Abstract

A comparative study of a frequency-doubling 532nm laser based on gray-tracking-resistant KTP (GTR-KTP) and conventional KTP is presented. The intracavity GTR-KTP was proved to have better temperature characteristics than that of conventional KTP. Within the normalized output power variation range of 0.8–1.0, GTR-KTP has a temperature tolerance of 35°C, broader than the 21°C obtained with conventional KTP. Under the laser diode (LD) pump power of 180W, the maximum average output power at 532nm was 40.6W for GTR-KTP at a repetition frequency of 10kHz. In the case of conventional KTP, the maximum available LD pump power was limited to 150W, with the corresponding maximum green average output power of 27.2W.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription