 88, 191101 (2006).
[CrossRef]

Anton, M.

S. Zoletnik, M. Anton, M. Endler, S. Fiedler, M. Hirsch, K. McCormick, J. Schweinzer, and the W7-AS Team, “Density fluctuation phenomena in the scrape-off layer and edge plasma of the Wendelstein 7-AS stellarator,” Phys. Plasmas 6, 4239-4247 (1999).
[CrossRef]

Arnaud, E.

E. Arnaud, E. Mémin, R. Sosa, and G. Artana, “A fluid motion estimator for schlieren image velocimetry,” Lecture Notes Comput. Sci. 3954, 198-210 (2006).
[CrossRef]

R. Sosa, E. Arnaud, E. Mémin, and G. Artana, “Schlieren image velocimetry applied to EHD flows,” in Proceedings of the International Symposium on Electrohydrodynamics (2006), pp. 1-4.

Artana, G.

E. Arnaud, E. Mémin, R. Sosa, and G. Artana, “A fluid motion estimator for schlieren image velocimetry,” Lecture Notes Comput. Sci. 3954, 198-210 (2006).
[CrossRef]

R. Sosa, E. Arnaud, E. Mémin, and G. Artana, “Schlieren image velocimetry applied to EHD flows,” in Proceedings of the International Symposium on Electrohydrodynamics (2006), pp. 1-4.

Basse, N. P.

N. P. Basse, M. M. Abrahamsson, M. Seeger, and T. Votteler, “Quantitative analysis of gas circuit breaker physics through direct comparison of 3-D simulations to experiment,” IEEE Trans. Plasma Sci. 36, 2566-2571 (2008).
[CrossRef]

Bendat, J. S.

J. S. Bendat and A. G. Piersol, Random Data, 3rd ed.(Wiley, 2000).

Brand, K. P.

K. Ragaller, W. Egli, and K. P. Brand, “Dielectric recovery of an axially blown SF6-arc after current zero: Part II--Theoretical investigations,” IEEE Trans. Plasma Science PS-10, 154-162(1982).
[CrossRef]

K. P. Brand, W. Egli, L. Niemeyer, K. Ragaller, and E. Schade, “Dielectric recovery of an axially blown SF6-arc after current zero: Part III--Comparison of experiment and theory,” IEEE Trans. Plasma Science PS-10, 162-172 (1982).
[CrossRef]

Branston, D. W.

D. W. Branston and J. Mentel, “Beugungstheoretische Behandlung eines Differentialinterferometers für ausgedehnte Phasenobjekte,” Appl. Phys. 11, 241-246 (1976).
[CrossRef]

Brogioli, D.

Cannell, D. S.

F. Croccolo, D. Brogioli, A. Vailati, M. Giglio, and D. S. Cannell, “Nondiffusive decay of gradient-driven fluctuations in a free-diffusion process,” Phys. Rev. E 76, 041112(2007).
[CrossRef]

F. Croccolo, D. Brogioli, A. Vailati, M. Giglio, and D. S. Cannell, “Use of dynamic schlieren interferometry to study fluctuations during free diffusion,” Appl. Opt. 45, 2166-2173(2006).
[CrossRef] [PubMed]

S. P. Trainoff and D. S. Cannell, “Physical optics treatment of the shadowgraph,” Phys. Fluids 14, 1340-1363 (2002).
[CrossRef]

Cassina, V.

Chen, S.

S. Chen, R. E. Ecke, G. L. Eyink, M. Rivera, M. Wan, and Z. Xiao, “Physical mechanism of the two-dimensional inverse energy cascade,” Phys. Rev. Lett. 96, 084502 (2006).
[CrossRef] [PubMed]

S. Chen, R. E. Ecke, G. L. Eyink, X. Wang, and Z. Xiao, “Physical mechanism of the two-dimensional enstrophy cascade,” Phys. Rev. Lett. 91, 214501 (2003).
[CrossRef] [PubMed]

S. Chen, G. Doolen, J. R. Herring, R. H. Kraichnan, S. A. Orszag, and Z. S. She, “Far-dissipation range of turbulence,” Phys. Rev. Lett. 70, 3051-3054 (1993).
[CrossRef] [PubMed]

Croccolo, F.

Dändliker, R.

Dimotakis, P. E.

P. T. Tokumaru and P. E. Dimotakis, “Image correlation velocimetry,” Exp. Fluids 19, 1-15 (1995).
[CrossRef]

Doolen, G.

S. Chen, G. Doolen, J. R. Herring, R. H. Kraichnan, S. A. Orszag, and Z. S. She, “Far-dissipation range of turbulence,” Phys. Rev. Lett. 70, 3051-3054 (1993).
[CrossRef] [PubMed]

Dutton, J. C.

K. M. Smith and J. C. Dutton, “A procedure for turbulent structure convection velocity measurements using time-correlated images,” Exp. Fluids 27, 244-250 (1999).
[CrossRef]

Ecke, R. E.

S. Chen, R. E. Ecke, G. L. Eyink, M. Rivera, M. Wan, and Z. Xiao, “Physical mechanism of the two-dimensional inverse energy cascade,” Phys. Rev. Lett. 96, 084502 (2006).
[CrossRef] [PubMed]

S. Chen, R. E. Ecke, G. L. Eyink, X. Wang, and Z. Xiao, “Physical mechanism of the two-dimensional enstrophy cascade,” Phys. Rev. Lett. 91, 214501 (2003).
[CrossRef] [PubMed]

Egli, W.

K. P. Brand, W. Egli, L. Niemeyer, K. Ragaller, and E. Schade, “Dielectric recovery of an axially blown SF6-arc after current zero: Part III--Comparison of experiment and theory,” IEEE Trans. Plasma Science PS-10, 162-172 (1982).
[CrossRef]

K. Ragaller, W. Egli, and K. P. Brand, “Dielectric recovery of an axially blown SF6-arc after current zero: Part II--Theoretical investigations,” IEEE Trans. Plasma Science PS-10, 154-162(1982).
[CrossRef]

Endler, M.

S. Zoletnik, M. Anton, M. Endler, S. Fiedler, M. Hirsch, K. McCormick, J. Schweinzer, and the W7-AS Team, “Density fluctuation phenomena in the scrape-off layer and edge plasma of the Wendelstein 7-AS stellarator,” Phys. Plasmas 6, 4239-4247 (1999).
[CrossRef]

Eyink, G. L.

S. Chen, R. E. Ecke, G. L. Eyink, M. Rivera, M. Wan, and Z. Xiao, “Physical mechanism of the two-dimensional inverse energy cascade,” Phys. Rev. Lett. 96, 084502 (2006).
[CrossRef] [PubMed]

S. Chen, R. E. Ecke, G. L. Eyink, X. Wang, and Z. Xiao, “Physical mechanism of the two-dimensional enstrophy cascade,” Phys. Rev. Lett. 91, 214501 (2003).
[CrossRef] [PubMed]

Ferri, F.

D. Magatti, M. D. Alaimo, M. A. C. Potenza, and F. Ferri, “Dynamic heterodyne near field scattering,” Appl. Phys. Lett. 92, 241101 (2008).
[CrossRef]

M. D. Alaimo, D. Magatti, F. Ferri, and M. A. C. Potenza, “Heterodyne speckle velocimetry,” Appl. Phys. Lett. 88, 191101 (2006).
[CrossRef]

Fiedler, S.

S. Zoletnik, M. Anton, M. Endler, S. Fiedler, M. Hirsch, K. McCormick, J. Schweinzer, and the W7-AS Team, “Density fluctuation phenomena in the scrape-off layer and edge plasma of the Wendelstein 7-AS stellarator,” Phys. Plasmas 6, 4239-4247 (1999).
[CrossRef]

Franck, C. M.

A. A. Iordanidis and C. M. Franck, “Self-consistent radiation-based simulation of electric arcs: II. Application to gas circuit breakers,” J. Phys. D: Appl. Phys. 41, 135206 (2008).
[CrossRef]

C. M. Franck and M. Seeger, “Application of high current and current zero simulations of high-voltage circuit breakers,” Contrib. Plasma Physics 46, 787-797 (2006).
[CrossRef]

Giglio, M.

F. Croccolo, D. Brogioli, A. Vailati, M. Giglio, and D. S. Cannell, “Nondiffusive decay of gradient-driven fluctuations in a free-diffusion process,” Phys. Rev. E 76, 041112(2007).
[CrossRef]

F. Croccolo, D. Brogioli, A. Vailati, M. Giglio, and D. S. Cannell, “Use of dynamic schlieren interferometry to study fluctuations during free diffusion,” Appl. Opt. 45, 2166-2173(2006).
[CrossRef] [PubMed]

Hannes, H.

H. Hannes, “Über die Eigenschaften des Schattenverfahrens,” Optik (Jena) 13, 34-48 (1956).

Herring, J. R.

S. Chen, G. Doolen, J. R. Herring, R. H. Kraichnan, S. A. Orszag, and Z. S. She, “Far-dissipation range of turbulence,” Phys. Rev. Lett. 70, 3051-3054 (1993).
[CrossRef] [PubMed]

Hirsch, M.

S. Zoletnik, M. Anton, M. Endler, S. Fiedler, M. Hirsch, K. McCormick, J. Schweinzer, and the W7-AS Team, “Density fluctuation phenomena in the scrape-off layer and edge plasma of the Wendelstein 7-AS stellarator,” Phys. Plasmas 6, 4239-4247 (1999).
[CrossRef]

Ikeda, H.

T. Shinkai, M. Ooi, T. Uchii, H. Kawano, T. Nakamoto, and H. Ikeda, “Gas density and temperature in thermal volume for self-blast interrupting chambers,” in Proceedings of the IEEE/PES T&D Asia Pacific Conference (IEEE, 2002), pp. 419-423.

Ineichen, B.

Iordanidis, A. A.

H. Nordborg and A. A. Iordanidis, “Self-consistent radiation based modelling of electric arcs: I. Efficient radiation approximations,” J. Phys. D: Appl. Phys. 41, 135205 (2008).
[CrossRef]

A. A. Iordanidis and C. M. Franck, “Self-consistent radiation-based simulation of electric arcs: II. Application to gas circuit breakers,” J. Phys. D: Appl. Phys. 41, 135206 (2008).
[CrossRef]

Jagoda, I. J.

I. J. Jagoda and F. J. Weinberg, “Optical studies of plasma jets,” J. Phys. D: Appl. Phys. 13, 551-561 (1980).
[CrossRef]

Jakob, T.

T. Jakob, E. Schade, and R. Schaumann, “Self-blasting, a new switching principle for economical SF6 circuit breakers,” Proceedings of the IEE Conference CIRED (Institution of Electrical Engineers, 1977), pp. 63-66.

Jonassen, D. R.

D. R. Jonassen, G. S. Settles, and M. D. Tronosky, “Schlieren 'PIV' for turbulent flows,” Opt. Lasers Eng. 44, 190-207(2006).
[CrossRef]

Kawano, H.

T. Shinkai, M. Ooi, T. Uchii, H. Kawano, T. Nakamoto, and H. Ikeda, “Gas density and temperature in thermal volume for self-blast interrupting chambers,” in Proceedings of the IEEE/PES T&D Asia Pacific Conference (IEEE, 2002), pp. 419-423.

Kogelschatz, U.

Kraichnan, R. H.

S. Chen, G. Doolen, J. R. Herring, R. H. Kraichnan, S. A. Orszag, and Z. S. She, “Far-dissipation range of turbulence,” Phys. Rev. Lett. 70, 3051-3054 (1993).
[CrossRef] [PubMed]

Magatti, D.

D. Magatti, M. D. Alaimo, M. A. C. Potenza, and F. Ferri, “Dynamic heterodyne near field scattering,” Appl. Phys. Lett. 92, 241101 (2008).
[CrossRef]

M. D. Alaimo, D. Magatti, F. Ferri, and M. A. C. Potenza, “Heterodyne speckle velocimetry,” Appl. Phys. Lett. 88, 191101 (2006).
[CrossRef]

Mantegazza, F.

McCormick, K.

S. Zoletnik, M. Anton, M. Endler, S. Fiedler, M. Hirsch, K. McCormick, J. Schweinzer, and the W7-AS Team, “Density fluctuation phenomena in the scrape-off layer and edge plasma of the Wendelstein 7-AS stellarator,” Phys. Plasmas 6, 4239-4247 (1999).
[CrossRef]

Mémin, E.

E. Arnaud, E. Mémin, R. Sosa, and G. Artana, “A fluid motion estimator for schlieren image velocimetry,” Lecture Notes Comput. Sci. 3954, 198-210 (2006).
[CrossRef]

R. Sosa, E. Arnaud, E. Mémin, and G. Artana, “Schlieren image velocimetry applied to EHD flows,” in Proceedings of the International Symposium on Electrohydrodynamics (2006), pp. 1-4.

Mentel, J.

D. W. Branston and J. Mentel, “Beugungstheoretische Behandlung eines Differentialinterferometers für ausgedehnte Phasenobjekte,” Appl. Phys. 11, 241-246 (1976).
[CrossRef]

Nakamoto, T.

T. Shinkai, M. Ooi, T. Uchii, H. Kawano, T. Nakamoto, and H. Ikeda, “Gas density and temperature in thermal volume for self-blast interrupting chambers,” in Proceedings of the IEEE/PES T&D Asia Pacific Conference (IEEE, 2002), pp. 419-423.

Niemeyer, L.

K. P. Brand, W. Egli, L. Niemeyer, K. Ragaller, and E. Schade, “Dielectric recovery of an axially blown SF6-arc after current zero: Part III--Comparison of experiment and theory,” IEEE Trans. Plasma Science PS-10, 162-172 (1982).
[CrossRef]

Nordborg, H.

H. Nordborg and A. A. Iordanidis, “Self-consistent radiation based modelling of electric arcs: I. Efficient radiation approximations,” J. Phys. D: Appl. Phys. 41, 135205 (2008).
[CrossRef]

Ooi, M.

T. Shinkai, M. Ooi, T. Uchii, H. Kawano, T. Nakamoto, and H. Ikeda, “Gas density and temperature in thermal volume for self-blast interrupting chambers,” in Proceedings of the IEEE/PES T&D Asia Pacific Conference (IEEE, 2002), pp. 419-423.

Orszag, S. A.

S. Chen, G. Doolen, J. R. Herring, R. H. Kraichnan, S. A. Orszag, and Z. S. She, “Far-dissipation range of turbulence,” Phys. Rev. Lett. 70, 3051-3054 (1993).
[CrossRef] [PubMed]

Papadopoulos, G.

G. Papadopoulos, “Novel shadow image velocimetry technique for inferring temperature,” J. Thermophys. Heat Transfer 14, 593-603 (2000).
[CrossRef]

Piersol, A. G.

J. S. Bendat and A. G. Piersol, Random Data, 3rd ed.(Wiley, 2000).

Potenza, M. A. C.

D. Magatti, M. D. Alaimo, M. A. C. Potenza, and F. Ferri, “Dynamic heterodyne near field scattering,” Appl. Phys. Lett. 92, 241101 (2008).
[CrossRef]

M. D. Alaimo, D. Magatti, F. Ferri, and M. A. C. Potenza, “Heterodyne speckle velocimetry,” Appl. Phys. Lett. 88, 191101 (2006).
[CrossRef]

Puffer, R. A.

R. A. Puffer, “Experimentelle Untersuchung der Heissgasströmung in einem SF6-Selbstblasschaltermodell mittels Particle Image Velocimetry (PIV) zur Verifikation von Simulationsmodellen,” Ph.D. thesis (RWTH Aachen, Germany, 2001).

Ragaller, K.

K. P. Brand, W. Egli, L. Niemeyer, K. Ragaller, and E. Schade, “Dielectric recovery of an axially blown SF6-arc after current zero: Part III--Comparison of experiment and theory,” IEEE Trans. Plasma Science PS-10, 162-172 (1982).
[CrossRef]

E. Schade and K. Ragaller, “Dielectric recovery of an axially blown SF6-arc after current zero: Part I--Experimental investigations,” IEEE Trans. Plasma Science PS-10, 141-153(1982).
[CrossRef]

K. Ragaller, W. Egli, and K. P. Brand, “Dielectric recovery of an axially blown SF6-arc after current zero: Part II--Theoretical investigations,” IEEE Trans. Plasma Science PS-10, 154-162(1982).
[CrossRef]

Rivera, M.

S. Chen, R. E. Ecke, G. L. Eyink, M. Rivera, M. Wan, and Z. Xiao, “Physical mechanism of the two-dimensional inverse energy cascade,” Phys. Rev. Lett. 96, 084502 (2006).
[CrossRef] [PubMed]

Rösgen, T.

T. Rösgen, “Quantitative flow visualization,” ETH Zürich Lecture Notes, version 1.4.2, 2005.

Ryan, H. M.

H. M. Ryan, High Voltage Engineering and Testing, 2nd ed. (Institute of Engineering and Technology, 2001).
[CrossRef]

Salerno, D.

Schade, E.

K. P. Brand, W. Egli, L. Niemeyer, K. Ragaller, and E. Schade, “Dielectric recovery of an axially blown SF6-arc after current zero: Part III--Comparison of experiment and theory,” IEEE Trans. Plasma Science PS-10, 162-172 (1982).
[CrossRef]

E. Schade and K. Ragaller, “Dielectric recovery of an axially blown SF6-arc after current zero: Part I--Experimental investigations,” IEEE Trans. Plasma Science PS-10, 141-153(1982).
[CrossRef]

T. Jakob, E. Schade, and R. Schaumann, “Self-blasting, a new switching principle for economical SF6 circuit breakers,” Proceedings of the IEE Conference CIRED (Institution of Electrical Engineers, 1977), pp. 63-66.

Schardin, H.

H. Schardin, “Das Toeplersche Schlierenverfahren,” VDI-Forschungsheft 367 (VDI Verlag, 1934).

Schaumann, R.

T. Jakob, E. Schade, and R. Schaumann, “Self-blasting, a new switching principle for economical SF6 circuit breakers,” Proceedings of the IEE Conference CIRED (Institution of Electrical Engineers, 1977), pp. 63-66.

Schneider, W. R.

Schweinzer, J.

S. Zoletnik, M. Anton, M. Endler, S. Fiedler, M. Hirsch, K. McCormick, J. Schweinzer, and the W7-AS Team, “Density fluctuation phenomena in the scrape-off layer and edge plasma of the Wendelstein 7-AS stellarator,” Phys. Plasmas 6, 4239-4247 (1999).
[CrossRef]

Seeger, M.

N. P. Basse, M. M. Abrahamsson, M. Seeger, and T. Votteler, “Quantitative analysis of gas circuit breaker physics through direct comparison of 3-D simulations to experiment,” IEEE Trans. Plasma Sci. 36, 2566-2571 (2008).
[CrossRef]

C. M. Franck and M. Seeger, “Application of high current and current zero simulations of high-voltage circuit breakers,” Contrib. Plasma Physics 46, 787-797 (2006).
[CrossRef]

Settles, G. S.

J. A. Volpe and G. S. Settles, “Laser-induced gas breakdown as a light source for schlieren and shadowgraph particle image velocimetry,” Opt. Eng. Lett. 45, 080509 (2006).

D. R. Jonassen, G. S. Settles, and M. D. Tronosky, “Schlieren 'PIV' for turbulent flows,” Opt. Lasers Eng. 44, 190-207(2006).
[CrossRef]

G. S. Settles, Schlieren and Shadowgraph Techniques, 1st ed. (Springer-Verlag, 2006).

She, Z. S.

S. Chen, G. Doolen, J. R. Herring, R. H. Kraichnan, S. A. Orszag, and Z. S. She, “Far-dissipation range of turbulence,” Phys. Rev. Lett. 70, 3051-3054 (1993).
[CrossRef] [PubMed]

Shinkai, T.

T. Shinkai, M. Ooi, T. Uchii, H. Kawano, T. Nakamoto, and H. Ikeda, “Gas density and temperature in thermal volume for self-blast interrupting chambers,” in Proceedings of the IEEE/PES T&D Asia Pacific Conference (IEEE, 2002), pp. 419-423.

Smith, K. M.

K. M. Smith and J. C. Dutton, “A procedure for turbulent structure convection velocity measurements using time-correlated images,” Exp. Fluids 27, 244-250 (1999).
[CrossRef]

Sosa, R.

E. Arnaud, E. Mémin, R. Sosa, and G. Artana, “A fluid motion estimator for schlieren image velocimetry,” Lecture Notes Comput. Sci. 3954, 198-210 (2006).
[CrossRef]

R. Sosa, E. Arnaud, E. Mémin, and G. Artana, “Schlieren image velocimetry applied to EHD flows,” in Proceedings of the International Symposium on Electrohydrodynamics (2006), pp. 1-4.

Tokumaru, P. T.

P. T. Tokumaru and P. E. Dimotakis, “Image correlation velocimetry,” Exp. Fluids 19, 1-15 (1995).
[CrossRef]

Trainoff, S. P.

S. P. Trainoff and D. S. Cannell, “Physical optics treatment of the shadowgraph,” Phys. Fluids 14, 1340-1363 (2002).
[CrossRef]

Tronosky, M. D.

