Abstract

A comparative study of a frequency-doubling 532nm laser based on gray-tracking-resistant KTP (GTR-KTP) and conventional KTP is presented. The intracavity GTR-KTP was proved to have better temperature characteristics than that of conventional KTP. Within the normalized output power variation range of 0.8–1.0, GTR-KTP has a temperature tolerance of 35°C, broader than the 21°C obtained with conventional KTP. Under the laser diode (LD) pump power of 180W, the maximum average output power at 532nm was 40.6W for GTR-KTP at a repetition frequency of 10kHz. In the case of conventional KTP, the maximum available LD pump power was limited to 150W, with the corresponding maximum green average output power of 27.2W.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. B. Angert, V. M. Garmash, N. I. Pavlova, and A. V. Tarasov, “Influence of color centers on the optical properties of KTP crystals and on the efficiency of the laser radiation frequency conversion in these crystals,” Sov. J. Quantum Electron. 21, 426-428 (1991).
    [CrossRef]
  2. L. E. Halliburton and M. P. Scripsick, “Mechanisms and point defects responsible for the formation of gray tracks in KTP,” Proc. SPIE 2379, 235-244 (1995).
    [CrossRef]
  3. B. Boulanger, I. Rousseau, J. P. Fève, M. Maglione, B. Ménaert, and G. Marnier, “Optical studies of laser-induced gray-tracking in KTP,” IEEE J. Quantum Electron. 35, 281-286 (1999).
    [CrossRef]
  4. W. R. Bosenberg and D. R. Guyer, “Single-frequency optical parametric oscillator,” Appl. Phys. Lett. 61, 387-389 (1992).
    [CrossRef]
  5. X. Mu and Y. J. Ding, “Investigation of damage mechanisms of KTiOPO4 crystals by use of a continuous-wave argon laser,” Appl. Opt. 39, 3099-3103 (2000).
    [CrossRef]
  6. M. P. Scripsick, D. N. Lolacono, J. Rottenberg, S. H. Goellner, L. E. Halliburton, and F. K. Hopkins, “Defects responsible for gray tracks in flux-grown KTiOPO4,” Appl. Phys. Lett. 663428-3430 (1995).
    [CrossRef]
  7. G. M. Laiacono, D. N. Laiacono, T. McGee, and M. Babb, “Laser damage formation in KTiOPO4 and KTiOAsO4 crystals: grey tracks,” J. Appl. Phys. 72, 2705-2712 (1992).
    [CrossRef]
  8. J. K. Tyminski, “Photorefractive damage in KTP used as second harmonic generator,” J. Appl. Phys. 70, 5570-5576 (1991).
    [CrossRef]
  9. B. Boulanger, M. M. Fejer, R. Blachman, and P. F. Bordui, “Study of KTiOPO4 gray-tracking at 1064, 532, and 355 nm,” Appl. Phys. Lett. 65, 2401-2403 (1994).
    [CrossRef]
  10. W. Wiechmann, S. Kubota, T. Fukui, and H. Masuda, “Refractive-index temperature derivatives of potassium titanyl phosphate,” Opt. Lett. 18, 1208-1210 (1993).
    [CrossRef] [PubMed]
  11. K. Kato, “Temperature insensitive SHG at 0.5321 μm in KTP,” IEEE J. Quantum Electron. 28, 1974-1976 (1992).
    [CrossRef]
  12. J. P. Fève, B. Boulanger, G. Marnier, and H. Albrecht, “Repetition rate dependence of gray-tracking in KTiOPO4 during second harmonic generation at 532 nm,” Appl. Phys. Lett. 70, 277-279 (1997).
    [CrossRef]

2000 (1)

1999 (1)

B. Boulanger, I. Rousseau, J. P. Fève, M. Maglione, B. Ménaert, and G. Marnier, “Optical studies of laser-induced gray-tracking in KTP,” IEEE J. Quantum Electron. 35, 281-286 (1999).
[CrossRef]

1997 (1)

J. P. Fève, B. Boulanger, G. Marnier, and H. Albrecht, “Repetition rate dependence of gray-tracking in KTiOPO4 during second harmonic generation at 532 nm,” Appl. Phys. Lett. 70, 277-279 (1997).
[CrossRef]

1995 (2)

L. E. Halliburton and M. P. Scripsick, “Mechanisms and point defects responsible for the formation of gray tracks in KTP,” Proc. SPIE 2379, 235-244 (1995).
[CrossRef]

M. P. Scripsick, D. N. Lolacono, J. Rottenberg, S. H. Goellner, L. E. Halliburton, and F. K. Hopkins, “Defects responsible for gray tracks in flux-grown KTiOPO4,” Appl. Phys. Lett. 663428-3430 (1995).
[CrossRef]

1994 (1)

B. Boulanger, M. M. Fejer, R. Blachman, and P. F. Bordui, “Study of KTiOPO4 gray-tracking at 1064, 532, and 355 nm,” Appl. Phys. Lett. 65, 2401-2403 (1994).
[CrossRef]

1993 (1)

1992 (3)

K. Kato, “Temperature insensitive SHG at 0.5321 μm in KTP,” IEEE J. Quantum Electron. 28, 1974-1976 (1992).
[CrossRef]

G. M. Laiacono, D. N. Laiacono, T. McGee, and M. Babb, “Laser damage formation in KTiOPO4 and KTiOAsO4 crystals: grey tracks,” J. Appl. Phys. 72, 2705-2712 (1992).
[CrossRef]

W. R. Bosenberg and D. R. Guyer, “Single-frequency optical parametric oscillator,” Appl. Phys. Lett. 61, 387-389 (1992).
[CrossRef]

1991 (2)

N. B. Angert, V. M. Garmash, N. I. Pavlova, and A. V. Tarasov, “Influence of color centers on the optical properties of KTP crystals and on the efficiency of the laser radiation frequency conversion in these crystals,” Sov. J. Quantum Electron. 21, 426-428 (1991).
[CrossRef]

J. K. Tyminski, “Photorefractive damage in KTP used as second harmonic generator,” J. Appl. Phys. 70, 5570-5576 (1991).
[CrossRef]

Albrecht, H.

J. P. Fève, B. Boulanger, G. Marnier, and H. Albrecht, “Repetition rate dependence of gray-tracking in KTiOPO4 during second harmonic generation at 532 nm,” Appl. Phys. Lett. 70, 277-279 (1997).
[CrossRef]

Angert, N. B.

N. B. Angert, V. M. Garmash, N. I. Pavlova, and A. V. Tarasov, “Influence of color centers on the optical properties of KTP crystals and on the efficiency of the laser radiation frequency conversion in these crystals,” Sov. J. Quantum Electron. 21, 426-428 (1991).
[CrossRef]

Babb, M.

G. M. Laiacono, D. N. Laiacono, T. McGee, and M. Babb, “Laser damage formation in KTiOPO4 and KTiOAsO4 crystals: grey tracks,” J. Appl. Phys. 72, 2705-2712 (1992).
[CrossRef]

Blachman, R.

B. Boulanger, M. M. Fejer, R. Blachman, and P. F. Bordui, “Study of KTiOPO4 gray-tracking at 1064, 532, and 355 nm,” Appl. Phys. Lett. 65, 2401-2403 (1994).
[CrossRef]

Bordui, P. F.

B. Boulanger, M. M. Fejer, R. Blachman, and P. F. Bordui, “Study of KTiOPO4 gray-tracking at 1064, 532, and 355 nm,” Appl. Phys. Lett. 65, 2401-2403 (1994).
[CrossRef]

Bosenberg, W. R.

W. R. Bosenberg and D. R. Guyer, “Single-frequency optical parametric oscillator,” Appl. Phys. Lett. 61, 387-389 (1992).
[CrossRef]

Boulanger, B.

B. Boulanger, I. Rousseau, J. P. Fève, M. Maglione, B. Ménaert, and G. Marnier, “Optical studies of laser-induced gray-tracking in KTP,” IEEE J. Quantum Electron. 35, 281-286 (1999).
[CrossRef]

J. P. Fève, B. Boulanger, G. Marnier, and H. Albrecht, “Repetition rate dependence of gray-tracking in KTiOPO4 during second harmonic generation at 532 nm,” Appl. Phys. Lett. 70, 277-279 (1997).
[CrossRef]

B. Boulanger, M. M. Fejer, R. Blachman, and P. F. Bordui, “Study of KTiOPO4 gray-tracking at 1064, 532, and 355 nm,” Appl. Phys. Lett. 65, 2401-2403 (1994).
[CrossRef]

Ding, Y. J.

Fejer, M. M.

B. Boulanger, M. M. Fejer, R. Blachman, and P. F. Bordui, “Study of KTiOPO4 gray-tracking at 1064, 532, and 355 nm,” Appl. Phys. Lett. 65, 2401-2403 (1994).
[CrossRef]

Fève, J. P.

B. Boulanger, I. Rousseau, J. P. Fève, M. Maglione, B. Ménaert, and G. Marnier, “Optical studies of laser-induced gray-tracking in KTP,” IEEE J. Quantum Electron. 35, 281-286 (1999).
[CrossRef]

J. P. Fève, B. Boulanger, G. Marnier, and H. Albrecht, “Repetition rate dependence of gray-tracking in KTiOPO4 during second harmonic generation at 532 nm,” Appl. Phys. Lett. 70, 277-279 (1997).
[CrossRef]

Fukui, T.

Garmash, V. M.

N. B. Angert, V. M. Garmash, N. I. Pavlova, and A. V. Tarasov, “Influence of color centers on the optical properties of KTP crystals and on the efficiency of the laser radiation frequency conversion in these crystals,” Sov. J. Quantum Electron. 21, 426-428 (1991).
[CrossRef]

Goellner, S. H.

M. P. Scripsick, D. N. Lolacono, J. Rottenberg, S. H. Goellner, L. E. Halliburton, and F. K. Hopkins, “Defects responsible for gray tracks in flux-grown KTiOPO4,” Appl. Phys. Lett. 663428-3430 (1995).
[CrossRef]

Guyer, D. R.

W. R. Bosenberg and D. R. Guyer, “Single-frequency optical parametric oscillator,” Appl. Phys. Lett. 61, 387-389 (1992).
[CrossRef]

Halliburton, L. E.

M. P. Scripsick, D. N. Lolacono, J. Rottenberg, S. H. Goellner, L. E. Halliburton, and F. K. Hopkins, “Defects responsible for gray tracks in flux-grown KTiOPO4,” Appl. Phys. Lett. 663428-3430 (1995).
[CrossRef]

L. E. Halliburton and M. P. Scripsick, “Mechanisms and point defects responsible for the formation of gray tracks in KTP,” Proc. SPIE 2379, 235-244 (1995).
[CrossRef]

Hopkins, F. K.

M. P. Scripsick, D. N. Lolacono, J. Rottenberg, S. H. Goellner, L. E. Halliburton, and F. K. Hopkins, “Defects responsible for gray tracks in flux-grown KTiOPO4,” Appl. Phys. Lett. 663428-3430 (1995).
[CrossRef]

Kato, K.

K. Kato, “Temperature insensitive SHG at 0.5321 μm in KTP,” IEEE J. Quantum Electron. 28, 1974-1976 (1992).
[CrossRef]

Kubota, S.

Laiacono, D. N.

G. M. Laiacono, D. N. Laiacono, T. McGee, and M. Babb, “Laser damage formation in KTiOPO4 and KTiOAsO4 crystals: grey tracks,” J. Appl. Phys. 72, 2705-2712 (1992).
[CrossRef]

Laiacono, G. M.

G. M. Laiacono, D. N. Laiacono, T. McGee, and M. Babb, “Laser damage formation in KTiOPO4 and KTiOAsO4 crystals: grey tracks,” J. Appl. Phys. 72, 2705-2712 (1992).
[CrossRef]

Lolacono, D. N.

M. P. Scripsick, D. N. Lolacono, J. Rottenberg, S. H. Goellner, L. E. Halliburton, and F. K. Hopkins, “Defects responsible for gray tracks in flux-grown KTiOPO4,” Appl. Phys. Lett. 663428-3430 (1995).
[CrossRef]

Maglione, M.

B. Boulanger, I. Rousseau, J. P. Fève, M. Maglione, B. Ménaert, and G. Marnier, “Optical studies of laser-induced gray-tracking in KTP,” IEEE J. Quantum Electron. 35, 281-286 (1999).
[CrossRef]

Marnier, G.

B. Boulanger, I. Rousseau, J. P. Fève, M. Maglione, B. Ménaert, and G. Marnier, “Optical studies of laser-induced gray-tracking in KTP,” IEEE J. Quantum Electron. 35, 281-286 (1999).
[CrossRef]

J. P. Fève, B. Boulanger, G. Marnier, and H. Albrecht, “Repetition rate dependence of gray-tracking in KTiOPO4 during second harmonic generation at 532 nm,” Appl. Phys. Lett. 70, 277-279 (1997).
[CrossRef]

Masuda, H.

McGee, T.

G. M. Laiacono, D. N. Laiacono, T. McGee, and M. Babb, “Laser damage formation in KTiOPO4 and KTiOAsO4 crystals: grey tracks,” J. Appl. Phys. 72, 2705-2712 (1992).
[CrossRef]

Ménaert, B.

B. Boulanger, I. Rousseau, J. P. Fève, M. Maglione, B. Ménaert, and G. Marnier, “Optical studies of laser-induced gray-tracking in KTP,” IEEE J. Quantum Electron. 35, 281-286 (1999).
[CrossRef]

Mu, X.

Pavlova, N. I.

N. B. Angert, V. M. Garmash, N. I. Pavlova, and A. V. Tarasov, “Influence of color centers on the optical properties of KTP crystals and on the efficiency of the laser radiation frequency conversion in these crystals,” Sov. J. Quantum Electron. 21, 426-428 (1991).
[CrossRef]

Rottenberg, J.

M. P. Scripsick, D. N. Lolacono, J. Rottenberg, S. H. Goellner, L. E. Halliburton, and F. K. Hopkins, “Defects responsible for gray tracks in flux-grown KTiOPO4,” Appl. Phys. Lett. 663428-3430 (1995).
[CrossRef]

Rousseau, I.

B. Boulanger, I. Rousseau, J. P. Fève, M. Maglione, B. Ménaert, and G. Marnier, “Optical studies of laser-induced gray-tracking in KTP,” IEEE J. Quantum Electron. 35, 281-286 (1999).
[CrossRef]

Scripsick, M. P.

M. P. Scripsick, D. N. Lolacono, J. Rottenberg, S. H. Goellner, L. E. Halliburton, and F. K. Hopkins, “Defects responsible for gray tracks in flux-grown KTiOPO4,” Appl. Phys. Lett. 663428-3430 (1995).
[CrossRef]

L. E. Halliburton and M. P. Scripsick, “Mechanisms and point defects responsible for the formation of gray tracks in KTP,” Proc. SPIE 2379, 235-244 (1995).
[CrossRef]

Tarasov, A. V.

N. B. Angert, V. M. Garmash, N. I. Pavlova, and A. V. Tarasov, “Influence of color centers on the optical properties of KTP crystals and on the efficiency of the laser radiation frequency conversion in these crystals,” Sov. J. Quantum Electron. 21, 426-428 (1991).
[CrossRef]

Tyminski, J. K.