D. R. Jonassen, G. S. Settles, and M. D. Tronosky, “Schlieren 'PIV' for turbulent flows,” Opt. Lasers Eng. 44, 190-207(2006).
[CrossRef]

Uchii, T.

T. Shinkai, M. Ooi, T. Uchii, H. Kawano, T. Nakamoto, and H. Ikeda, “Gas density and temperature in thermal volume for self-blast interrupting chambers,” in Proceedings of the IEEE/PES T&D Asia Pacific Conference (IEEE, 2002), pp. 419-423.

Vailati, A.

F. Croccolo, D. Brogioli, A. Vailati, M. Giglio, and D. S. Cannell, “Nondiffusive decay of gradient-driven fluctuations in a free-diffusion process,” Phys. Rev. E 76, 041112(2007).
[CrossRef]

F. Croccolo, D. Brogioli, A. Vailati, M. Giglio, and D. S. Cannell, “Use of dynamic schlieren interferometry to study fluctuations during free diffusion,” Appl. Opt. 45, 2166-2173(2006).
[CrossRef] [PubMed]

Volpe, J. A.

J. A. Volpe and G. S. Settles, “Laser-induced gas breakdown as a light source for schlieren and shadowgraph particle image velocimetry,” Opt. Eng. Lett. 45, 080509 (2006).

Votteler, T.

N. P. Basse, M. M. Abrahamsson, M. Seeger, and T. Votteler, “Quantitative analysis of gas circuit breaker physics through direct comparison of 3-D simulations to experiment,” IEEE Trans. Plasma Sci. 36, 2566-2571 (2008).
[CrossRef]

Wan, M.

S. Chen, R. E. Ecke, G. L. Eyink, M. Rivera, M. Wan, and Z. Xiao, “Physical mechanism of the two-dimensional inverse energy cascade,” Phys. Rev. Lett. 96, 084502 (2006).
[CrossRef] [PubMed]

Wang, X.

S. Chen, R. E. Ecke, G. L. Eyink, X. Wang, and Z. Xiao, “Physical mechanism of the two-dimensional enstrophy cascade,” Phys. Rev. Lett. 91, 214501 (2003).
[CrossRef] [PubMed]

Weinberg, F. J.

I. J. Jagoda and F. J. Weinberg, “Optical studies of plasma jets,” J. Phys. D: Appl. Phys. 13, 551-561 (1980).
[CrossRef]

Xiao, Z.

S. Chen, R. E. Ecke, G. L. Eyink, M. Rivera, M. Wan, and Z. Xiao, “Physical mechanism of the two-dimensional inverse energy cascade,” Phys. Rev. Lett. 96, 084502 (2006).
[CrossRef] [PubMed]

S. Chen, R. E. Ecke, G. L. Eyink, X. Wang, and Z. Xiao, “Physical mechanism of the two-dimensional enstrophy cascade,” Phys. Rev. Lett. 91, 214501 (2003).
[CrossRef] [PubMed]

Zoletnik, S.

S. Zoletnik, M. Anton, M. Endler, S. Fiedler, M. Hirsch, K. McCormick, J. Schweinzer, and the W7-AS Team, “Density fluctuation phenomena in the scrape-off layer and edge plasma of the Wendelstein 7-AS stellarator,” Phys. Plasmas 6, 4239-4247 (1999).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. (1)

D. W. Branston and J. Mentel, “Beugungstheoretische Behandlung eines Differentialinterferometers für ausgedehnte Phasenobjekte,” Appl. Phys. 11, 241-246 (1976).
[CrossRef]

Appl. Phys. Lett. (2)

D. Magatti, M. D. Alaimo, M. A. C. Potenza, and F. Ferri, “Dynamic heterodyne near field scattering,” Appl. Phys. Lett. 92, 241101 (2008).
[CrossRef]

M. D. Alaimo, D. Magatti, F. Ferri, and M. A. C. Potenza, “Heterodyne speckle velocimetry,” Appl. Phys. Lett. 88, 191101 (2006).
[CrossRef]

Contrib. Plasma Physics (1)

C. M. Franck and M. Seeger, “Application of high current and current zero simulations of high-voltage circuit breakers,” Contrib. Plasma Physics 46, 787-797 (2006).
[CrossRef]

Exp. Fluids (2)

P. T. Tokumaru and P. E. Dimotakis, “Image correlation velocimetry,” Exp. Fluids 19, 1-15 (1995).
[CrossRef]

K. M. Smith and J. C. Dutton, “A procedure for turbulent structure convection velocity measurements using time-correlated images,” Exp. Fluids 27, 244-250 (1999).
[CrossRef]

IEEE Trans. Plasma Sci. (1)

N. P. Basse, M. M. Abrahamsson, M. Seeger, and T. Votteler, “Quantitative analysis of gas circuit breaker physics through direct comparison of 3-D simulations to experiment,” IEEE Trans. Plasma Sci. 36, 2566-2571 (2008).
[CrossRef]

IEEE Trans. Plasma Science (3)

E. Schade and K. Ragaller, “Dielectric recovery of an axially blown SF6-arc after current zero: Part I--Experimental investigations,” IEEE Trans. Plasma Science PS-10, 141-153(1982).
[CrossRef]

K. Ragaller, W. Egli, and K. P. Brand, “Dielectric recovery of an axially blown SF6-arc after current zero: Part II--Theoretical investigations,” IEEE Trans. Plasma Science PS-10, 154-162(1982).
[CrossRef]

K. P. Brand, W. Egli, L. Niemeyer, K. Ragaller, and E. Schade, “Dielectric recovery of an axially blown SF6-arc after current zero: Part III--Comparison of experiment and theory,” IEEE Trans. Plasma Science PS-10, 162-172 (1982).
[CrossRef]

J. Phys. D: Appl. Phys. (3)

H. Nordborg and A. A. Iordanidis, “Self-consistent radiation based modelling of electric arcs: I. Efficient radiation approximations,” J. Phys. D: Appl. Phys. 41, 135205 (2008).
[CrossRef]

A. A. Iordanidis and C. M. Franck, “Self-consistent radiation-based simulation of electric arcs: II. Application to gas circuit breakers,” J. Phys. D: Appl. Phys. 41, 135206 (2008).
[CrossRef]

I. J. Jagoda and F. J. Weinberg, “Optical studies of plasma jets,” J. Phys. D: Appl. Phys. 13, 551-561 (1980).
[CrossRef]

J. Thermophys. Heat Transfer (1)

G. Papadopoulos, “Novel shadow image velocimetry technique for inferring temperature,” J. Thermophys. Heat Transfer 14, 593-603 (2000).
[CrossRef]

Lecture Notes Comput. Sci. (1)

E. Arnaud, E. Mémin, R. Sosa, and G. Artana, “A fluid motion estimator for schlieren image velocimetry,” Lecture Notes Comput. Sci. 3954, 198-210 (2006).
[CrossRef]

Opt. Eng. Lett. (1)

J. A. Volpe and G. S. Settles, “Laser-induced gas breakdown as a light source for schlieren and shadowgraph particle image velocimetry,” Opt. Eng. Lett. 45, 080509 (2006).

Opt. Express (1)

Opt. Lasers Eng. (1)

D. R. Jonassen, G. S. Settles, and M. D. Tronosky, “Schlieren 'PIV' for turbulent flows,” Opt. Lasers Eng. 44, 190-207(2006).
[CrossRef]

Optik (Jena) (1)

H. Hannes, “Über die Eigenschaften des Schattenverfahrens,” Optik (Jena) 13, 34-48 (1956).

Phys. Fluids (1)

S. P. Trainoff and D. S. Cannell, “Physical optics treatment of the shadowgraph,” Phys. Fluids 14, 1340-1363 (2002).
[CrossRef]

Phys. Plasmas (1)

S. Zoletnik, M. Anton, M. Endler, S. Fiedler, M. Hirsch, K. McCormick, J. Schweinzer, and the W7-AS Team, “Density fluctuation phenomena in the scrape-off layer and edge plasma of the Wendelstein 7-AS stellarator,” Phys. Plasmas 6, 4239-4247 (1999).
[CrossRef]

Phys. Rev. E (1)

F. Croccolo, D. Brogioli, A. Vailati, M. Giglio, and D. S. Cannell, “Nondiffusive decay of gradient-driven fluctuations in a free-diffusion process,” Phys. Rev. E 76, 041112(2007).
[CrossRef]

Phys. Rev. Lett. (3)