J. K. Tyminski, “Photorefractive damage in KTP used as second harmonic generator,” J. Appl. Phys. 70, 5570-5576 (1991).
[CrossRef]

Wiechmann, W.

Appl. Opt. (1)

Appl. Phys. Lett. (4)

J. P. Fève, B. Boulanger, G. Marnier, and H. Albrecht, “Repetition rate dependence of gray-tracking in KTiOPO4 during second harmonic generation at 532 nm,” Appl. Phys. Lett. 70, 277-279 (1997).
[CrossRef]

W. R. Bosenberg and D. R. Guyer, “Single-frequency optical parametric oscillator,” Appl. Phys. Lett. 61, 387-389 (1992).
[CrossRef]

M. P. Scripsick, D. N. Lolacono, J. Rottenberg, S. H. Goellner, L. E. Halliburton, and F. K. Hopkins, “Defects responsible for gray tracks in flux-grown KTiOPO4,” Appl. Phys. Lett. 663428-3430 (1995).
[CrossRef]

B. Boulanger, M. M. Fejer, R. Blachman, and P. F. Bordui, “Study of KTiOPO4 gray-tracking at 1064, 532, and 355 nm,” Appl. Phys. Lett. 65, 2401-2403 (1994).
[CrossRef]

IEEE J. Quantum Electron. (2)

K. Kato, “Temperature insensitive SHG at 0.5321 μm in KTP,” IEEE J. Quantum Electron. 28, 1974-1976 (1992).
[CrossRef]

B. Boulanger, I. Rousseau, J. P. Fève, M. Maglione, B. Ménaert, and G. Marnier, “Optical studies of laser-induced gray-tracking in KTP,” IEEE J. Quantum Electron. 35, 281-286 (1999).
[CrossRef]

J. Appl. Phys. (2)

G. M. Laiacono, D. N. Laiacono, T. McGee, and M. Babb, “Laser damage formation in KTiOPO4 and KTiOAsO4 crystals: grey tracks,” J. Appl. Phys. 72, 2705-2712 (1992).
[CrossRef]

J. K. Tyminski, “Photorefractive damage in KTP used as second harmonic generator,” J. Appl. Phys. 70, 5570-5576 (1991).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (1)

L. E. Halliburton and M. P. Scripsick, “Mechanisms and point defects responsible for the formation of gray tracks in KTP,” Proc. SPIE 2379, 235-244 (1995).
[CrossRef]

Sov. J. Quantum Electron. (1)

N. B. Angert, V. M. Garmash, N. I. Pavlova, and A. V. Tarasov, “Influence of color centers on the optical properties of KTP crystals and on the efficiency of the laser radiation frequency conversion in these crystals,” Sov. J. Quantum Electron. 21, 426-428 (1991).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of the intracavity frequency-doubling 532 nm laser.

Fig. 2
Fig. 2

Time evolution of the normalized 532 nm output power obtained with the two KTP crystals that were not actively cooled.

Fig. 3
Fig. 3

(a) Temperature tuning curve for the intracavity GTR-KTP, with the inset displaying the feature at a temperature range of 15 50 ° C . (b) Temperature tuning curve for the intracavity conventional KTP; inset, the feature at a temperature range of 15 36 ° C .

Fig. 4
Fig. 4

Average output power at 532 nm versus the LD pump power for GTR-KTP and conventional KTP at the repetition rate of 10 kHz .

Fig. 5
Fig. 5

(a)  532 nm spatial mode obtained with conventional KTP at the output power of 27.2 W . (b)  532 nm spatial mode for GTR-KTP at the output power of 40.6 W

Fig. 6
Fig. 6

Variations of pulse widths at 532 nm versus the LD pump power for GTR-KTP and conventional KTP at the repetition rate of 10 kHz .

Fig. 7
Fig. 7

Average output power at 532 nm versus repetition rates for the two KTP crystals under the given LD pump power.

Metrics