S. Chen, R. E. Ecke, G. L. Eyink, M. Rivera, M. Wan, and Z. Xiao, “Physical mechanism of the two-dimensional inverse energy cascade,” Phys. Rev. Lett. 96, 084502 (2006).
[CrossRef] [PubMed]

S. Chen, R. E. Ecke, G. L. Eyink, X. Wang, and Z. Xiao, “Physical mechanism of the two-dimensional enstrophy cascade,” Phys. Rev. Lett. 91, 214501 (2003).
[CrossRef] [PubMed]

S. Chen, G. Doolen, J. R. Herring, R. H. Kraichnan, S. A. Orszag, and Z. S. She, “Far-dissipation range of turbulence,” Phys. Rev. Lett. 70, 3051-3054 (1993).
[CrossRef] [PubMed]

Other (10)

T. Jakob, E. Schade, and R. Schaumann, “Self-blasting, a new switching principle for economical SF6 circuit breakers,” Proceedings of the IEE Conference CIRED (Institution of Electrical Engineers, 1977), pp. 63-66.

T. Rösgen, “Quantitative flow visualization,” ETH Zürich Lecture Notes, version 1.4.2, 2005.

R. Sosa, E. Arnaud, E. Mémin, and G. Artana, “Schlieren image velocimetry applied to EHD flows,” in Proceedings of the International Symposium on Electrohydrodynamics (2006), pp. 1-4.

Phantom v7.3 from Vision Research, Inc., Commercial model name used for technical communication only.

J. S. Bendat and A. G. Piersol, Random Data, 3rd ed.(Wiley, 2000).

H. Schardin, “Das Toeplersche Schlierenverfahren,” VDI-Forschungsheft 367 (VDI Verlag, 1934).

H. M. Ryan, High Voltage Engineering and Testing, 2nd ed. (Institute of Engineering and Technology, 2001).
[CrossRef]

G. S. Settles, Schlieren and Shadowgraph Techniques, 1st ed. (Springer-Verlag, 2006).

T. Shinkai, M. Ooi, T. Uchii, H. Kawano, T. Nakamoto, and H. Ikeda, “Gas density and temperature in thermal volume for self-blast interrupting chambers,” in Proceedings of the IEEE/PES T&D Asia Pacific Conference (IEEE, 2002), pp. 419-423.

R. A. Puffer, “Experimentelle Untersuchung der Heissgasströmung in einem SF6-Selbstblasschaltermodell mittels Particle Image Velocimetry (PIV) zur Verifikation von Simulationsmodellen,” Ph.D. thesis (RWTH Aachen, Germany, 2001).

Supplementary Material (1)

» Media 1: MPG (8318 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Design drawing of the small-scale model.

Fig. 2
Fig. 2

Left: current; right, arc voltage.

Fig. 3
Fig. 3

Sketch of the shadowgraphy setup.

Fig. 4
Fig. 4

Arc zone pressure (solid line) and heating volume pressure (dashed line).

Fig. 5
Fig. 5

Autocorrelation of the heating volume pressure. Left, contour plot; right, 2D plot.

Fig. 6
Fig. 6

Sound speed of air at 1 bar as a function of temperature.

Fig. 7
Fig. 7

FFT of the heating volume pressure. Left, contour plot; right, 2D plot.

Fig. 8
Fig. 8

Cross correlation function between the arc zone and heating volume pressures.

Fig. 9
Fig. 9

Cartoon of the mixing process as measured using shadowgraphy (Media 1).

Fig. 10
Fig. 10

Two sequential shadowgraphy images.

Fig. 11
Fig. 11

Percentage of converged correlations versus the number of border pixels.

Fig. 12
Fig. 12

Percentage of converged correlations as a function of time for the 2 pixel border.

Fig. 13
Fig. 13

Heating volume velocity field 2.5 ms before CZ.

Fig. 14
Fig. 14

Heating volume speed field 2.5 ms before CZ.

Fig. 15
Fig. 15

Left, mean (solid line) and standard deviation (open circles) of speed in the heating volume versus time. Right, relative uncertainty of speed versus time.

Fig. 16
Fig. 16

Speed at the bottom center of the heating volume versus time: speed (open squares), X component (open circles) and Y component (open diamonds).

Tables (1)

Tables Icon

Table 1 Overview of Resonance Speeds a

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

v x = f × 2 × L x , v y = f × 2 × L y , v z = f × 2 × L z ,

Metrics